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2-ADIC FAMILIES OF MODULAR FORMS
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Abstract. We prove a control theorem for Hida’s ordinary Hecke algebra for the prime p = 2,
thereby establishing a uniqueness result for ordinary 2-adic families of cusp forms. As a conse-

quence we show that the possibly finitely many exceptions that arise, in showing that the local

Galois representations attached to the arithmetic members of a non-CM ordinary 2-adic family
of cuspidal eigenforms are all non-split, contain no CM forms.

1. Introduction

Hida theory for the prime p is the theory [Hid86a], [Hid86b] that deals with p-ordinary families
of elliptic modular forms. While generalizations are now available, for automorphic forms on groups
other than GL2 and base fields other than Q, many authors tend to shy away from the prime p = 2.

The goal of this paper is to check that some of the basic results in the literature stated for odd
primes p (and originally for p ≥ 5 in [Hid86a], [Hid86b]) remain valid for the prime p = 2. In
particular, we shall check that Hida’s control theorem (Theorem 8.1) for the ordinary Λ-adic Hecke
algebra holds in this setting. Such control theorems are of fundamental importance since

(i) they are connected to the fact that the dimension of the space of ordinary cusp forms
S0
k(Γ1(Npr),Zp) of tame level N coprime to p, and r fixed, is bounded independent of the

weight k, even though the dimension of the ambient space of cusp forms grows large with
k, and

(ii) they can be used to prove existence and uniqueness results for p-ordinary cusp forms in
Hida families.

Both these applications are well known when p is odd. As a result of our work here, we similarly
deduce that a 2-stabilized ordinary cuspidal newform of weight at least 2 lives in a unique primitive
2-ordinary cuspidal family, up to Galois conjugacy (cf. Section 9). As a consequence, we are able
to separate primitive 2-adic CM families from primitive non-CM families.

The proof of the control theorem in the case p = 2 given here uses a melange of techniques from
several of Hida’s papers. However, since some key facts needed from the theory of mod 2 modular
forms do not still seem to be known, we have had to replace these with other ingredients; see in
particular the proof of Theorem 5.3.

The reason we decided to embark on this project was to understand to what extent a recent
application of Hida theory for odd primes p, namely to understanding the local splitting behaviour
of p-ordinary modular Galois representations, continues to hold for the prime p = 2. As explained
in [Gha04], a direct geometric approach to this problem using the motive attached to the underlying
form only seems possible when the weight is 2. Following instead the Hida theoretic approach in
[GV04] for odd primes p, and assuming that a modularity result of Buzzard [Buz03] for Artin-like
representations holds in sufficient generality for the prime p = 2 (see [All12] for some progress on
this front), we show that almost all arithmetic members of a primitive non-CM 2-ordinary family
of cusp forms have locally non-split Galois representations. The uniqueness result mentioned above
implies that none of these possibly finitely many exceptions are CM forms. Thus, as for odd primes
p, if an exception occurs in a 2-ordinary non-CM family, it would give a genuine counterexample to
the natural guess of Greenberg that p-ordinary modular Galois representations tend to be locally
split only if the underlying form has CM.
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2. Preliminaries

We recall some background and notation.
Let Φ be a torsion-free congruence subgroup of SL2(Z). Then Φ acts freely on the upper half

complex plane H by linear fractional transformations. Let Y be the complex open manifold asso-
ciated to Φ, i.e., Y = Φ\H. Let C(Φ) denote a finite set of representatives for the Φ-equivalence
classes of cusps. Let X be the smooth compactification of Y obtained by adjoining the cusps in
C(Φ).

For any Z[Φ]-module M , equipped with the discrete topology, let F (M) = Φ\(H ×M), where
α ∈ Φ acts on H × M by α(z,m) = (αz, αm) for (z,m) ∈ H × M . We denote by the same
symbol F (M) the sheaf of continuous sections of the natural covering map F (M)→ Y . The sheaf
cohomology group is denoted by Hi(Y, F (M)) and compactly supported cohomology is denoted by
Hi
c(Y, F (M)). The parabolic sheaf cohomology group H1

p(Y, F (M)) is the image of H1
c(Y, F (M)) in

H1(Y, F (M)).
We relate the sheaf cohomology group with group cohomology. For n ≥ 0, let Ln(Z) = Zn+1

be the n-th symmetric power representation of SL2(Z). For an abelian group A, let Ln(A) :=
Ln(Z)⊗Z A. It is naturally an SL2(Z)-module through its action on the left factor.

It is well-known that
Hi(Y, F (Ln(A))) ' Hi(Φ, Ln(A)),

where Hi(Φ, Ln(A)) denotes the i-th group cohomology of the Z[Φ]-module Ln(A). This isomor-
phism is compatible with the action of the Hecke operators. Moreover, we have

H1
p(Y, F (Ln(A))) ' H1

p(Φ, Ln(A)),

where the right hand side is the first parabolic group cohomology group and this isomorphism is
again equivariant for the action of the Hecke operators.

When we study the ordinary parts of cohomology groups of Γ1(Npr) with (p,N) =1, for different
r’s, we will also need to consider the ordinary parts of cohomology groups of Φsr, for r ≥ s ≥ 0,
where

Φsr := Γ1(Nps) ∩ Γ0(pr) =

{(
a b
c d

)
∈ SL2(Z) | c ≡ 0 (mod Npr), a ≡ 1 (mod Nps)

}
.

From now on p = 2, q = 4 and (2, N) = 1. Let Γ0 = Γ1 = Z×p and for r ≥ 2, let Γr denote the
subgroup 1 + prZp of Γ, where Γ = Γ2 = 1 + qZp. There is a short exact sequence of groups

0→ Γ1(N2r)→ Φsr → Γs/Γr → 0,

induced by Φsr 3
(
a b
c d

)
7→ d̄ ∈ Γs/Γr. For convenience write Φr for Φ0

r, for r ≥ 0. In Hida theory,
for primes p ≥ 3, the congruence subgroup Φ1 plays an important role, but when p = 2, the role of
this group is played by the congruence subgroup Φ2 = Γ0(4) ∩ Γ1(N). Note that this last group is
torsion-free if N > 1.

Let K be a finite extension of Qp and OK be the integral closure of Zp in K. Let Z denote the
group lim←−

r

(Z/NprZ)× = Z×p × (Z/NZ)×. We may consider Γ = Γ2 = 1+4Zp as a subgroup of Z; let

u denote a generator of Γ2, often taken to be 1 + q. By definition, there is a tautological character
ι : Γ ↪→ ΛK = OK [[Γ]], which takes u to itself in ΛK . For each character χ : Γ→ O×K , the element
Pχ = ι(u) − χ(u) is a prime element, and ΛK/PχΛK ' OK , so that ι(u) corresponds to χ(u). If
χ(u) = ε(u)uk, where ε is a finite order character of Γ, we write Pk,ε for Pχ and simply Pk if ε is
trivial. We may identify ΛK with OK [[X]] sending u to 1 +X and in this case, Pk,ε is nothing but
(1 +X)− ε(u)uk. When K = Qp, we denote ΛQp by Λ.

Finally, let ω denote the mod 4 cyclotomic character, that is, ω is the mod 4 character defined
by ω(x) = ±1, for x ≡ ±1 (mod 4).

3. Main theorems

Recall that p = 2, and N is odd. We only use the congruence subgroup Γ1(Npr) with r ≥ 2,
which is a torsion-free group. We denote the corresponding complex Riemann surface by Yr and its
compactification by Xr. Let Hi(Yr,M) and Hi(Xr,M) denote the corresponding sheaf cohomology
groups for each constant sheaf M of Z-modules. It is well-known that

S2(Γ1(Npr)) ' H1(Xr,R),
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where the right hand side of the isomorphism, the sheaf cohomology with R coefficients, can be iden-
tified with de Rham cohomology. The above isomorphism is invariant under the Hecke action. The
Hecke algebra h2(Γ1(Npr),Z) acts on H1(Xr,Z) and therefore h2(Γ1(Npr),Zp) acts on H1(Xr,Zp),
H1(Xr,Qp), H1(Xr,Tp), where H1(Xr,M) = H1(Xr,Z) ⊗ZM and Tp := Qp/Zp.

For every positive integer r ≥ 2, we simply write

Vr = H1(Xr,Tp), Wr = H1(Yr,Tp).

Since H1(Xr,Tp) ' H1(Xr,Qp)/H1(Xr,Zp), we see that Vr andWr are p-divisible modules of finite
Zp-corank. Therefore End(Vr) and End(Wr) are free of finite rank. Hence one can define Hida’s
idempotent operator er attached to the Hecke operator Tp in End(Vr) and End(Wr). Define the
ordinary parts of Vr to be V0

r = erVr and similarly for Wr. V0
r is a module for h0

2(Γ1(Npr),Zp),
the ordinary part of h2(Γ1(Npr),Zp). By abuse of notation, we will use the same notation e for the
various er’s.

There is also an action of Γ0(Npr)/Γ1(Npr) on V0
r and W0

r . Let V denote the direct limit of Vr
and define similarly W, V0 and W0. Since (Z/NprZ)× acts on V0

r and W0
r , hence Z acts on V0 and

W0. In particular V0 and W0 become continuous modules over the Iwasawa algebra Λ = Zp[[Γ]]
if we equip them with the discrete topology. Let V 0= HomZp(V0,Tp), respectively W 0, be the

Pontryagin dual module of V0, respectivelyW0. Then V 0 and W 0 are compact Λ-modules. We can
now state one of the main theorems of this article.

Theorem 3.1. Let p = 2. We have:

(1) For each positive integer r ≥ 2, the restriction morphism of cohomology groups induces an
isomorphism of V0

r onto (V0)Γr . The same result also holds for W0.
(2) Let N > 1. The modules V 0 and W 0 are free modules of finite rank over Λ.

The first part of Theorem 3.1 gives control of the ordinary parts of the cohomology modules
associated with the decreasing sequence of congruence subgroups Γ1(Npr), for r ≥ 2, and we refer
to such a result as a control theorem (for cohomology).

4. Control theorem for cohomology

In this section, we prove part (1) of Theorem 3.1.
When studying the action of the Hecke operators on cohomology groups or on parabolic coho-

mology groups, often one needs to decompose certain double coset spaces into a disjoint union of left
cosets with a clever choice of coset representatives. Such decompositions can be found in [Hid86b,
Lem. 4.3]. We recall with proof only part (ii) of that lemma, since the hypotheses of the original
statement are mildly misstated. We refer the reader to [Hid86b] for the other parts, especially since
the lemma is only used implicitly below, in the proof of Proposition 4.5.

Lemma 4.1. Let r, m ≥ 1, r ≥ s. For every integer u ∈ Z, let αu ∈ M2(Z) be such that

αu ≡
(

1 u
0 pm

)
(mod Npmax(m,r)) and det(αu) = pm.

Then we have a disjoint decomposition

Φsr
(

1 0
0 pm

)
Φsr =

⋃
u mod pm

Φsrαu.

Proof. Suppose that m ≥ r. The proof in the other case is similar. The group Γ′ in (3.3.2) of [Shi71,
p. 67], is just Φsr, for r ≥ s, if we take t = 1, h to be the kernel of (Z/Npr)× → (Z/Nps)× and N
to be Npr. Now by [Shi71, Prop. 3.33], we have that Φsr

(
1 0
0 pm

)
Φsr = {β ∈ ∆′|det(β) = pm}, where

∆′ is as in [Shi71, p. 68]. The elements αu belongs to the right hand side of the above equality.
Observe that u ≡ u′ (mod pm) if and only if αu ≡ αu′ (mod pm). By the same proposition, the
number of left cosets of Φsr is pm. Thus, the αu, for u (mod pm), are candidates for the coset
representatives. �

Before we start the proof of the control theorem, let us state another lemma.

Lemma 4.2. Let {Mr}r≥2 be an inductive system of compatible modules over Zp[Γ/Γr], respectively.
Assume that for all r ≥ t ≥ 2, MΓt

r = Mt. Then (lim−→
r

Mr)
Γt = Mt.
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Proof. Clearly, lim−→
r

Mr is a module over Zp[[Γ]]. For every integer q ≥ 0, one knows Hq(Γt, lim−→
r

Mr) =

lim−→
r

Hq(Γt,Mr). In particular, when q = 0, we have that (lim−→
r

Mr)
Γt = lim−→

r

(Mr)
Γt = Mt, where the

last equality follows from the assumption. �

Now, we start the proof of the control theorem for cohomology.

Lemma 4.3. If Φsr/Γ1(Npr) acts on Tp trivially, then H2(Φsr/Γ1(Npr),Tp) = 0.

Proof. Since Φsr/Γ1(Npr) is a finite cyclic group, H2(Φsr/Γ1(Npr),Tp) = Tp/NTp, where N denote
the norm map from Tp to itself. Since Φsr/Γ1(Npr) acts on Tp trivially, N is multiplication by the
index of Γ1(Npr) in Φsr, hence is surjective. �

Lemma 4.4. For each r ≥ s ≥ 2, eH1(Γ1(Nps),Tp) ' eH1(Φsr,Tp), where e is the idempotent
operator attached to Tp on the respective groups.

Proof. Since Φsr ⊆ Γ1(Nps), there is a restriction map H1(Γ1(Nps),Tp) → H1(Φsr,Tp). We have
the following commutative diagram

H1(Γ1(Nps),Tp) res
//

T r−sp

��

H1(Φsr,Tp)

T r−sp

��[Φsr

(
1 0
0 pr−s

)
Φss]uujjjjjjjjjjjjjjj

H1(Γ1(Nps),Tp) res
// H1(Φsr,Tp).

By applying the idempotent operator, we get that the vertical morphisms are isomorphisms and
hence the diagonal map is an isomorphism. �

For each r ≥ s ≥ 2, we have the inflation-restriction sequence

0→ H1(Φsr/Γ1(Npr),Tp)
ι→ H1(Φsr,Tp)→ H1(Γ1(Npr),Tp)Γs → H2(Φsr/Γ1(Npr),Tp) = 0

where the last term vanishes by Lemma 4.3. The image of the group H1(Φsr/Γ1(Npr),Tp) inside
H1(Φsr,Tp) is annihilated by the idempotent e attached to Tp by [Hid86b, Lem. 6.1]. Therefore,

eH1(Φsr,Tp) ' eH1(Γ1(Npr),Tp)Γs = (W0
r )Γs .

By Lemma 4.4, we have that W0
s = eH1(Γ1(Nps),Tp) ' eH1(Φsr,Tp). By combining these isomor-

phisms, we get

W0
s ' (W0

r )Γs .

By Lemma 4.2, for any r ≥ 2, we have that (W0)Γr ' W0
r . This finishes the proof of the control

theorem for W0. Note that so far the proof works for all primes p ≥ 2.
Now, we shall prove the control theorem for V0, concentrating on what changes need to be made

in Hida’s original proof when p = 2. For a torsion-free congruence subgroup Φ, let P (Φ) denote a
set of generators of Φs, the stabilizer of Φ at s, for s ∈ C(Φ). Then, for r ≥ 2, Wr is given by{

ϕ ∈ Hom(Γ1(Npr),Tp) |
∑

π∈P (Γ1(Npr))

ϕ(π) = 0

}
,

and Vr is the submodule of Wr given by

Vr =

{
ϕ ∈ Hom(Γ1(Npr),Tp) | ϕ(π) = 0, for π ∈ P (Γ1(Npr))

}
,

since the group Γ1(Npr) acts trivially on Tp. For a detailed proof of the above equalities, see
[Hid86b, p. 583].

By Lemma 4.2, it is enough to prove that (V0
r )Γs = V0

s for r ≥ s ≥ 2. It is clear that there is a
map Vs → Vr. By taking the ordinary parts of Γs-invariants, we have an inclusion V0

s ↪→ (V0
r )Γs .

Therefore it is enough to prove the surjectivity of this last map. Since (W0
r )Γs = W0

s , given
a homomorphism ϕ : Γ1(Npr) → Tp invariant under Γs and satisfying ϕ|e = ϕ, there exists a
homomorphism ψ : Γ1(Nps) → Tp with ψ|e = ψ such that ψ = ϕ on Γ1(Npr). Thus, we need to
show that ψ(π) = 0, for all π ∈ P (Γ1(Nps)), i.e., ψ ∈ eH1

p(Γ1(Nps),Tp), assuming the same holds
for ϕ with r instead of s.
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Let [ψ] denote the equivalence class of ψ in the module

G(Γ1(Nps),Tp) := H1(Γ1(Nps),Tp)/H1
p(Γ1(Nps),Tp).

We need to show that [ψ] = 0. We know that [ψ]|e = [ψ]. If [ψ]|1−e = [ψ], then [ψ] = 0, since e is
an idempotent. Hence, it is enough to show that

[ψ]|1−e = [ψ]

holds. By following the strategy in [Hid86b], this reduces to proving [Hid86b, Thm. 5.8], which
characterizes the elements of (1− e)G(Γ1(Nps),Tp) as elements of the set

V (Tp) := {ψ ∈ Hom(Γ1(Nps)∞ab,Tp) | ψ(π) = 0, for all π ∈ P (Γ1(Nps))

corresponding to the unramified cusps},

where the module Γ1(Nps)∞ab is the free submodule of Γ1(Nps)ab generated by the elements of
P (Γ1(Nps)). Under the above equality, if ψ ∈ V (Tp), then [ψ] = (1− e)[ψ′] and hence [ψ]|1−e = [ψ]
holds. Thus it suffices to show that ψ ∈ V (Tp). Since every unramified cusp of Xs over X0 is under
an unramified cusp of Xr over X0, the elements of P (Γ1(Nps)) corresponding to unramified cusps
in Xs can be taken to be among the elements of P (Γ1(Npr)) corresponding to unramified cusps
in Xr. Then ψ(π) = ϕ(π) = 0, for all π ∈ P (Γ1(Nps)), which corresponds to unramified cusps of
Γ1(Nps), as desired.

The proof of [Hid86b, Thm. 5.8] depends, firstly, on various relations between the dimensions
of the space of Eisenstein series for Γ1(Npr) with coefficients in A and the boundary cohomology
G1(Γ1(Npr), Ln(A)) = ⊕t∈C(Γ1(Npr))H

1(Γ1(Npr)t, Ln(A)), for any subalgebra A of C or Cp, and
secondly, on the validity of [Hid86b, Prop. 5.7]. The results on the dimensions of the space of
Eisenstein series and the space G1(Γ1(Npr), Ln(A)) also holds for the prime p = 2. But, in the
proof of [Hid86b, Prop. 5.7], one crucially uses the fact that p 6= 2. Thus to finish the proof of the
control theorem for V0 when p = 2, it suffices to check that the proposition holds. Before we do
that, let us introduce the notion of regular and irregular cusps.

The stabilizer Φs at a cusp s ∈ C(Φ) of a torsion-free congruence subgroup Φ is an infinite cyclic
group. We fix an element α = αs in SL2(Z) for each s ∈ C(Φ) such that α(∞) = s. We can choose
a generator π = πs of Φs so that α−1πα = ±

(
1 u
0 1

)
with u > 0.

Definition 1. When α−1πα = −
(

1 u
0 1

)
, we say that the cusp s is irregular, and otherwise, we say

that s is regular.

This definition makes sense since −1 6∈ Φ, by assumption. We also remark that some authors define
irregularity by the condition α−1πα =

(−1 u
0 −1

)
, with u > 0. This is easily seen to be equivalent to

the above by taking the inverse of the generator π.
Coming back to the proof, the difference between [Hid86b, Prop. 5.7] and the analogous result

for p = 2 (Proposition 4.5 below) is that in the former case, i.e., when Φ = Γ1(Npr) for p ≥ 5
and r ≥ 1, the group Φ is torsion-free with regular cusps, whereas in the latter case, i.e., when
Φ = Γ1(Npr), for p = 2 and r ≥ 2, the group Φ is torsion-free, but its cusps are not necessarily
regular. For example, when N = 1 and r = 2, the group Γ1(4) has both regular and irregular cusps.
These irregular cusps create problems in the proof given in [Hid86b, Prop. 5.7] when p = 2.

Proposition 4.5. Let Φ = Γ1(Npr) with r ≥ 2. Let A be either Zp, Zp/piZp or any field of
characteristic 0. Let s be any unramified cusp of Φ and ρs : G1(Φ, A) := ⊕t∈C(Φ)H

1(Φt, A) →
H1(Φs, A) be the natural projection map. Then for any c ∈ G1(Φ, A), we have that ρs(c|e) = ρs(c),
where e is the idempotent operator attached to Tp.

Proof. For any positive integer M ≥ 5, all the cusps of Γ1(M) are regular. Hence, when p = 2, all
cusps of Γ1(Npr), for N ≥ 3 or r ≥ 3 are regular (so in particular are the unramified ones). So, it is
enough to consider the case when Φ = Γ1(4). By [Hid86b, Lem. 5.1], Γ1(4) has a unique unramified
cusp, namely ∞. We see that this cusp is also regular since otherwise we would have

πs = π∞ = −
(

1 u
0 1

)
for some u > 0, which is not an element of Γ1(4). Hence, when N = 1 and r = 2, the unique
unramified cusp is also regular. Thus Hida’s original proof of [Hid86b, Prop. 5.7] for regular cusps
applies when p = 2 as well. �
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Remark 1. Subsequently we will only need to consider N ≥ 3, for applications to p-adic families.
Also, in the odd prime case, the statement of [Hid86b, Prop. 5.7] also treats the groups Φ = Φsr for
r > s ≥ 0. Since we do not need this part of the proposition when p = 2, we ignore it. In fact, if Φ
has elements of finite order (this happens for small values of N and s when p = 2), it is not clear
that the proposition holds for such Φ.

This finishes the proof of the control theorem for cohomology.

5. Freeness

In this section, we prove that the modules V 0 and W 0 are free of finite rank over Zp[[X]],
completing the proof of Theorem 3.1. We restate this formally as:

Theorem 5.1. Let p = 2, N > 1 be odd, and Λ = Zp[[X]]. The modules V 0 and W 0 are free
modules of finite rank over Λ.

The freeness of W 0 follows from [Kum, Thm. 5.3], by Poincare duality. The claim for V 0

is more subtle and requires more machinery and results. We start by recalling without proof a
lemma [Hid86b, Lem. 6.3] which is useful in proving the freeness of V 0.

Lemma 5.2. A compact continuous Λ-module M is free of finite rank r over Λ if and only if there
is a subset I of positive integers and infinitely many elements {Pn}n∈I in Λ such that M[Pn] ' Trp,
for all n ∈ I, where M is the Pontryagin dual of M and M[Pn] = {m ∈M|Pn.m = 0}.

We know that the group Z×p (recall p = 2) acts on V0. In particular, µ2 = (Z/qZ)× acts on V0

(recall q = 4). Write

V0 = V0(0)⊕ V0(1),

where V0(a) = {v ∈ V0| v|ζ = ζav, for ζ ∈ µ2}. Since the action of Γ commutes with the action
of µ2, V0(a) is also a Λ-module, for a = 0, 1. Let V 0(a) denote the Pontryagin dual of V0(a). We
shall show V 0(a) is a free module of rank 2r(a) over Λ, where r(a) is the rank of the Hecke algebra
h0

2(Φ2, ω
a,Zp).

By part (1) of Theorem 3.1, we have that V 0(a)/a2V
0(a), where a2 is the augmentation ideal

of Zp[[Γ]], is a free module of rank 2r(a) over Zp. By Nakayama’s lemma, we see that V 0(a) is a
finitely generated Λ-module with minimal number of generators 2r(a). Hence there is a surjection
from Λ2r(a) � V 0(a). Hence, by duality, we have

V0(a)[Pn] ↪→ T2r(a)
p ,

where Pn is the prime ideal of Λ defined in section 2. Now define

H1(Γ1(Npr), n;Zp/prZp) := {v ∈ H1(Γ1(Npr),Zp/prZp) | v|z = znv for z ∈ Z×p },
H1

p(Γ1(Npr), n;Zp/prZp) := H1(Γ1(Npr), n;Zp/prZp) ∩H1
p(Γ1(Npr),Zp/prZp).

Suppose that the following inclusions and isomorphisms are true for r ≥ 2:

eH1
p(Φ2, Ln(Zp))⊗ Zp/prZp ↪→

(1)
eH1

p(Φ2, Ln(Zp/prZp))

'
(2)
eH1

p(Φr, Ln(Zp/prZp)) '
(3)
eH1

p(Φr,Zp/prZp(n))

↪→
(4)

eH1
p(Γ1(Npr), n;Zp/prZp) ↪→

(5)
V0(a)[Pn],

(5.1)

where the last inclusion holds only if n ≡ a (mod 2). Then we have

eH1
p(Φ2, Ln(Zp))⊗ Zp/prZp ↪→ V0(a)[Pn] ↪→ T2r(a)

p .

Taking direct limits with respect to r, we have that

eH1
p(Φ2, Ln(Zp))⊗ Tp ↪→ V0(a)[Pn] ↪→ T2r(a)

p . (5.2)

In the next section, we prove that the module eH1
p(Φ2, Ln(Zp)) is Zp-free (see Lemma 6.2). More

precisely, we prove in Theorem 6.1 that:

Theorem 5.3. The Zp-rank of the module eH1
p(Φ2, Ln(Zp)) is 2r(a), for n ≡ a (mod 2).
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Proof. For p ≥ 5, the theorem is proved in [Hid86a, Thm. 3.1 and Cor. 3.2]. In his proof of [Hid86a,
Thm. 3.1], Hida uses results from the theory of Katz modular forms, the theory of mod p modular
forms and the fact that p ≥ 5. For the prime p = 2, we need different arguments to prove the
theorem and we postpone the proof to the next section. �

We complete the proof of Theorem 5.1, assuming Theorem 5.3.

Proof. By Theorem 5.3, we have that T2r(a)
p ' eH1

p(Φ2, Ln(Zp)) ⊗ Tp. Hence, V0(a)[Pn] ' T2r(a)
p ,

for all n ≡ a (mod 2). The theorem now follows from Lemma 5.2. �

Now, we shall show that the inclusions and isomorphisms in (5.1) hold. This is the content of
the next few lemmas and propositions. The following proposition proves the inclusion (1) in (5.1).

Proposition 5.4. For all r ≥ 1 and n ≥ 0, we have

eH1
p(Φ2, Ln(Zp))⊗ Zp/prZp ↪→ eH1

p(Φ2, Ln(Zp/prZp)).

Proof. For any Zp-module A, the short exact sequence of modules

0→ eH1
p(Φ2, Ln(Zp))→ eH1(Φ2, Ln(Zp))→ eH1(Φ2, Ln(Zp))/eH1

p(Φ2, Ln(Zp))→ 0

induces the long exact sequence

Tor(eH1(Φ2, Ln(Zp))/eH1
p(Φ2, Ln(Zp)), A)→ eH1

p(Φ2, Ln(Zp))⊗A→ eH1(Φ2, Ln(Zp))⊗A.

If eH1(Φ2, Ln(Zp))/eH1
p(Φ2, Ln(Zp)) is Zp-free, then the first term in the above exact sequence is

zero, and in particular this is so when A = Zp/prZp. So the second map above is injective. Now,
for any congruence subgroup Φ,

eH1(Φ, Ln(Zp))⊗A
∼→ eH1(Φ, Ln(A)),

and under this identification, this second map above preserves parabolic classes, proving the theo-
rem. The Zp-freeness of the module eH1(Φ2, Ln(Zp))/eH1

p(Φ2, Ln(Zp)) follows from [Hid88a, Prop.
2.3]. Although this proposition was proved there for Γ1(Npr), for p ≥ 5, the same proof works for
Φ2 for p = 2 and N ≥ 3 with (2, N) = 1. �

The isomorphisms (2) and (3) in (5.1) follows from [Hid86b, Cor. 4.5], noting that the argument
given there works for p = 2 and for Φ2, instead of p odd and the Φ1 there. The following lemma
proves the inclusion (4).

Lemma 5.5. For r ≥ 2, we have an inclusion

eH1
p(Φr,Zp/prZp(n)) ↪→ eH1

p(Γ1(Npr), n;Zp/prZp).

Proof. We have the following inflation-restriction sequence for the groups Γ1(Npr) ⊆ Φr:

0→ H1(Φr/Γ1(Npr),Zp/prZp(n))→ H1(Φr, Zp/prZp(n))

→ H1(Γ1(Npr),Zp/prZp(n))Φr/Γ1(Npr).

Since

H1(Γ1(Npr),Zp/prZp(n))Φr/Γ1(Npr) ↪→ H1(Γ1(Npr), n;Zp/prZp),
we have the following exact sequence

0→ H1(Φr/Γ1(Npr),Zp/prZp(n))→ H1(Φr,Zp/prZp(n))→ H1(Γ1(Npr), n;Zp/prZp).

By [Hid86b, Lem. 6.1], we have

eH1(Φr,Zp/prZp(n)) ↪→ eH1(Γ1(Npr), n;Zp/prZp).

Hence, we have the required claim. �

The following lemma proves inclusion (5) in (5.1).

Lemma 5.6. eH1
p(Γ1(Npr), n;Zp/prZp) ↪→ V0(a)[Pn], if n ≡ a (mod 2).
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Proof. Observe that, eH1
p(Γ1(Npr), n;Zp/prZp) is the subspace of eH1

p(Γ1(Npr),Zp/prZp) on which

Z×p act by v|z = znv, where v is a cohomology class. The group V0(a)[Pn] is also the subspace of

V0 such that Z×p acts by v|z = znv, where v ∈ V0. This is true because µ2 acts by ζa2 = ζn2 and
γ ∈ Γ acts by v|γ = γnv.

By [Hid86b, p. 584, (5.4)], we have that eH1
p(Γ1(Npr),Zp/ptZp) ' eH1

p(Γ1(Npr),Zp)⊗Zp/ptZp.
Since tensor product commutes with direct limits, we have that

lim−→
t

eH1
p(Γ1(Npr),Zp/ptZp) ' eH1

p(Γ1(Npr),Zp)⊗Zp Tp ' eH1
p(Γ1(Npr),Tp).

By part (1) of Theorem 3.1 (i.e., (V0)Γr ' V0
r , for every r ≥ 2), we have that

eH1
p(Γ1(Npr),Zp/prZp) ↪→ V0.

Now the lemma follows, since this map respects the action of Z×p . �

6. Constant rank

In this section, we prove that the ranks of certain cuspidal ordinary 2-adic Hecke algebras of
different weights are all equal to the rank of a weight 2 cuspidal ordinary Hecke algebra. As in the
previous section, p = 2 and N > 1 is odd.

For a = 0 or 1, recall that r(a) is the rank of the Hecke algebra h0
2(Φ2, ω

a,Zp), where ω denotes
the mod 4 cyclotomic character. For simplicity, we write A(ωn) for the sheaf with twisted action
L0(ωn, A), for any Zp-module A.

Theorem 6.1. For each positive integer n ≡ a (mod 2),

rankZp h0
n+2(Φ2,Zp) = r(a).

Before proving this theorem, we need to gather some results, which we do now.

Lemma 6.2. For r > s ≥ 0, the module eH1(Φsr, Ln(Zp)) is Zp-free, for n ≥ 0.

Proof. The short exact sequence

0→ Ln(Zp)→ Ln(Qp)→ Ln(Tp)→ 0

induces a long exact sequence of cohomology groups for the group Φsr

H0(Φsr, Ln(Qp))
α→ H0(Φsr, Ln(Tp))

β→ H1(Φsr, Ln(Zp))
γ→ H1(Φsr, Ln(Qp)).

If n = 0, then the map α is surjective and hence the map β is zero. Therefore the map γ is injective
and H1(Φsr, Ln(Zp)) is Zp-free. Assume that n > 0. If we can show that eH0(Φsr, Ln(Tp)) = 0, then

the lemma follows. The operator Tp acts on Ln(Tp) by x|Tp =
∑p−1
i=0

(
1 −i
0 p

)ι
x, where Aι = Adj(A).

We see that Tp acts on any p-torsion element of H0(Φsr, Ln(Tp)) by the matrix
(

0 ∗
0 0

)
and hence T 2

p

acts trivially on such elements, hence the idempotent e annihilates H0(Φsr, Ln(Tp)). �

Corollary 6.3. For any integer n ≥ 0, the module eH1(Φ2,Zp(ωn)) is Zp-free.

Proof. If n is even, then ωn = 1, hence this follows from the lemma and when n is odd, the proof
is similar to the proof of the lemma. �

Lemma 6.4. eH1
p(Φ2, Ln(Zp))⊗ Zp/qZp ' eH1

p(Φ2, Ln(Zp/qZp)).

Proof. By Proposition 5.4 with r = 2, the map

0→ eH1
p(Φ2, Ln(Zp))⊗ Zp/qZp → eH1

p(Φ2, Ln(Zp/qZp)).

is injective. For the surjectivity, we work with sheaf cohomology instead of group cohomology. Let Y
be the complex open manifold associated with Φ2. Observe that we have the following commutative
diagram:

eH1
c(Y, F (Ln(Zp)))/q // //

o
��

eH1
p(Y, F (Ln(Zp)))/q � � //

� _

��

eH1(Y, F (Ln(Zp)))/q

o
��

eH1
c(Y, F (Ln(Zp/qZp))) // // eH1

p(Y, F (Ln(Zp/qZp))) � � // eH1(Y, F (Ln(Zp/qZp))).
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By [Hid88a, Cor. 2.2], the first vertical map is an isomorphism. As a result, we get that the middle
vertical map is surjective and the lemma follows. �

Lemma 6.5. For any n ≥ 0, eH1(Y, F (Zp(ωn)))/q ' eH1(Y, F (Zp/qZp(ωn))).

Proof. The short exact sequence

0→ Zp(ωn)
q→ Zp(ωn)→ Zp/qZp(ωn)→ 0

induces another short exact sequence

0→ H1(Y, F (Zp(ωn)))⊗ Zp/qZp → H1(Y, F (Zp/qZp(ωn)))→ H2(Y, F (Zp(ωn)))[q]→ 0,

where H2(Y, F (Zp(ωn)))[q] = {x ∈ H2(Y, F (Zp(ωn))) | q.x = 0}. This last group vanishes, since the
cohomological dimension of Φsr is 1. �

Proposition 6.6. The module e(H1(Φ2,Zp(ω))/H1
p(Φ2,Zp(ω))) is Zp-free.

Proof. For i = 0, 1, define

Gi(Φ2,M) = ⊕
s∈C(Φ2)

Hi((Φ2)s,M),

for any Φ2-module M . For each s ∈ C(Φ2) and x ∈ Gi(Φ2,M), we write xs for the component of x
in Hi((Φ2)s,M). The module Gi(Φ2,M) has a natural action of the Hecke operators and we have
an exact sequence of abelian groups for which the maps are compatible with the action of the Hecke
operators:

0→ H1
p(Φ2,M)→ H1(Φ2,M)→ G1(Φ2,M).

From the exact sequence above we see that if the module eG1(Φ2,Zp(ω)) is Zp-free, then the
proposition follows. Consider the long exact sequence of cohomology groups

G0(Φ2,Qp(ω))
β→ G0(Φ2,Tp(ω))→ G1(Φ2,Zp(ω))→ G1(Φ2,Qp(ω)),

induced by the short exact sequence 0→ Zp(ω)→ Qp(ω)→ Tp(ω)→ 0.
Since the image of β is p-divisible, it is sufficient to know that for all x ∈ G0(Φ2,Tp(ω))[p], x|Tp

belongs to β(G0(Φ2,Qp(ω))). Then a small computation shows that

e(G0(Φ2,Tp(ω))/β(G0(Φ2,Qp(ω)))) = 0,

and hence eG1(Φ2, Ln(Zp(ω))) is Zp-free. We now prove, for all x ∈ G0(Φ2,Tp(ω))[p], the element
x|Tp belongs to β(G0(Φ2,Qp(ω))).

Since (2, N) = 1 and N ≥ 3, all the cusps of Φ2 are regular, because irregularity for Φ2 implies
the irregularity for Γ1(N), but there are no irregular cusps for Γ1(N). Let s ∈ C(Φ2) be a cusp of
Φ2. Let αs =

(
a b
c d

)
∈ SL2(Z) such that αs(∞) = s. If πs denotes a generator for (Φ2)s, we may

write

πs = αs
(

1 u
0 1

)
α−1
s =

(
1−cau a2u
−c2u 1+cau

)
∈ Φ2, with u 6= 0. (6.1)

The structure of G0(Φ2,M(ω)) depends on the action πs on M . In order to study this, let us
divide the cusps into two types. If p | u, then we refer to this cusp as being of type 1, otherwise of
type 2. We assume that Φ2 acts trivially on M , because we are only interested in the cases when
M = Zp, Qp or Tp. Let x be an element of G0(Φ2,Tp(ω))[p].

If s is a cusp of type 1, then we see that H0((Φ2)s,M(ω)) = M by (6.1) and moreover the map βs is
surjective, where βs : H0((Φ2)s,Qp(ω))→ H0((Φ2)s,Tp(ω)). Hence (x|Tp)s ∈ β(H0((Φ2)s,Qp(ω)) =
Qp).

Suppose s is a cusp of type 2. If πs acts trivially on M , then H0((Φ2)s,M(ω)) = M and if πs does
not act trivially on M , then H0((Φ2)s,M(ω)) = M [2]. In the former case, again (x|Tp)s ∈ β(Qp).
In the latter case,

(x|Tp)s =

p−1∑
i=0

(
γ
(

1 0
0 p

)
πis
)ι · xt,

where γ ∈ Φ2 such that t = γ
(

1 0
0 p

)
(s) ∈ C(Φ2). Since x is 2-torsion, we see that (x|Tp)s =∑p−1

i=0 (±1) · xt =
∑p−1
i=0 xt = 2xt = 0 ∈ β(H0((Φ2)s,Qp(ω))) = 0. Hence we have that for any

x ∈ G0(Φ2,Tp(ω))[p], the element x|Tp belongs to β(G0(Φ2,Qp(ω))). �

Remark 2. In the above proof, we have used the fact that p = 2.
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Corollary 6.7. eH1
p(Φ2,Zp(ωn))/q ↪→ eH1

p(Φ2,Zp/qZp(ωn)).

Proof. When n is even, this follows from Proposition 5.4 with r = 2. When n is odd, the injectivity
of the first vertical map follows from the following diagram

eH1
p(Y, F (Zp(ω)))/q � � α //

� _

��

eH1(Y, F (Zp(ω)))/q

o
��

eH1
p(Y, F (Zp/qZp(ω))) � � // eH1(Y, F (Zp/qZp(ω))),

since α is injective by Proposition 6.6, and the second vertical map is an isomorphism by Lemma 6.5.
�

Now we shall give a proof Theorem 6.1.

Proof. It is enough to prove that the Zp-rank of eH1
p(Φ2, Ln(Zp)) is the same as the Zp-rank of

eH1
p(Φ2,Zp(ωa)) (the modules are Zp-free by Lemma 6.2 and by its corollary). By (5.2), we see

that the rank of eH1
p(Φ2, Ln(Zp)) is less than or equal to the rank of eH1

p(Φ2,Zp(ωa)).
Again by Lemma 6.2 and by its corollary, it is enough to show the Zp/qZp-rank of the module

eH1
p(Φ2, Ln(Zp))⊗ Zp/qZp is greater than or equal to that of eH1

p(Φ2,Zp(ωa))⊗ Zp/qZp. We have
the following

eH1
p(Φ2, Ln(Zp))⊗ Zp/qZp '

(1)
eH1

p(Φ2, Ln(Zp/qZp))

'
(2)
eH1

p(Φ2,Zp/qZp(ωa))←↩
(3)

eH1
p(Φ2,Zp(ωa))⊗ Zp/qZp,

(6.2)

where the isomorphisms (1), (2) and the inclusion (3) follow from Lemma 6.4, the isomorphism (3)
in (5.1) with r = 2, and Corollary 6.7, respectively. Hence the theorem is proved. �

7. Λ-adic Hecke algebras

Recall that our aim is to prove a control theorem for Hida’s ordinary Hecke algebra, which we
now introduce.

Each element f in Sk(Γ1(Npr)), for r ≥ 0, has the Fourier expansion f(z) =
∑
n an(f)qn, for

complex constants an(f). By means of this, we may embed Sk(Γ1(Npr)) into the power series
C[[q]]. One may then give a rational structure on Sk(Γ1(Npr)) by defining the A-rational subspace
Sk(Γ1(Npr), A) for each subalgebra A of C by Sk(Γ1(Npr), A) = Sk(Γ1(Npr)) ∩A[[q]].

For any r ≥ s ≥ 1, we have a commutative diagram for all n:

Sk(Γ1(Nps), A) //

Tn

��

Sk(Γ1(Npr), A)

Tn

��

Sk(Γ1(Nps), A) // Sk(Γ1(Npr), A),

where the horizontal arrows are the natural inclusion. Then the restriction of each Hecke operator
in hk(Γ1(Npr), A) to the subspace Sk(Γ1(Nps), A) is again contained in the algebra hk(Γ1(Nps), A).
Thus, we have surjective A-algebra homomorphism, hk(Γ1(Npr), A) → hk(Γ1(Nps), A) and since
Tp 7→ Tp, we have that h0

k(Γ1(Npr), A) → h0
k(Γ1(Nps), A) for each r ≥ s ≥ 1, where the ordinary

part is defined by using Hida’s idempotent attached to Tp.
Now, take limits and set:

hk(Γ1(Np∞), A) := lim←−
r

hk(Γ1(Npr), A), h0
k(Γ1(Np∞), A) := lim←−

r

h0
k(Γ1(Npr), A),

Sk(Np∞, A) := ∪∞r=1Sk(Γ1(Npr), A).

In Lemma 7.2 below we show there is a surjection hk1(Γ1(Np∞), A) � hk2(Γ1(Np∞), A), for
weights k1 ≥ k2 ≥ 2, and hence on the ordinary parts. Before we state it, we need to define a
pairing between certain Hecke algebras and certain spaces of modular forms. Recall that K is a
finite extension of Qp and OK is the integral closure of Zp in K. Put

Sk(Npr,K/OK) = Sk(Γ1(Npr),K)/Sk(Γ1(Npr),OK).
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By definition, one can embed this space via q-expansion into the module of formal series K/OK [[q]].
We take the injective limit:

Sk(Np∞,K/OK) = lim−→
r

Sk(Npr,K/OK)→ K/OK [[q]].

Then Sk(Np∞,K/OK) ' Sk(Np∞,K)/Sk(Np∞,OK). The algebra hk(Γ1(Np∞),OK) acts on
Sk(Np∞,K/OK). Define the pairing

(, ) : hk(Γ1(Np∞),OK)× Sk(Np∞,K/OK)→ K/OK ,
by (h, f) = a(1, f |h). Then (h, f |g) = (hg, f), for all h, g ∈ hk(Γ1(Np∞),OK). Equip the space
Sk(Np∞,K/OK) with the discrete topology. We have (cf. [Hid86b, Lem. 7.1]):

Lemma 7.1. The pairing above shows that hk(Γ1(Npr),Zp) and Sk(Γ1(Npr),Tp) (respectively,
h0
k(Γ1(Npr),Zp) and S0

k(Γ1(Npr),Tp)), for r = 1, 2, . . . ,∞, are Pontryagin duals.

Lemma 7.2. For k1 ≥ k2 ≥ 2, there exists a surjection

hk1(Γ1(Np∞),OK) � hk2(Γ1(Np∞),OK).

Proof. The proof is similar to the proof of [Hid86b, Lem. 7.2]. For p = 2, we need to work with a
different Eisenstein series than the one given in that lemma. For r ≥ 2, define a formal q-expansion
for each t ∈ (Z/prZ)× by

G(r, t) = −t0p−r +
1

2
+
∞∑
n=1

 ∑
d|n

d≡t (mod pr)

sgn(d)

 qn,

where t0 is an integer satisfying 0 ≤ t0 < pr and t0 ≡ t mod pr. Then, as shown by Hecke, G(r, t)
gives the q-expansion of an element of M1(Γ1(Npr),Q) and satisfies

G(r, t)|1 = G(r, at) for
(
a b
c d

)
∈ Γ0(Npr).

Put E(r, t) = −prG(r, t). For odd primes p, the congruence E(r, t) ≡ t (mod pr) holds. For the even
prime p = 2, the congruence that holds is E(r, t) ≡ t (mod pr−1). Multiplication by the Eisenstein
series E(r, 1) gives an injective morphism

ιr : Sk−1(Np∞,Tp)[pr−1]→ Sk(Np∞,Tp)[pr−1].

Using the injective limit of the maps ιr and Lemma 7.1, we can finish the proof of the lemma along
the lines of the proof of [Hid86b, Lem. 7.2]. �

It is known, by [Hid88b, Thm. 3.2], that the map in the above lemma is an isomorphism. This the-
orem is stated adelically, but includes the case of p = 2. Thus, the Hecke algebra h0

k(Γ1(Np∞),OK)
is independent of the weight, for all k ≥ 2. Denote this Hecke algebra by h0(N,OK).

8. Control theorem for ordinary Hecke algebras

In this section, we prove a control theorem for Hida’s ordinary Hecke algebras for the prime
p = 2. Recall K is a finite extension of Qp and OK is integral closure of Zp in K. Let ε be a
character of Γ/Γr with values in OK , with r ≥ 2. In this section, we write Λ for ΛK and Q(Λ) for
the field of fractions of ΛK .

We know that h0(N,OK) acts on the finite free Λ-module V0. Hence the Λ-module h0(N,OK)
is finitely generated and torsion-free, since the action is faithful on V0. By abuse of notation,
let Pk,ε also denote the prime ideal generated by the prime element Pk,ε = ι(u) − ε(u)uk. By
the independence of weight of h0(N,OK), there is a surjective homomorphisms of OK-algebras,
respectively, of Λ-algebras:

ρ : h0(N,OK) � h0
k(Φ2

r, ε,OK) and ΛPk,ε � ΛPk,ε/Pk,εΛPk,ε = K, (8.1)

inducing the map
ρ̃k,ε : h0(N,OK)⊗Λ ΛPk,ε � h0

k(Φ2
r, ε,OK)⊗OK K,

which in turn factors via Pk,ε, to give the map:

ρk,ε : h0(N,OK)⊗Λ ΛPk,ε/Pk,ε � h0
k(Φ2

r, ε,OK)⊗OK K ' h0
k(Φ2

r, ε,K),

where ΛPk,ε/Pk,εΛPk,ε is identified with K with ι(u) corresponding to ukε(u).
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Theorem 8.1. The natural map

ρk,ε : h0(N,OK)⊗Λ ΛPk,ε/Pk,ε � h0
k(Φ2

r, ε,K)

is an isomorphism.

Proof. Since the module h0(N,OK) is finitely generated and torsion-free over Λ, so is h0(N,OK)Pk,ε
over ΛPk,ε . Since any finitely generated torsion-free module over a discrete valuation ring is free, the

module h0(N,OK)Pk,ε is free and hence it makes sense to speak of its rank. Let S(k, ε) (respectively,

R(k, ε)) denote the rank of h0(N,OK)Pk,ε (respectively, h0
k(Φ2

r, ε,K)). A priori the number S(k, ε)
depends on k and ε. Since

h0(N,OK)Pk,ε ⊗ΛPk,ε
Q(Λ) ' h0(N,OK)⊗Λ Q(Λ),

we see that S(k, ε) is independent of k and ε and we denote this common value by R.
We first prove the theorem for weights k > 2 by assuming that it holds for k = 2. The Eisenstein

series E(2, 1) above has the property that E(2, 1) ≡ 1 (mod 2). Multiplication by E(2, 1)k−2 induces
an injection

S0
2(Γ1(Npr),Tp)[p]→ S0

k(Γ1(Npr),Tp)[p].
By duality, we have a surjection

h0
k(Γ1(Npr),Zp)⊗ Zp/pZp � h0

2(Γ1(Npr),Zp)⊗ Zp/pZp.
Then

R[Γ : Γr] ≥
∑
ε

R(k, ε) = rankOK (h0
k(Γ1(Npr),OK))

≥ rankOK (h0
2(Γ1(Npr),OK)) = R[Γ : Γr],

where the last equality follows by assumption. This can happen only if R(k, ε) = R for all k, ε,
showing ρk,ε is an isomorphism.

Now, we shall prove the result for k = 2. By Theorem 3.1, we have that the Zp-rank of
eH1

p(Γ1(Npr),Zp) is equal to 2[Γ : Γr] rankZph
0
2(Γ1(Nq),Zp). Hence,

rankZph
0
2(Γ1(Npr),Zp) = [Γ : Γr] rankZph

0
2(Γ1(Nq),Zp).

Since h0
2(Γ1(Npr),K) = ⊕εh0

2(Φ2
r, ε,K), the left hand side of the equality above is also

∑
εR(2, ε).

If rankZph
0
2(Γ1(Nq),Zp) = R, then [Γ : Γr]R =

∑
εR(2, ε). Since R ≥ R(2, ε), we get R = R(2, ε),

for each ε, as desired. Thus, we need to show that R = rankZph
0
2(Γ1(Nq),Zp). This is proved in

Theorem 8.3 below. �

The following lemma is well-known; for the proof refer to [Hid86b, Lem. 6.4].

Lemma 8.2. For any subfield K of C or Cp, H1
p(Γ1(M), Ln(K)) is free of rank 2 over the Hecke

algebra hn+2(Γ1(M),K) for each positive integer M .

Set ε :=
(

1 0
0 −1

)
. The matrix ε normalizes Γ1(Npr) for r ≥ 1. Let M be a module over the Hecke

algebra h0
2(Γ1(Npr),Z). Let M± denote the subspaces of M defined by {m±[ε]m |m ∈M}. Since ε

normalizes Γ1(Npr), the action of [ε] = [Γ1(Npr)εΓ1(Npr)] commutes with that of the Hecke algebra
h0

2(Γ1(Npr),Z) on M . Therefore, the modules M± are stable under the action of h0
2(Γ1(Npr),Z).

For simplicity, we write h0
2(N,Zp) for the weight-2 Λ-adic Hecke algebra h0

2(Γ1(Np∞),Zp).

Theorem 8.3. The surjective map

ρ2,triv : h0
2(N,Zp)⊗Λ ΛP2/P2 � h0

2(Γ1(Nq),Qp)
is an isomorphism.

Proof. By Theorem 3.1, we have (V0)Γr = V0
r , for r ≥ 2, and in particular (V0)Γ2 = V0

2 , i.e.,
V0[P2] = eH1(X2,Tp) = eH1

p(Γ1(Nq),Tp), where the last equality follows from [Hid86b, p. 583
(5.3)]. Again by the same theorem, we have

V 0/P2V
0 ' HomZp(eH1

p(Γ1(Nq),Zp),Zp). (8.2)

Since V0 is direct limit over V0
r , we see that [ε] acts on V0 and the action commutes with that of

the Hecke algebra h0
2(N,Zp). There is a map V0+⊕V0− → V0, which is an isomorphism if p is odd.

Since p = 2, we tensor this with ΛP2
so that we have an isomorphism (V0+)P2

⊕ (V0−)P2
' V0

P2
.
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Let V 0± denote the Pontryagin dual of V0±. Then (V 0+)P2
⊕ (V 0−)P2

' V 0
P2
. We can think of

h0
2(N,Zp)P2

as a subalgebra of the endomorphism algebra of (V 0+)P2
and hence we shall restrict

ourselves to the module (V 0+)P2 . We now prove that

(V 0+)P2
/P2(V 0+)P2

= h0
2(Γ1(Nq),Qp).

We remark that since p = 2 and we work with (V 0+)P2 , the above isomorphism is with Qp-
coefficients, otherwise we would have worked with V 0+ and the above isomorphism would have
been with Zp-coefficients. Since the functor HomZp(−,Tp) commutes with the ±-action after

tensoring with ΛP2
, we see that V 0± ⊗Λ ΛP2

' (V 0
P2

)± holds. Hence (V 0±)P2
/P2(V 0±)P2

'
(V 0
P2

)±/P2(V 0
P2

)± ' (V 0
P2
/P2V

0
P2

)±, where the last isomorphism is an easy check. We have that

(V 0+)P2
/P2(V 0+)P2

= (V 0
P2
/P2V

0
P2

)+

=
(8.2)

(HomZp(eH1
p(Γ1(Nq),Zp),Zp)⊗Zp Qp)+

= HomQp(eH1
p(Γ1(Nq),Qp)+,Qp) = h0

2(Γ1(Nq),Qp),

(8.3)

where the last equality follows from Lemma 8.2 and the third equality follows from the fact that
for any Qp-module M , HomQp(M,Qp)± ' HomQp(M±,Qp).

Let v denote the vector in (V 0+)P2
corresponding to 1 in h0

2(Γ1(Nq),Qp) in (8.3). Therefore, we
have a map h0

2(N,Zp)P2
→ (V 0+)P2

defined by mapping h→ hv. This map is a surjective map by
Nakayama’s lemma and by (8.3). The map is injective since the Hecke action is faithful on (V 0+)P2 .
Therefore, we have h0

2(N,Zp)P2 ' (V 0+)P2 . Tensoring this isomorphism with ΛP2/P2 and using
(8.3), we obtain the theorem. �

9. Uniqueness

In this section, we prove a uniqueness result for Hida families. Let f be a p-stabilized newform.
Let Pf denote the unique height one prime ideal, induced by f , via the isomorphism in Theorem 8.1.
Suppose Q = Pf lies over the prime ideal Pk,ε, where the integer k and the character ε depend on
f .

First we show that, for the prime P = Pk,ε of Λ, the localized Hecke algebra h0(N,OK)Q is
étale over ΛPk,ε . We deduce the uniqueness result as a consequence. For simplicity, let us denote

h0(N,OK) by h0(N).

Proposition 9.1. The localized Hecke algebra h0(N)Q is étale over ΛP and Qh0(N)Q = Ph0(N)Q,
i.e., h0(N)Q is a regular local ring.

Proof. We apply [Nek06, Lem. 12.7.6], with A = Λ, B = h0(N) and J = 0 (and also by switching
the roles of P and Q). The first condition of that lemma, namely the Hecke algebra h0(N) is finitely
generated and torsion-free over Λ follows, as mentioned earlier, from Theorem 3.1. By Theorem 8.1,
the short exact sequence in the second part of that lemma reduces to

0→ P → h0
k(Φ2

r, ε,K)
α→ Qp(an(f))∞n=1 → 0,

where the last map is given by Tn → an(f) and P denote the kernel of α. By analyzing the proof of
that lemma, we see that if PP = 0, where PP denote the localisation, then the proposition follows.
From the theory of newforms, one knows that h0

k(Φ2
r, ε,K)P

∼→ Qp(an(f))∞n=1, hence PP = 0. �

Now we recall the definition of a 2-adic Λ-adic form. Let p = 2. Let L denote the integral closure
of Λ in a finite extension of Q(Λ). Let ζ denote a pr−2-th root of unity in Q̄p, the algebraic closure
of Qp, with r ≥ 2, and let k ≥ 1 be a positive integer. The assignment X → ζ(1 + q)k − 1 yields a
Zp-algebra homomorphism ϕk,ζ : Λ → Q̄p. We shall say that a height one prime P ∈ Spec(L)(Q̄p)
has weight k if the corresponding Λ-algebra homomorphism P : L→ Q̄p extends ϕk,ζ on Λ for some
k ≥ 1 and for some ζ. In addition we say that P is arithmetic if P has weight k ≥ 2.

Recall N is an integer prime to p. We need some notation for certain Dirichlet characters. Let:

• ψ be a Dirichlet character of level Nq,
• ω be the mod 4 cyclotomic character,
• ε be the character χζ mod 2r for each root of unity ζ of order 2r−2 with r ≥ 2 defined by

first decomposing
(Zp/2rZp)× = (Zp/qZp)× × Z/2r−2,
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where the second factor is generated by 1 + q, and then by setting

χζ = 1 on (Zp/qZp)× and χζ(1 + q) = ζ.

Definition 2. Let F =
∑∞
n=1 a(n,F)qn ∈ L[[q]] be a formal q-expansion with coefficients a(n,F) ∈

I. We say F is a Λ-adic form of tame level N and character ψ if for each arithmetic point
P ∈ Spec(L)(Q̄p) lying over ϕk,ζ , with k ≥ 2 and ζ of order 2r−2, r ≥ 2, the specialization

P (F) ∈ Q̄p[[q]]

of F at P is the q-expansion of a classical cusp form f ∈ Sk(N2r, χ), where χ = ψω−kχζ .

The notion of primitive, ordinary, p-distinguished for Λ-adic forms can be defined similar to the
classical case. For definitions, refer to [GV04, §3].

We remark that there is no 2-adic Hida theory when the tame level is 1, showing that our
assumption that N > 1 in several previous sections loses no generality. Indeed, we have that:

Proposition 9.2. There are no ordinary Λ-adic eigenforms of tame level 1.

Proof. If such a Λ-adic eigenform were to exist, then for every integer k ≥ 2 and r ≥ 2, its’
specialization at Pk,ζ , where ζ is a 2r−2-th root of unity, would be an element of Sk(pr, ωa−kχζ),
for some a ∈ N. For parity reasons, (−1)a−k = (−1)k, hence a is even. But, if r = 2 and k is
even, then are no 2-ordinary, 2-stabilized Hecke eigenforms in Sk(4, triv). For newforms this follows
from [Miy89, Thm. 4.6.17] and for oldforms from loc. cit. and the fact that X0(2) has genus 0,
and from Hatada [Hat79]. Since there are no ordinary specializations in even weight, there are no
2-ordinary Λ-adic eigenforms of tame level 1. �

Corollary 9.3. For odd integers k, the space eS2-new
k (4, ω) is zero.

Proof. This follows immediately from the proposition noting that every 2-ordinary eigenform in the
above space must live in a 2-ordinary Hida family of tame level 1. �

Remark 3. It can be checked independently that the dimensions of eS2-new
k (4, ω) for k = 3, 5, 7, 9,

11, 13, 15, 17, are indeed all zero, whereas the dimensions of S2-new
k (4, ω) for k = 3, 5, 7, 9, 11, 13,

15, 17 are 0, 1, 2, . . . , 7, respectively.

We now turn to the uniqueness result for 2-adic families.

Theorem 9.4. Any p-ordinary elliptic p-stabilized newform is an arithmetic specialization of a
unique Hida family, up to Galois conjugacy.

Proof. By (8.1), we know that any p-ordinary eigenform lives in a Hida family. We want to show
that such a family is unique, up to Galois conjugacy (this last caveat is necessary since if a form lies
in F by specialization under P : L→ Q̄p, then it also lies in the conjugate family Fσ, by specializing
under σ−1 ◦ P : Lσ → Q̄p. Note that F and Fσ correspond to the same minimal prime ideal of
h0(N)).

Assume the contrary. Let λ1 and λ2 denote the algebra homomorphisms from h0(N) to L and
L′ respectively, where L, L′ are finite integral extensions of Λ. Let P1 and P2 denote the minimal
prime ideals of h0(N) which are the respective kernels of these homomorphisms. Since λ1 and λ2

have one arithmetic specialization in common, there are two algebra homomorphisms P : L → Q̄p
and P ′ : L′ → Q̄p such that P ◦ λ1 = P ′ ◦ λ2 = λP,P ′ , say. Then the kernel of λP,P ′ is a height one
prime of h0(N), denote by Q, containing both P1 and P2 and lying over P = Pk,ζ for some k ≥ 2,
ζ.

By Proposition 9.1, h0(N)Q is a regular local ring. But, a regular a local ring is a domain, hence
the prime ideals P1 and P2 have to be equal. �

As an application of the last result we now show that the notion of CM-ness is pure with respect
to families.

Proposition 9.5. Let F be a primitive 2-adic Hida family. Then either all arithmetic specializa-
tions are CM forms or no arithmetic specialization is a CM form.
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Proof. The proof is the same as for odd prime p, once one has the uniqueness result for p = 2.
Indeed a CM family is defined to be one which is obtained as the theta series of a Λ-adic Hecke
character of an imaginary quadratic field. Clearly all its arithmetic specializations are CM forms.
Now start with an arbitrary CM form. Assume it lives in a non-CM family (one which is not a
theta series). Then explicit interpolation allows us to also construct a CM family passing through
this CM form. Clearly the non-CM family and the CM family are not Galois conjugate, which is a
contradiction by Theorem 9.4. �

In view of this result from now on we may and do speak of CM and non-CM 2-adic Hida families.

10. Applications to Galois representations

In [GV04], the splitting of the local Galois representations associated to ordinary eigenforms was
studied for odd primes p. We carry out the same analysis for the case of p = 2, assuming that the
relevant result of Buzzard continues to hold for p = 2 in the residually dihedral setting. That is,
under this assumption, we prove that in a non-CM 2-adic Hida family, all arithmetic specializations
have non-split local Galois representation, except for a possible finite set of exceptions. By Propo-
sition 9.5, we are able to exclude CM forms from this finite exceptional set, but we do not yet know
if this set is empty.

Recall p denotes the prime 2 and q = 4. We recall some preliminaries on ordinary eigenforms
and their associated Galois representations. Let f =

∑∞
n=1 an(f)qn be a primitive elliptic modular

Hecke eigenform of weight k ≥ 2 and nebentypus χ : (Z/Npr)× → C×, for some r ≥ 0. (The two
usages of q, that in the q-expansion and the natural number 4, should be clear from the context!)
Let Kf denote the number field generated by the Fourier coefficients of the cusp form f . Fix an
embedding ip of Q̄ into Q̄p. Let ℘ be the prime of Q̄ determined by this embedding. Let ℘ also
denote the induced prime of Kf , and let Kf,℘ be the completion of Kf at ℘. Let Gp denote the
absolute Galois group of Qp and also the decomposition group at ℘. There is a Galois representation

ρf = ρf,℘ : Gal(Q̄/Q)→ GL2(Kf,℘),

associated to f (and ℘) which has the property that for all primes ` - Np,

trace(ρf (Frob`)) = a`(f) and det(ρf (Frob`)) = χ(`)`k−1.

Recall f is ordinary at ℘ (or ℘-ordinary), if ap(f) is ℘-adic unit. If f is ordinary at ℘, then the
result of Wiles [Wil88] shows that the restriction of ρf to the decomposition group Gp is upper-
triangular, i.e.,

ρf |Gp∼
(
δ ψ
0 ε

)
,

where δ, ε : Gp → K×f,℘ are characters with ε unramified and ψ : Gp → Kf,℘ is a continuous

function. We say that the ordinary representation ρf |Gp splits, if the representation space of ρf can
be written as direct sum of two Gp-invariant lines.

10.1. Buzzard’s result. We shall assume that a slight strengthening of a result of Buzzard holds.
Let O denote the ring of integers in a finite extension L of Qp. Let ρ : Gal(Q̄/Q) → GL2(O) be
a continuous representation. Let λ denote the maximal ideal of O and let ρ̄ denote the mod λ
reduction of ρ. The following result is proved in [Buz03], and we refer to that paper for a detailed
explanation of all the hypotheses.

Theorem 10.1 (Buzzard). Assume that

(1) ρ is ramified at finitely many primes and ρ̄ is modular,
(2) ρ̄ is absolutely irreducible when restricted to Gal(Q̄/Q(i)),
(3) ρ|Gp is the direct sum of two 1-dimensional characters α and β : Gp → Ox, such that α(Ip)

and β(Ip) are finite, and (α/β) mod λ is non-trivial,
(4) ρ̄(c) 6= 1,
(5) ρ̄(c) is both α-modular and β-modular, in the sense that there are eigenforms fα with Tp-

eigenvalue ᾱ(Frobp) and fβ with Tp-eigenvalue β̄(Frobp) giving rise to ρ̄,
(6) The projective image of ρ̄ is not dihedral.
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Then ρ is modular, in the sense that there exists an embedding i : L ↪→ C and a classical weight
1 cuspidal eigenform f such that the composite i ◦ ρ is isomorphic to the representation associated
to f by Deligne and Serre.

Let us comment on the assumption (6). There is no restriction (6) on the projective image of
ρ̄ for odd primes p in [Buz03]. For p = 2, this assumption was made due to the unavailability
of ‘Rred = T theorems’ in the residually dihedral setting. In his recent thesis, Allen [All12] has
proved such a theorem, deducing the modularity of nearly ordinary 2-adic residually dihedral Galois
representations. He works under some assumptions, the most crucial for us being that he assumes
that the prime 2 does not split in the quadratic extension of Q corresponding to the (dihedral)
residual representation. However, for the application of Buzzard’s theorem we have in mind below,
the prime 2 does split in this extension. It appears that extending Allen’s result to the split case
might not be possible without a new idea. From now on we therefore assume that Theorem 10.1
holds without condition (6).

Remark 4. In [All12], the splitting assumption on the prime 2 is made in order to ensure that the
dihedral locus is small in the Hecke algebra. This guarantees the existence of certain ‘nice’ primes
that are needed in order to use a connectivity result of Raynaud in the course of the proof.

10.2. Λ-adic Galois representations. We state a few facts about Λ-adic Galois representations.
Let F ∈ I[[q]] be a primitive Λ-adic form of level N and with character ψ. Let KF denote the
quotient field of I. Then there exists a Galois representation attached to F , constructed by Hida,
and Wiles in the case of p = 2,

ρF : Gal(Q̄/Q)→ GL2(KF ),

such that for each arithmetic point P of I, P (ρF ), the specialization of ρF at P , is isomorphic to
the representation ρf attached to f = P (F) by Deligne. Note that if ` is a prime number such that
` - Np, then

trace(ρF (Frob`)) = a(`,F) ∈ I, det(ρF (Frob`)) = ψ(`)κ(Frob`)`
−1,

where κ : Gal(Q̄/Q)→ Λ× is the ‘Λ-adic cyclotomic character’.
The restriction of ρF to Gp also turns out to be ‘upper-triangular’. More precisely, the represen-

tation ρF |Gp has the following shape

ρF |Gp ∼
(
δF uF
0 εF

)
,

where δF , εF : Gp → K×F are characters with εF unramified, and uF : Gp → KF is a continuous
map. Let

cF = ε−1
F .uF ∈ Z1(Gp,KF (δFε

−1
F ))

be the associated cocycle. Then the representation

ρF |Gp splits if and only if [cF ] = 0 in H1(Gp,KF (δFε
−1
F )).

We shall shortly show that for a primitive 2-adic family F whose residual representation satisfies
some technical conditions (cf. conditions (1), (2), (3) below), the corresponding representation ρF
splits at p if and if F is a CM family. As a consequence, standard descent arguments allow us to
conclude the following partial result towards Greenberg’s question on the local splitting of ordinary
2-adic modular Galois representations.

Theorem 10.2. Let F be a primitive non-CM 2-ordinary Hida family of eigenforms with the
property that

(1) ρ̄F is p-distinguished,
(2) ρ̄F is absolutely irreducible, when restricted to Gal(Q̄/Q(i)),
(3) ρ̄F (c) 6= 1 and ρ̄F (c) is both α-modular and β-modular.

Then, for all but except possibly finitely many arithmetic members f ∈ F , the representation ρf |Gp
is non-split. Moreover the possible exceptions are necessarily non-CM forms.

For the definitions of primitive and p-distinguished, refer to [GV04, §2]. We remark again that
the last statement in the theorem is a consequence of uniqueness for 2-adic families, proved in the
last section.
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10.3. Local splitting for Λ-adic eigenforms.

Proposition 10.3. Let F be a primitive 2-adic Λ-adic eigenform of fixed tame level N satisfying
conditions (1)-(3) above. Then ρF |Gp splits if and only if F is of CM type.

Proof. The proof is very similar to that for odd primes given in [GV04, Prop. 14]. One shows that
the following statements are equivalent.

(1) ρF |Gp splits.
(2) F has infinitely many weight one classical specializations.
(3) F has infinitely many weight one classical CM specializations.
(4) F is of CM type.

For the readers convenience, we prove the implications (1) =⇒ (2), to show how the strengthened
version of Buzzard’s result is used. For the remaining implications, we refer the reader to [GV04,
Prop. 14], although a shorter proof of the implication (3) =⇒ (4) can be found in [DG12].

(1) =⇒ (2): Recall that we have the following characters:

ψ : Gal(Q̄/Q)→ Q̄×p the character of F of conductor Nq,

κ : Gal(Q̄/Q)→ Λ×, the Λ-adic cyclotomic character,

ν : Gal(Q̄/Q)→ Z×p the 2-adic cyclotomic character.

We know that det(ρF )= ψκν−1. The specialization of det(ρF ) at ϕk,ζ is χνk−1, where χ = ψω−kχζ .
By assumption ρF |Gp splits, i.e.,

ρF |Ip∼
(
ψκν−1 0

0 1

)
.

Let P be a weight one point of L extending ϕ1,ζ : Λ→ Q̄p. It follows that P (ρF ) = ρP (F) has the
following shape on Ip:

ρP (F)|Ip∼
(
ψω−1χζ 0

0 1

)
,

noting that the characters on the diagonal have finite order. Now by Theorem 10.1, we have that

ρP (F) ∼ ρf ,

where f is a primitive weight 1 form of level N2r, with character ψω−1χζ where ζ is exactly of
order 2r−2, r ≥ 2. As we vary the point P , and therefore r ≥ 2, we obtain infinitely many classical
weight 1 specializations of F as required.

We remark that elementary arguments (cf. [GV04, (2) =⇒ (3) of Prop. 14]), allow us to conclude
that infinitely many of these must be of CM type, and in particular the residual representation must
necessarily be of dihedral type. Moreover, by ordinariness, the prime 2 will split in the corresponding
imaginary quadratic field. This explains why it is crucial to assume that Buzzard’s result holds in
this case as well.

�
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