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In this article, I present a conjecture (1.8, 2.8) relating the values of certain L-functions
at certain integer points to the periods of integrals.

The L-functions we consider here are those of motives - a word to which we shall not
attach a precise meaning. They include, notably, Artin L-functions, L-functions attached to
algebraic Hecke characters (= Grossencharacter of type A0), and those attached to primitive
holomorphic modular forms on the Poincare upper half plane (=new forms; we will consider
all the L-functions, Lk, attached to the symmetric power, Symk, of the corresponding l-adic
representation).

This article owes its existence to D. Zagier : for his insistence on a conjecture, and for
the experimental confirmation that he has provided for the L-functions L3 and L4 attached
to ∆ =

∑
τ(n)qn (see [18]). It is this confirmation that gave me the necessary confidence

to verify that the conjecture is compatible with the results of Shimura [13] on the values of
L-functions of algebraic Hecke characters.

0. Motives

The reader need only consult this paragraph when necessary. We review some of the formalism
of motives due to Grothendieck. For the proofs, I refer the reader to [8].

0.1. Grothendieck’s definition of motives over a field k is the following:
(a) Let V(k) be the category of smooth projective varieties over k. We construct an ad-

ditive categoryM′(k), for which the groups Hom(M,N) are vector spaces over Q, equipped
with

α. A tensor product ⊗, which is associative, commutative and distributive with respect
to the addition of objects (“associative” and “commutative” are not properties of the functor
⊗, but assumptions subject to certain compatibility restrictions - cf. Saavedra [19]);

β. A contravariant functor H∗, of V(k) inM′(k), bijective on the objects, taking disjoint
sums to sums, and products to tensor products (assuming we are given the isomorphism of
functors H∗(X × Y ) = H∗(X)⊗H∗(Y ), compatible with associativity and commutativity).

∗This is a translation of P. Deligne’s Valeurs de Fonctions L et périodes d’intégrales which appeared
in the Proceedings of Symposia in Pure Mathematics 33, (1979), Part 2, 313-346. It was translated in
1995 by Eknath Ghate (eghate@math.tifr.res.in) and Jennifer Beineke (beineke@oak.math.ucla.edu),
then graduate students at the University of California at Los Angeles. If the reader finds any errors in the
translation, the translators would appreciate it if they could be notified, so that this translation may be
updated. The date on this translation is that of the most current update.
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The essential point is to define Hom(H∗(X), H∗(Y )). For the definition, utilized by
Grothendieck, of this group as a group of correspondences between X and Y , see 0.6.

(b) Recall (SGA 4 IV 7.5) that an additive category is Karoubian if every projector
(= idempotent endomorphism) arises from a direct sum decomposition, and every additive
category has a Karoubian envelope, obtained by formally adjoining the images of projectors.
The category Meff (k) of effective motives over k is the Karoubian envelope of M′(k).

(c) We define the Tate motive Z(−1) as an appropriate direct factor H2(P1) of H∗(P1).
One can verify that the symmetry (deduced from the commutativity of⊗): Z(−1)⊗Z(−1)→
Z(−1)⊗Z(−1) is the identity map, and that the functor M →M ⊗Z(−1) is fully faithful.

(d) The category M(k) of motives over k is constructed from Meff (k) by inverting the
functor M →M ⊗ Z(−1).

We write (n) for the (−n)th iterate of the auto-equivalence M → M ⊗ Z(−1). The
category M(k) admits Meff (k) as a full sub-category, and each object of M(k) is of the
form M(n) for M in Meff (k) and n an integer.

By definition, if F is an additive functor ofM′(k) in a Karoubian category A, it extends
toMeff (k). If A has an auto equivalence A→ A(−1), and F extends to an isomorphism of
functors F (M(−1)) = F (M)(−1), then it extends to M(k).

EXAMPLE 0.1.1 If k′ is an extension of k, and F the functor H∗(X)→ H∗(X ⊗k k′) of
M′(k) in M(k′), one obtains the extension of scalars functor of M(k) in M(k′). If k′ is a
finite extension of k, we can use Grothendieck’s restriction of scalars functor∐

k′/k
: V(k′)→ V(k) : (X → Spec(k′)) 7−→ (X → Spec(k′)→ Spec(k)).

One can now extend it to F : H∗(X) → H∗(
∐
k′/kX) from which we obtain the restriction

of scalars functor Rk′/k :M(k′)→M(k).

EXAMPLE 0.1.2. Let H be a “cohomology theory” with values in a Karoubian category
A, functorial on the morphisms in M′(k). The functor H extends to Meff (k). If A has a
tensor product for which H satisfies the Kunneth formula, and tensoring with H(Z(−1)) is
an auto-equivalence of A, it extends to M(k). This extension is the functor “realization of
a motive in the theory H”.

We write (n) for the auto-equivalence of A given by the (−n)th iterate of the tensor
product with H(Z(−1)). For the determination of H(Z(−1)) for various theories H, See 3.1.

0.2. We will use the following realizations:
0.2.1. Betti realization HB. Corresponding to k = C, A = vector spaces over Q, H =

rational cohomology: X 7→ H∗(X(C),Q);
0.2.2. de Rham realization HDR. Corresponding to k of characteristic 0, A = vector

spaces over k, H = de Rham cohomology: X 7→ H∗(X,Ω∗X);
0.2.3. l-adic realization Hl. Corresponding to k algebraically closed, of characteristic 6= l,

A = vector spaces over Ql, H = l-adic cohomology: X 7→ H∗(X,Ql).
And their variants:
0.2.4. Hodge realization. Here k is an algebraic closure of R and A the category of

vector spaces over Q, whose complexification V ⊗ k has a bi-grading V ⊗ k = ⊕V p,q such



that V q,p is the complex conjugate of V p,q. For a cohomology theory we take the functor
X 7→ H∗(X(k),Q) equipped with the bi-grading of its complexification X → H∗(X(k), k)
provided by Hodge theory. The Betti realization is the underlying realization of the Hodge
realization.

0.2.5. For arbitrary k, and σ a complex embedding of k, we write Hσ(M) for the Betti
realization of the motive over C constructed from M via the extension of scalars σ : k →
C. We denote complex conjugation by c. From the transport of structure we obtain the
isomorphism F∞ : Hσ(M)

∼→ Hcσ(M), and F∞ ⊗ c takes Hpq
σ to Hpq

cσ . For real σ, F∞ is an
involution of Hσ(M), whose scalar extension F∞ ⊗ 1 exchanges Hpq

σ and Hqp
σ .

The Hodge σ-realization is Hσ(M), equipped with the Hodge decomposition and, if σ is
real, with the involution F∞ as well. For k = Q, or k = R and σ the identity embedding, we
replace the subscript σ by B. For k = R, and M = H∗(X), the involution F∞ of H∗B(M) =
H∗(X(C),Q) is the involution induced by complex conjugation F∞ : X(C)→ X(C).

0.2.6. de Rham realization. The de Rham cohomology has a natural filtration, the Hodge
filtration, which is the limit of the hyper-cohomology spectral sequence

Epq
1 = Hq(X,Ωp)⇒ Hp+q

DR (X).

Hence, we get a filtration F on HDR(M).
0.2.7 l-adic realization. If X is a variety over a field k, k̄ the algebraic closure of k,

then the Galois group Gal(k̄/k) acts by transport of structure on H∗(Xk̄,Ql). If M is a
motive over k, and if we define Hl(M) as the l-adic realization of the motive over k̄, that
one constructs via extension of scalars, then this provides an action of Gal(k̄/k) on Hl(M).

0.2.8 Finite adelic realization. For k algebraically closed, of characteristic 0, one may
consider the l-adic cohomologies simultaneously via the adelic cohomology

H∗(X,Af ) = (
∏
H∗(X,Zl))⊗Z Q.

We can collect the variants 0.2.7 and 0.2.8.
0.2.9. In the examples 0.2.1, 0.2.2, 0.2.3, and their variants, we can replace the category

A by A∗, the category of the graded objects of A, utilizing the natural grading of H∗.
In order that the Kunneth formula provides an isomorphism of functors H(M ⊗ N)

∼→
H(M)⊗H(N), compatible with associativity and commutativity, it is necessary to assume
the commutativity in A∗ as being that given by Koszul’s rule.

0.3. For k = C the comparison theorem between classical cohomology and étale coho-
mology provides an isomorphism H∗(X(C),Q) ⊗ Ql → H∗(X,Ql). If X is defined over
R, this isomorphism transforms F∞ (0.2.5) into the action of complex conjugation (0.2.7).
Similarly, for a motive we have HB(M)⊗Ql

∼→ Hl(M).
0.4 For k = C, the de Rham complex, holomorphic on Xan, is a resolution of the constant

sheaf C. By GAGA, we therefore have an isomorphism

H∗(X(C),Q)⊗C = H∗(X(C),C)
∼→ H∗(Xan,Ω∗an)

∼← H∗(X,Ω∗).

For a motive, we obtain an isomorphism HB(M) ⊗ C → HDR(M) (compatible with the
Hodge filtration 0.2.4: F p = ⊕p′≥pV p′q′ and 0.2.6).



More generally let M be a motive over a field k, and let σ be a complex embedding of
k. Applying the above to the motive over C constructed from M by extension of scalars, we
obtain an isomorphism

(0.4.1) I : Hσ(M)⊗C
∼→ HDR(M)⊗k,σ C.

Considering the case k = Q, we find two natural Q-structures on the complex cohomological
realization of M : one HB(M), attached to the description of cohomology in terms of cycles,
and the other HDR(M), attached to the description in terms of algebraic differential forms.

0.5 It is clear what becomes of these realizations and compatibilities when we extend the
field of scalars. For the restriction of scalars, the results are as follows. Let k′ be a finite
extension of k, M ′ a motive over k′, and M = Rk′/k(M

′).

(0.5.1) Hσ(M) = ⊕τHτ (M
′)

where the sum is over J(σ), the collection of complex embeddings of k′ that extend σ. This
isomorphism is compatible with the Hodge decompositions, and with F∞.

(0.5.2) HDR(M) = HDR(M ′) (restriction of scalars from k′ to k)

This isomorphism is compatible with the Hodge filtration.

(0.5.3) Hl(M) = Ind Hl(M
′) (induced representation of Gal(k̄/k′) to Gal(k̄/k)).

(0.5.4) Via the isomorphism k′⊗k,σC = CJ(σ), and the induced isomorphismHDR(M ′)⊗k,σ
C = ⊕τ∈J(σ)HDR(M ′) ⊗k′,τ C, the isomorphism (0.4.1) for M and σ is the sum of the iso-
morphisms (0.4.1) for M ′ and τ (τ ∈ J(σ)):

Hσ(M)⊗C
(0.4.1)−−−−−→ HDR(M)⊗k,σ C∥∥∥∥∥(0.5.1)

∥∥∥∥∥(0.5.2)

⊕τHτ (M
′)⊗C

(0.4.1)−−−−−→ ⊕τHDR(M ′)⊗k′,τ C.

0.6 For X smooth and projective over k, we let Zd(X) denote the vector space over
Q with basis the set of irreducible closed sub-schemes of X of codimension d, and we let
Zd
R(X) denote its quotient by an equivalence relation R. For k of characteristic 0, one

of Grothendieck’s definitions of motives is obtained by setting (for X and Y connected)

Hom(H∗(Y ), H∗(X)) = Z
dim(Y )
R (X × Y ), R being cohomological equivalence.

As far as characteristic p is concerned, we point out two difficulties: we don’t know if
cohomological equivalence - in the l-adic cohomology for l 6= p - is independent of l, and the
definition of the class of a cycle poses some problems in crystalline cohomology.

0.7 Let X be a smooth, projective complex variety. A Hodge cycle of codimension d on X
is an element of H2d(X(C),Q) of type (d, d), or equivalently, an element of H2d(X(C),Q)(d)
of type (0, 0).

Let k be an algebraically closed field and X a smooth projective variety over k. Then set

H2d(X, k ×Af )(d) = H2d
DR(X)(d)×H2d(X,Af )(d).



For k = C, the image of a Hodge cycle in

H2d(X, k ×Af )(d) = H2d(X(C),Q)(d)⊗ (k ×Af )

will still be called a Hodge cycle. For k algebraically closed, and embeddable in the field of
complex numbers, an absolute Hodge cycle of codimension d on X is an element of H2d(X, k×
Af )(d), such that for every complex embedding σ of k, its image in H2d(X⊗kC,C×Af )(d)
is a Hodge cycle. One can verify

PROPOSITION 0.8 (i) The vector space over Q of absolute Hodge cycles Zd
ha(X) is

invariant under the extension of scalars of k to an algebraically closed field k′ (also embeddable
in the field of complex numbers).

(ii) For k algebraically closed of characteristic 0, and X defined over an algebraically
closed subfield k0 of k, admitting a complex embedding : X = X0 ⊗k0 k, let

Zd
ha(X) = Zd

ha(X0) ⊂ H2d(X0, k0 ×Af )(d) ⊂ H2d(X, k ×Af )(d).

By (i), this definition does not depend on the choices of X0 and k0.
(iii) For X defined over a subfield k0 of k : X = X0 ⊗k0 k, the group Aut(k/k0) acting

on H2d(X, k ×Af )(d) stabilizes Zd
ha(X). It acts on Zd

ha(X) through a finite quotient, corre-

sponding to a finite extension k′0 of k0. We set Zd
ha(X0) = Zd

ha(X)Aut(k/k0).

0.9 A useful notion of a motive is obtained by setting (for X and Y connected)

Hom (H∗(Y ), H∗(X)) = Z
dim(Y )
ha (X × Y ).

The Kunneth components of the diagonal of X × X are absolute Hodge. This allows us
to decompose H∗(X) as a sum of motives H i(X), to equip the category of motives with a
grading (with H i(X) of weight i) and to modify the commutativity constraint for ⊗ as in
[19, VI, 4.2.1.4]. This being done, one can verify that the ⊗-category of motives over k is
Tannakian, and is isomorphic to the category of representations of a proalgebraic reductive
group.

For k = C, the following conjecture, weaker than that of Hodge, is equivalent to saying
that the functor “Hodge realization” is an equivalence of the category of motives 0.9 with
the category of the direct factor Hodge structures of the cohomology of an algebraic variety
(or constructed from the Tate twist of such direct factors).

Hope 0.10. Every Hodge cycle is an absolute Hodge cycle.
If X is an abelian variety with complex multiplication by an imaginary quadratic field

K, with Lie(X) free over k ⊗K, the methods of B. Gross [7] prove that certain non trivial
Hodge cycles are absolute Hodge. More generally, I have verified 0.10 for abelian varieties.
I have also verified that the ⊗-category of motives (0.9) generated by the H∗(X), for X an
abelian variety, contains the motives H∗(X), for X a K3 surface or a Fermat hypersurface.

0.11. The principal weakness of the definition of a motive 0.9 is that it does not lend
itself to reduction mod p. We do not know if a motive over a number field F (as in 0.9)
provides a compatible system of l-adic representations of Gal(F̄ /F ).

0.12. We will use the word “motive” loosely without worrying about the framework of
motives considered by Grothendieck. What is essential for us are the realizations H(M), for



the theories H considered in 0.2, and to have for these groups the same formalism as for
H∗(X).

1. Statement of the Conjecture (Rational Case)

1.1. Let M be a motive over Q. We assume that the l-adic realizations of M , Hl(M), form
a strictly compatible system of l-adic representations, in the sense of Serre [11, I.11]. That
is to say : there exists a finite set S of prime numbers, so that each Hl(M) is unramified
outside of S ∪ {l}, and that, denoting the geometric Frobenius at p (the inverse of the
Frobenius substitution φp) by Fp, the polynomial det(1−Fpt,Hl(M)) ∈ Ql[t] with p /∈ S∪{l}
has rational coefficients and is independent of l. We let Zp(M, t) be its inverse, and set
Lp(M, s) = Zp(M, p−s).

The Dirichlet series with rational coefficients given by the Euler product LS(M, s) =∏
p/∈S Lp(M, s) converges for R(s) large. For arbitrary s, we define LS(M, s) via an analytical

continuation (which we hope exists).
Our goal is to state a conjecture giving the values of LS(M, s) at certain integers, up to

multiplication by a rational number. Since p−s is rational, for s an integer, the choice of S
is unimportant - except that enlarging S may produce unwanted zeros.

1.2 To write the proper conjectural functional equation of these L-functions, we need to
complete the Euler product by specifying the local factors at p ∈ S, and at infinity. The
definition of the local factors at p ∈ S requires an additional hypothesis, which we suppose
has been verified:

(1.2.1) Let p be a prime number, Dp ⊂ Gal(Q̄/Q) the decomposition group at p, Ip ⊂ Dp

the inertia subgroup at p, and Fp ∈ Dp a geometric Frobenius. The polynomial det(1 −
Fpt,Hl(M)Ip) ∈ Ql[t] with l 6= p has rational coefficients, and is independent of l.

We set Zp(M, t) = det(1 − Fpt,Hl(M)Ip)−1 ∈ Q(t), and Lp(M, s) = Zp(M, p−s). We
define

(1.2.2) L(M, s) =
∏
p

Lp(M, s).

The factor at infinity L∞(M, s) (essentially a product of Γ functions) depends on the
Hodge realization of M - in fact only on the isomorphism class of the complex vector space
HB(M) ⊗ C, equipped with the Hodge decomposition and the involution F∞. The exact
definition is given in 5.2.

Setting Λ(M, s) = L∞(M, s)L(M, s), the conjectural functional equation can be written
as

(1.2.3) Λ(M, s) = ε(M, s)Λ(M̌, 1− s)

where M̌ is the dual of M (with realizations the duals of the realizations of M) and where
ε(M, s), considered as a function of s, is the product of a constant and an exponential func-
tion. The exact definition is given in 5.2. It depends on an additional hypothesis.

DEFINITION 1.3 An integer n is critical for M if neither L∞(M, s) nor L∞(M̌, 1 − s)
has a pole at s = n.



Our goal is to conjecture the value of L(M,n), for n critical, up to multiplication by a
rational number. We have L(M(n), s) = L(M,n + s) (3.1.2), and the same for L∞. This
allows us to consider only L(M) =def L(M, 0). We say that M is critical if 0 is critical for
M . One may verify that for M to be critical, it is necessary and sufficient that the Hodge
numbers hpq =def dim Hpq(M) of M should satisfy the following conditions:

1. For all (p, q) with p 6= q, hpq 6= 0 only when (p, q) lies in the shaded part of the diagram
below

2. The action of F∞ on Hpp is trivial if p < 0 and −1 if p ≥ 0.
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SupposeM is homogeneous of weight w, so that hpq = 0 for p+q 6= w. SetR(M) = −w/2.
It follows from Weil’s conjecture that, for S sufficiently large, the Dirichlet series LS(M, s)
converges absolutely for R(M) +R(s) > 1. For R(M) +R(s) = 1, which is the border of
the half plane of convergence, we conjecture that

(a) LS(M, s) does not vanish, and that
(b) LS(M, s) is holomorphic, except if M is of even weight −2n, and contains Z(n) as a

factor : in this case we expect a pole at s = 1− n (a non-critical value).
The analogy with the function field case, and known cases, leads us to believe that the

local factors Lp(M, s) (p arbitrary, including ∞) only have poles for R(M) + R(s) ≤ 0.
If this is the case, then (a), (b) and the conjectural functional equation (1.2.3) imply that
L(M) 6= 0 or ∞, for M critical and R(M) 6= 1

2
. For R(M) = 1

2
, L(M) vanishes sometimes.

Our conjecture is therefore empty.

PROPOSITION 1.4. Let M be a motive over R. Via the isomorphism (0.4.1)

HB(M)⊗C
∼→ HDR(M)⊗R C,

HDR(M) can be identified with the subspace of HB(M)⊗C fixed by c→ F∞c̄.

Let us take M = H∗(X). Complex conjugation on HDR(M)C = H∗(XC,Ω
∗) is induced

by the functoriality of the anti-linear automorphism F∞ of the scheme XC. Using the map
I in (0.4) we identify complex conjugation with the involution induced by the automorphism
(F∞, F̄

∗
∞) of (X(C),Ω∗), then with the composition of F̄ ∗∞ : H∗(X(C),C) → H∗(X(C),C)

and with complex conjugation on the coefficients. This verifies 1.4.



1.5. For M a motive over R, we let H+
B (M) (respectively H−B (M)) be the subspace of

HB(M) fixed by F∞ (respectively F∞ = −1). Let d(M) = dim HB(M) and d±(M) = dim
H±B (M). For M a motive over k, and σ a complex embedding of k that factors over R, we let
H±σ (M), d±σ (M) and d(M) be the corresponding objects for the motive over R constructed
from M by σ. For k = Q, we omit the σ.

The following corollary follows immediately from 1.4, and from the fact that F∞ ex-
changes Hpq and Hqp.

COROLLARY 1.6. Let M be a motive over R. For the real structure HDR(M) of
HB(M)⊗C, the sub-spaces Hpq are defined over R; the sub-space H+

B (M)⊗R is real, and
H−B (M)⊗R is purely imaginary.

1.7. In the final part of this paragraph, we only consider motives over Q; unless otherwise
stated, we suppose that they are homogeneous. If their weight w is even, we also assume
that F∞ acts on Hpp (with w = 2p) like the scalar 1 or −1. This hypothesis has been
verified for M critical. Since F∞ exchanges Hpq and Hqp, we know that for the dimensions
d+(M) and d−(M), one is equal to

∑
p>q h

pq, and the other to
∑
p≥q h

pq. In particular these
dimensions are equal to those of subspaces F+ and F− appearing in the Hodge filtration.
We set H±DR(M) = HDR(M)/F∓, and we have again dim H±DR(M) = d±(M)

Since F∞ exchanges Hpq and Hqp, we deduce that the following composition of maps

(1.7.1) I± : H±B (M)C → HB(M)C
I→ HDR(M)C → H±DR(M)C

are isomorphisms. We set

(1.7.2) c±(M) = det (I±),

(1.7.3) δ(M) = det (I),

the determinants being calculated in rational bases of H±B (M) and H±DR (respectively HB

and HDR). The definition of δ(M) does not require the hypotheses on M .
By 1.6, I+ is real, i.e. induces I+ : H+

B (M)R → H+
DR(M)R, and likewise I− is purely

imaginary. Therefore the numbers c+(M), id
−(M)c−(M) and id

−(M)δ(M) are real and non-
zero. Up to multiplication by a rational number, these numbers only depend on M .

Classically the periods of M are < ω, c > where ω ∈ HDR(M) and c ∈ HB(M)∨. For
example, if X is an algebraic variety over Q, ω an n-form on X defined over Q and c an
n-cycle on X(C), then < ω, c >=

∫
c ω is a period of Hn(X). Let us express c±(M) in terms

of periods. The dual of H±DR(M) is the subspace F± of HDR(M∨), where M∨ is the dual mo-
tive of M . If the chosen basis for H±DR(M) has for dual basis the basis (ωi) of F±(HDR(M∨),
and (ci) is the chosen basis for H±B (M), then the matrix of I± is < ωi, cj > and c±(M) =
det (< ωi, cj >).

Conjecture 1.8. If M is critical, L(M) is a rational multiple of c+(M).



2. Statement of the Conjecture (General Case)

2.1. We have considered L-functions given by Dirichlet series with rational coefficients. To
improve on this, we now consider motives with coefficients over a number field.

Here are two equivalent methods for constructing the category of motives over k, with
coefficients in a number field E, from the category of motives over k. We must provide a
valid construction for all additive Karoubian categories (0.1(b)) in which the Hom(X, Y ) are
vector spaces over Q.

A. A motive over k, with coefficients in E, is a motive M over k equipped with the
structure of an E-module: E → End(M).

B. The categoryMk,E of motives over k with coefficients in E, is the Karoubian envelope
(cf. 0.1(b)) of the category of motives over k - where we denote an object M in Mk,E by
ME, and the morphisms are given by Hom(XE, YE) = Hom(X, Y )⊗ E.

Passage from B to A. For a motive X, and V a finite dimensional vector space over Q, we
let X ⊗ V denote the motive, isomorphic to a sum of dim(V ) copies of X, characterized by
Hom(Y,X ⊗V ) = Hom(Y,X)⊗V (or by Hom(X ⊗V, Y ) = Hom(V, Hom(X, Y ))). We pass
from B to A by associating to ME the motive M ⊗E, with its natural E-module structure.

Passage from A to B. If M has an E-module structure, we recover two E-module struc-
tures on ME: one coming from M , and the other by virtue of being an object inMk,E. The
object ofMk,E corresponding to M is the largest direct factor of ME on which the structures
coincide. In more detail: the algebra E ⊗ E is a product of fields, among which there is a
copy of E in which 1⊗x and x⊗ 1, both project as x. The corresponding idempotent e acts
on ME (which is an E⊗E-module) and its image is the object ofMk,E that corresponds to
M .

Motives with coefficients in E are most often given in form A. Form B has the advantage of
making sense for E not of finite rank over Q. The latter form is useful for understanding the
tensor formalism: one may define the tensor product and dual, for motives with coefficients
in E, by their functoriality and the formulas XE ⊗E YE = (X ⊗ Y )E and (XE)∨ = (X∨)E.
In language A, X⊗E Y is the largest direct summand of X⊗Y for which the two E-module
structures of X ⊗ Y coincide, and X is the usual dual of X∨, equipped with the transposed
E-module structure. If we apply these remarks to the category of vector spaces over Q,
rather than that of motives, we find the isomorphism of the F -dual of a vector space over E
with its Q-dual, given by

ω 7→ the form Tr
E/Q(< ω, v >).

In 0.1.1 we defined some restriction and extension of scalars functors of the field of scalars
k. They transform motives with coefficients in E into other motives with coefficients in E.
We also have at our disposal the restriction and extension of coefficients functors: let F be
a finite extension of E:

Extension of coefficients. In language A, it is X 7→ X⊗EF ; in language B it is XE 7→ XF .
Restriction of coefficients. In language A, we restrict the F -module structure to E.
The reader should take care not to confuse the roles of k and E. A typical example we

should remember is that of H1 of an abelian variety over k, with complex multiplication
by an order in E. In terms of the abelian variety - up to an isogeny - the above functors



become: extension of the base field, Weil’s restriction of scalars, construction of ⊗EF , which
multiplies the dimension by [F : E], and restriction to E of the F -module structure.

2.2 Let M be a motive over Q, with coefficients in a number field E. For each prime
number l, the l-adic realization Hl(M) of M is a module over the l-adic completion El of
E. This completion is the product of the completions Eλ, where the λ are prime ideals lying
over l, from which we have a decomposition of Hl(M) as a product of Eλ-modules Hλ(M).

For the Hλ(M) we conjecture a compatibility analogous to 1.2.1; if it is verified, we
can define, for each complex embedding σ of E a Dirichlet series with coefficients in σE,
converging for R(s) sufficiently large:

L(σ,M, s) =
∏
p

Lp(σ,M, s), where

(2.2.1) Lp(σ,M, s) = σZp(M, p−s) with Zp ∈ E(t) ⊂ Eλ(t) given by

Zp(M, t) = det(1− Fpt,Hλ(M)Ip)−1 for λ 6 |p.
As σ varies these Dirichlet series differ from one another by conjugation of the coefficients.
We will regard the system of L(σ,M, s) as a single function L∗(M, s) with values in the

C-algebra E ⊗C, which we identify with CHom(E,C) via

(2.2.2) E ⊗C
∼→ CHom(E,C) : e⊗ z 7→ (z · σ(e))σ.

This function can also be defined directly by an Euler product. We hope, as in 1.1, that it
has an analytical continuation to all s ∈ C.

It is necessary to complete the Euler product L(σ,M, s) with a factor at infinity L∞(σ,M, s)
which depends on the Hodge realization of M . Setting Λ(σ,M, s) = L∞(σ,M, s)L(σ,M, s),
the conjectural functional equation of the L-function can the be written as

(2.2.3) Λ(σ,M, s) = ε(σ,M, s)Λ(σ,M∨, 1− s),

where ε(σ,M, s), as a function of s, is the product of a constant and an exponential function.
The definitions of L∞ and ε are given in 5.2. As above, we regard the system of Λ and ε, as
σ varies, as functions Λ∗ and ε∗ with values in E ⊗C.

It follows from 2.5 below that L∞(σ,M, s) is independent of σ, and that the function L∞,
for the motive RE/QM constructed from M by restriction of scalars of the field of coefficients

(2.1) is the [E : Q]th power of L∞(σ,M, s). This justifies the

PROPOSITION-DEFINITION 2.3 Let M be a motive over Q with coefficients in E. An
integer n is critical for M if the following equivalent conditions hold

(i) The integer n is critical for RE/QM ;

(ii) Neither L∞(σ,M, s) nor L∞(σ, M̌(1), s) has a pole at s = n.
We say that M is critical if 0 is critical for M .

Our goal is to conjecture the value of L∗(M) =def L
∗(M, 0), for M critical, up to multi-

plication by an element of E. In other words, we would like to simultaneously conjecture the
values of L(σ,M) =def L(σ,M, 0) up to multiplication by a system of numbers σ(e), e ∈ E.



2.4. The realization HB(M) of M in rational cohomology is equipped with an E-vector
space structure. Its dimension is the rank of M over E. The involution F∞ is E-linear,
therefore the + and − eigenspaces are E-subspaces. We denote their dimensions by d+(M)
and d−(M).

The complexification ofHB(M) is a freeE⊗C-module. IdentifyingE⊗C with CHom(E,C)

(2.2.2), we have the decomposition

HB(M)⊗C =
⊕
σ

HB(σ,M),

with
HB(σ,M) = (HB(M)⊗C)⊗E⊗C,σ C,

or
HB(σ,M) = HB(M)⊗E,σ C.

Since the Hpq
B (M) of the Hodge decomposition are stable under E, each HB(σ,M) inherits

a Hodge decomposition HB(σ,M) = ⊕Hpq
B (σ,M). The involution F∞ permutes the Hpq and

Hqp, in particular it stabilizes Hpp, dividing it into + and − parts. We write hpq(σ,M) for
the dimension of Hpq

B (σ,M) and hpp±(σ,M) for the dimension of Hpp±
B (σ,M). The following

proposition permits us to omit σ from the notation.

PROPOSITION 2.5 The numbers hpq(σ,M) and hpp±(σ,M) are independent of σ.

We may suppose, and do suppose, that M is homogeneous. In this case, Hpq(M) can
be identified with the complexification of the E-vector space GrpF (HDR(M)) : it is a free
E ⊗C-module and the first assertion follows. For the second we observe that hpp±(σ,M) is
the excess of d±(M) over

∑
p>q h

pq(σ,M).
2.6. Let M be a motive over Q with coefficients in E. For the rest of this section, unless

stated otherwise, we suppose that RE/QM verifies the hypotheses of 1.7. This time the

spaces F± and H±DR are vector spaces over E. The isomorphisms (0.4.1) and (1.7.1)

(2.6.1) I : HB(M)⊗C→ HDR(M)⊗C,

(2.6.2) I± : H±B (M)⊗C→ H±DR(M)⊗C,

are isomorphisms of E ⊗C-modules between the complexifications of vector spaces over E.
We set

c±(M) = det (I±) ∈ (E ⊗C)∗,

δ(M) = det (I) ∈ (E ⊗C)∗,

the determinants being calculated in some E-rational bases of H±B (M) and H±DR(M) (re-
spectively HB(M) and HDR(M)). The definition of δ(M) does not require the hypotheses
made on M . Up to multiplication by an element of E∗, these numbers depend only on M .
It follows anew from 1.6 that c+(M), id

−(M)c−(M) and id
−(M)δ(M) are in (E ⊗R)∗

Conjecture 2.7. Let R(M) = −1
2
w. If M is critical,



(i) L(σ,M, s) never has a pole at s = 0, and can only vanish at s = 0 when R(M) = 1/2.
(ii) The multiplicity of the zero of L(σ,M, s) at s = 0 is independent of σ.

For (i), I refer you to the discussion at the end of 1.3. That (ii) should seem reasonable
was suggested to me by B. Gross.

Conjecture 2.8. For M critical and L(σ,M) 6= 0, L∗(M) is the product of c+(M) and an
element of E∗.

REMARK 2.9. A motive M over a number field k, with coefficients in E, also defines
a function L∗(M, s). These functions are covered by our conjecture, in view of the identity
L∗(M, s) = L∗(Rk/QM, s), where Rk/Q is the restriction of scalars from k to Q (see (0.5.3)).

The functions L(σ,M, s) are Euler products indexed by the finite places of k. It is
necessary to complete these with the factors at infinity Lν(σ,M, s), indexed by the infi-
nite places, the definitions of which are given in 5.2. In general, they depend on σ. Only
L∞(σ,Rk/QM, s), the product of all the Lν(σ,M, s) for ν infinite, is independent of σ.

REMARK 2.10. Let F be an extension of E, ι the structure morphism of E in F and
ιC its complexification: E ⊗ C ↪→ F ⊗ C. We have L∗(M ⊗E F, s) = ιCL

∗(M, s) and
c±(M ⊗E F ) = ιCc

±(M). Therefore, the conjecture is compatible with the extension of the
field of coefficients. For a Galois extension F of E, with Galois group G, Hilbert’s Theorem
90, H1(G,F ∗) = 0 assures us that ((F ⊗ C)∗/F ∗)G = (E ⊗ C)∗/E∗ : so the conjecture is
invariant under the extension of the field of coefficients.

REMARK 2.11. If E is an extension of F , we have L∗(RE/FM, s) = NE/FL
∗(M, s). Since

the periods c± verify the same identity, the conjecture is compatible with the restriction of
coefficients.

REMARK 2.12. Let D be a division algebra over E of rank d2. A motive M over Q,
having the structure of a D-module, and of rank n over D, defines a Dirichlet series with
coefficients in E, whose Euler factors are almost all of degree nd: for λ a finite place of E,
Hλ(M) is a free module over the completion Dλ = D ⊗E Eλ, and we repeat the definition
(2.2.1) by setting

Zp(M, t) = det red(1− Fpt,Hλ(M)Ip)−1

(if Dλ is an algebra of matrices over Eλ, and e an indecomposable idempotent, the reduced
determinant of an endomorphism A of a Dλ-module H is the determinant, calculated over
E, of the restriction of A to eH; the definition in the general case proceeds by descent).

The liberty which 2.10 gives us, to extend the field of coefficients, makes it possible to
include these L-functions in Conjecture 2.8: choosing an extension ι : E ↪→ F of E that
neutralizes D, and an indecomposable idempotent e of D ⊗E F we have ιCL

∗(M, s) =
L∗(e(M ⊗E F ), s).

We may also define c+(M) directly, as is explained in 2.13 below.



The rest of this section will not be used in the rest of the article.

2.13. Let D be a simple algebra over a field E (for instance an algebra of Azumaya over
a ring...). For the tensor formalism, it is convenient to regard D-modules as “fake E-vector
spaces”:

(a) Given a vector space V over E reduces to being given, for every étale extension F
of E, an F -vector space VF , and some compatible isomorphisms VG = VF ⊗F G for G an
extension of F . We take VF = V ⊗E F . By descent it suffices to only consider the VF for F
sufficiently large.

(b) Let W be a D-module. For every étale extension F of E, and every F -isomorphism
D ⊗ F ∼ EndF (L), with L free, we set WF,L = HomD⊗F (L,W ⊗ F ) (the tensor products
being over E). We have a D ⊗ F -module module isomorphism W ⊗E F = L⊗F WF,L.

If F is sufficiently big to neutralize D, L is unique up to a non-unique isomorphism; the
lack of uniqueness is due to homotheties, that act trivially on End(L). This is why the given
WF,L is not of type (a); it is a “fake vector space over E”.

Let (Wα) be a family of D-modules, and T a tensor operation. If the homotheties of L
act trivially on T (Wα

F,L), the F -vector space T (Wα
F,L) is independent of the choice of L and

we obtain a system of type (a), from which we get a vector space T (Wα) over E.

EXAMPLE. If W ′ and W ′′ are two D-modules of rank n · [D : E]1/2 over E, we can take
T = Hom(

∧nW ′
F,L,

∧nW ′′
F,L); we obtain a vector space δ(W ′,W ′′) of rank 1 over E, and

every homomorphism f : W ′ → W ′′ has a reduced determinant det red(f) ∈ δ(W ′,W ′′).

To define c+(M), we apply this construction to the D-modules H+
B (M) and to H+

DR(M).
We set δ = δ(H+

B (M), H+
DR(M)). The reduced determinant of the isomorphism of D ⊗ C-

modules I+ : H+
B (M)C

∼→ H+
DR(M)C is in the free of rank 1 E ⊗C-module δ ⊗C. We set

det red(I+) = c+(M) · e for e a basis vector of δ.

3. Example : The ζ function.

3.1. To understand the various realizations of the Tate motive Z(1), it is easiest to write
Z(1) = H1(Gm). Since the multiplicative group is not an algebraic variety, this can not be
considered in Grothedieck’s framework, which insists that we define Z(1) as the dual of the
direct factor H2(P1) of H∗(P1).

The realization in Zl-cohomology of Z(1) is the Tate module Tl(Gm) of Gm

Zl(1) = proj lim µln .

In the Hodge realization, we have HB(Z(1)) = H1(C∗) is isomorphic to Z (and likewise
to Q in rational cohomology). This group is pure, of type (−1− 1) and F∞ = −1.

In the de Rham realization HDR(Z(1)) is the dual of H1
DR(Gm), and is isomorphic to Q,

with generator the class of dz/z. The unique period of H1(Gm) is

(3.1.1)
∮ dz

z
= 2πi



The arithmetic Frobenius φp (for p 6= l) acts on Zl(1) via multiplication by p. Therefore
the geometric Frobenius acts via multiplication by p−1. This justifies the identity cited in
1.3

(3.1.2) L(M(n), s) = L(M,n+ s).

Since F∞ acts as (−1)n on HB(Z(n)), Hε
B(Z(n)) vanishes for ε = −(−1)n, and cε(Z(n)) =

1. For ε = (−1)n, it follows from (3.1.1) that cε(Z(n)) = δ(Z(n)) = (2πi)n:

(3.1.3) cε(Z(n)) = (2πi)n for ε = (−1)n,

cε(Z(n)) = 1, δ(Z(n)) = (2πi)n for ε = −(−1)n.

3.2. The function ζ(s) is the L-function attached to the unit motive Z(0) = H∗(Point).
The critical integers for Z(0) are the even integers > 0 and the odd integers ≤ 0. Because of
the pole of ζ(s) at s = 1, 0 is not a trivial zero and it seems reasonable to include 0 among
the critical integers. Equation (3.1.3) and the known values of ζ(n) = L(Z(n)) for n critical
satisfy 1.8: ζ(n) is rational if n is odd and ≤ 0, and is a rational multiple of (2πi)n if n is
even and ≥ 0.

4. Compatibility with the Birch and Swinnerton-Dyer

Conjecture

4.1. Let A be an abelian variety over Q, of dimension d. The conjecture of Birch and
Swinnerton-Dyer [15] states:

(a) L(H1(A), 1) is non-zero if and only if A(Q) is finite.
(b) Let ω be a generator of H0(A,Ωd). Then L(H1(A), 1) is the product of

∫
A(R) | ω |

and a rational number.
The motive H1(A)(1) is isomorphic to the dual H1(A) of H1(A): this is a restatement of

the existence of a polarization, self-dual ofH1(A) with values in Z(−1). By 1.7, c+(H1(A)(1))
is therefore calculated as follows: if ω1, · · · , ωd is a basis of H0(A,Ω1) = F+H1

DR(A), and
e1, · · · , ed is a basis of H1(A(C),Q)+, we have

(4.1.1) c+(H1(A)(1)) = det < ωi, ej > .

Designating a representative cycle by ei again, we have < ωi, ej >=
∫
ej
ωi.

Let (ei) be a Z-basis of H1(A(R)◦,Z) ⊂ H1(A(C),Z). The Pontryagin product of the ei
is represented by the d-cycle A(R)◦ in A(C), with an appropriate orientation, and, if ω is
the exterior product of the ωi, the determinant (4.1.1) is the integral

∫
A(R)◦ ω. We have

∫
A(R)

| ω | = [A(R) : A(R)◦]

∣∣∣∣∣
∫
A(R)◦

ω

∣∣∣∣∣,
and 1.8 for H1(A)(1) is therefore equivalent to 4.1(b) above.

4.2. The Birch and Swinnerton-Dyer conjecture gives the exact value of L(H1(A), 1); the
description of the rational factor in 4.1(b) for the motive H1(A)(1) is as follows:



(a) The realization of M = H1(A)(1) is equivalent to that of A up to an isogeny. It
is necessary to begin by first choosing A. This reduces to choosing an integral lattice in
HB(M), whose l-adifications are stable under the action of Gal(¯Q/Q).

(b) Then one chooses ω, for example as the exterior product of elements of a basis of an
integral lattice in HDR(M). This ω determines the period, c+(M), and for each prime p, a
rational factor cp(M). The cp(M) are almost all equal to 1, and the formula for the product
ensures that c+(M) ·∏p cp(M) is independent of ω.

(c) Another rational number, h(M), is defined in terms of the cohomological invariants
of A; the rational number we seek is h(M) ·∏p cp(M)−1.

The invariance of the conjecture up to isogeny is however a nontrivial theorem.
4.3. To generalize 4.1(a) to an arbitrary motive M of weight -1, we must use an analog of

A(Q). The group A(Q) can be interpreted as the group of extensions of Z(0) by H1(A), in
the category of 1-motives [6, §10] over Q. This suggests we consider the group of extensions
of Z(0) by M , in a category of mixed motives, similar to mixed Hodge structures, but we do
not even have a conjectural definition of such a category.

I will only observe that, in all the usual cohomology theories, a cycle Y of dimension
d, cohomologous to 0, in a proper, smooth algebraic variety X, determines a torsor on
H2d−1(X)(d): we obtain an exact sequence of cohomology

0→ H2d−1(X)(d)→ H2d−1(X − Y )(d)
∂−→ H2d

Y (X)(d)→ H2d(X)(d),

Y defines a cohomology class cl(Y ) ∈ H2d
Y (X)(d), with vanishing image in H2d(X)(d), and

we take ∂−1cl(Y ). This construction corresponds to that which associates a divisor of degree
0 on a curve to a point of its Jacobian.

5. Compatibility with the Functional Equation

Let E be a number field. In (E ⊗ C)∗, we write ∼ for the equivalence relation defined by
the subgroup E∗.

PROPOSITION 5.1. Let M be a motive over Q, with coefficients in E. We suppose it
verifies the hypotheses of 1.7. Then we have

c+(M) ∼ (2πi)−d
−(M) · δ(M) · c+(M̌(1)).

For a free module L of rank n over a commutative ring A (A will be E or E ⊗ C), we
set det L =

∧n L. By localization, we extend this definition to the case where L is only
projective of finite type (this generalization is not essential for the proof of 5.1). We have
canonical isomorphisms

(5.1.1) det(L∨) = det(L)−1

and for each direct factor P of L,

(5.1.2) det(L) = det(P ) · det(L/P )



(here · means tensor product and −1 means dual). There are some problems of sign here,
that we may resolve by considering det(L) as a graded invertible module, placed in degree
the rank of L. Our final results are modulo ∼, and so there is no cause for worry.

For X and Y of the same rank, we set δ(X, Y ) = Hom(det X, det Y ) = det(X)−1 ·
det(Y ). The determinant of f : X → Y is in δ(X, Y ). We obtain from (5.1.1) and (5.1.2)
the isomorphisms

(5.1.3) δ(X, Y ) = δ(Y ∨, X∨)

and, for F ⊂ X and G ⊂ Y ,

(5.1.4) δ(X, Y ) = δ(F, Y/G) · δ(G,X/F )−1.

LEMMA 5.1.5. Via the isomorphism (5.1.3), we have det(u) = det(tu).

LEMMA 5.1.6. Let F and G be direct factors of X and Y. We suppose that the isomor-
phism f : X → Y induces isomorphisms fF : F → Y/G and f−1

G : G → X/F . Via the
isomorphism (5.1.4), we have det(F ) = det(fF ) det(f−1

G )−1.

The verification of these lemmas is left to the reader. For 5.1.6, we only note that, for
G1 = f−1(G) and F 1 = f(F ), we have X = F ⊕G1, Y = G⊕ F 1, and that f exchanges F
and F 1, G and G1.

We apply Lemma 5.1.6 to the complexifications of H+
B (M) ⊂ HB(M) and of F− ⊂

HDR(M). We find that, via the isomorphism (5.1.4), the determinant of I : HB(M)⊗C→
HDR(M) ⊗ C is the product of the determinant of I+ : H+

B (M) ⊗ C → H+
DR(M)/F− ⊗ C

and the inverse of the determinant of the morphism induced by the inverse of I:

J− : F− ⊗C→ (HB(M)/H+
B (M))⊗C.

The morphism J− is the transpose of the morphism I− for the dual motive M̌ of M . Applying
5.1.5, and using E-bases for the spaces δ(X, Y ), we obtain finally

(5.1.7) δ(M) ∼ c+(M) · c−(M̌)−1.

We obtain 5.1, by applying the following formula (a consequence of 3.1) to the motive
M̌ :

(5.1.8) c±(M) = (2πi)−d
±(M)·nc±(−1)n(M(n)).

For later use, we also note the analogous formula

(5.1.9) δ(M) = (2πi)−d(M)·nδ(M(n)).

5.2. We recall the exact form of the conjectural functional equation of L-functions at-
tached to motives ([12], [4]). We consider the general case of a motive over a number field
k, with coefficients in a field E, having a complex embedding σ (cf. 2.9). First the general
form:



(a) For each place ν of k, we define a local factor Lν(σ,M, s). For ν finite, the definition of
Lν(σ,M, s) = σZν(M,Nν−s) (with Zν(M, t) ∈ E(t)) depends on a compatibility hypothesis
analogous to (1.2.1). We have Zν(M, t) = det(1 − Fνt,Hλ(M)Iν )−1. For ν infinite, induced
by the complex place τ , we obtain Lν(σ,M, s) by decomposing Hτ (M)⊗E,σC as a direct sum
of subspaces minimally stable under the projectors that give the Hodge decomposition, and
by F∞ for ν real, and then associating to each the “Γ factor” from Table (5.3), and taking
their product. For ν complex, the minimal subspaces are of dimension 1, of type (p, q). For
ν real, they are of dimension 2, of type {(p, q), (q, p)} (with p 6= q), and of dimension 1, of
type (p, p), with F∞ = ±1. We let Λ(σ,M, s) denote the product of the Lν(σ,M, s).

(b) Let ψ be a non trivial character of the group (A ⊗ k)/k of adele classes of k, and
let ψν be the component at ν. For each place ν of k, let dxν be a Haar measure on kν . We
suppose that for almost all ν, dxν gives the integers of kν measure 1, and that the product
⊗dxν of the dxν is the Tamagawa measure, giving the group of adele classes measure 1.

We define the local constants εν(σ,M, s, ψν , dxν), almost all equal to 1, to be, as a function
of s, the product of a constant and an exponential factor. Let ε(σ,M, s) denote their product
(it is independent of ψ and the dxν).

(c) The conjectural functional equation is

Λ(σ,M, s) = ε(σ,M, s)Λ(σ, M̌, 1− s).

To define the εν an additional compatibility hypothesis between the Hλ(M) is required.
It permits us to associate to ν, σ, and M an isomorphism class of complex representations
of the Weil group W (k̄ν/kν), for ν infinite, and of the thickened Weil group ′W (k̄ν/kν), for
ν finite. We then take the ε as in [4, 8.12.4], with t = p−s.

For ν infinite, this reduces to decomposing Hτ (M)⊗E,σ C as in (a), associating to each
subspace of the decomposition a factor ε′ν , and to taking their product. The table of the ε′ν ,
for a particular choice of ψν and of the dxν , is given in 5.3.

For ν finite, we begin by restricting the representations Hλ(M) to a decomposition group
Gal(k̄ν/kν) ⊂ Gal(k̄/k), and then to the Weil group W (k̄ν/kν). Applying [4, 8.3, 8.4], we
construct from Hλ(M) an isomorphism class of representations ρλ of ′W (k̄ν/knu) over Eλ.
It is possible here, and useful, to replace it by its F -semi-simplification [4, 8.6]. As λ varies
we insist that these representations be compatible, i.e. if we extend the scalars of Eλ to
C, by σ̃ : Eλ → C, extending σ, the isomorphism class of the representation so obtained is
independent of λ and of σ. This is the isomorphism class we seek.

We recall, for the reader, the essential ingredients of [4]. A representation of ′W is given
by a representation ρ of the Weil Group in GL(V ), and by a nilpotent endomorphism N of
V . In terms of the local constant [4, 4.1] of ρ, that of (ρ,N) is given by

ε((ρ,N), s, ψ, dx) = ε(ρ⊗ ωs, ψ, dx) · det(−FNν−s, V ρ(I)/ker(N)ρ(I)).

REMARK 5.2.1. The function of s

ε((ρ,N), s, ψ, dx) L((ρ,N)∨, 1− s) L((ρ,N), s)−1

is the same for (ρ,N) and for (ρ, 0). This permits us to state the conjectural functional equa-
tion of the L-functions by assuming only a compatibility between the semi-simplifications of
the restrictions of the Hλ(M) to a decomposition group.



5.3. In the table below, we have given the local factors, and the constants, associated to
different types of minimal sub-spaces of the Hodge realization. For the constants, we have
assumed ψν and the measure dxν are chosen as following:

ν real : ψν(x) = exp(2πix), measure = dx,
ν complex : ψν(z) = exp(2πiTrC/R(z)), measure = |dz∧dz̄|, or if z = x+ iy, exp(4πix)

and 2dxdy respectively.
We use the notation ΓR(s) = π−s/2Γ(s/2), ΓC(s) = 2 · (2π)−sΓ(s).

Place Type Γ Factor Constant

Complex (p, q) or (q, p), p ≤ q ΓC(s− p) iq−p

Real
{(p, q), (q, p)}, p < q ΓC(s− p) iq−p+1

(p, p), F∞ = (−1)p+ε, ε = 0 or 1 ΓR(s+ ε− p) iε

The case that interests us is when k = Q. In this case we can take ψ∞(x) = exp(2πix),
ψp(x) = exp(−2πix) (via the isomorphism Qp/Zp = the p-primary part of Q/Z), dx∞ = the
Lebesgue measure dx, and dxp = the Haar measure on Qp giving Zp measure 1.

PROPOSITION 5.4. If M is critical of weight w, we have, modulo a rational number
independent of σ,

L∞(σ, M̌(1)) L∞(σ,M)−1 ∼ (2π)−d
−(M) · (2π)−wd(M)/2.

By 2.5, the L∞(σ, ) are independent of σ. This permits us to only verify 5.4 for the case
in which σ is fixed. The formula is compatible with the substitution M 7→ M̌(1) : M̌(1) has
weight −2−w, its d− is d+(M) and abbreviating d(M) and d±(M) by d and d± respectively,
we have d = d+ + d− and

(
− d− − wd

2

)
+
(
− d+ − (−2− w)d

2

)
= 0.

This allows us to only verify 5.4 for w ≥ −1.
(5.4.1) For s an integer, we have, modulo Q∗,

ΓR(s) ∼ (2π)−s/2 for s even > 0,
ΓR(s) ∼ (2π)(1−s)/2 for s odd,
ΓC(s) ∼ (2π)−s for s > 0.

For w ≥ −1, the power of 2π in the contribution of each subspace of HB(M)⊗C, as in
5.2(a), is therefore given by



L∞(M) L∞(M∨(1)) L∞(M∨(1))L∞(M)
{(pq), (qp)}, p ≤ q p −1− p −1− w
(pp), p even ≥ 0, F∞ = −1 p/2 −1− p/2 −1− w/2
(pp), p odd ≥ 0, F∞ = −1 (1 + p)/2 (−1− p)/2 −1− w/2

The proposition follows immediately.
Set detM =

∧d(M) M (exterior power over E).

PROPOSITION 5.5. ε∗(M) ∼ ε∗(det M).

For the dxν chosen as suggested in 5.4, we will prove, more precisely, the equivalences

(5.5.1) ε∗ν(M,ψν , dxν) ∼ ε∗ν(det M,ψν , dxν).

Setting ην(σ,M, ψν) = εν(σ,M, ψν , dxν)ε
−1
ν (σ, det M,ψν , dxν), this is equivalent to

(5.5.2) την(σ,M, ψν) = ην(τσ,M, ψν)

for every automorphism τ of C.
It follows from [4, 5.4] that, if a ∈ Q∗ν has absolute value 1, and if we set (ψν · a)(x) =

ψν(ax), we have

(5.5.3) ην(σ,M, ψν) = ην(σ,M, ψν · a) (for ‖a‖ν = 1).

For τ an automorphism of C, and ν finite, τψν is of the form ψν · a, with ‖a‖ν = 1; and
similarly ψ̄∞ = ψ∞ · (−1).

For ν finite, the definition of εν is purely algebraic, whence την(σ,M, ψν) = ην(τσ,M, τψν),
and (5.5.2) follows from (5.5.3).

For ν = ∞, we have again η̄∞(σ,M, ψ̄∞) = η∞(σ̄,M, ψ̄∞) = η∞(σ̄,M, ψ∞); if we
take ψ∞ as suggested in 5.3, η∞ is a power of i independent of σ, from which it follows
η∞(σ,M, ψ∞) = ±1, independent of σ, and this verifies (5.5.2).

THEOREM 5.6. Modulo Conjecture 6.6 on the nature of motives of rank 1, Conjecture
2.8 is compatible with the conjectural functional equation of the L-functions : we have

L∗∞(M)c+(M) ∼ ε∗(M)L∗∞(M̌(1))c+(M̌(1)).

By 5.1, 5.3, and 5.5 this formula is equivalent to

(2πi)−d
−(M) · δ(M) ∼ (2π)−d

−(M) · (2π)−wd(M)/2 · ε∗(det M).

We set D = det M and ε = d−(D). We have δ(M) = δ(D), d−(M) ≡ ε (mod 2) and wd(M)
is the weight w(D) of D, so that the formula is now equivalent to

(5.6.1) ε∗(D) ∼ (2π)w(D)/2 · iε · δ(D).

In 6.5 we will prove that (5.6.1) holds for a class of motives of rank 1 that conjecturally (see
6.6) includes all motives of rank 1.



6. Example : Artin L-functions

DEFINITION 6.1. The category of Artin motives is the Karoubian envelope of the dual of the
category of objects consisting of varieties over Q of dimension 0, and morphisms consisting
of the correspondences defined over Q.

By definition, every variety of dimension 0, X, defines an Artin motive H(X), where the
functor H is a contravariant, fully faithful functor

H : (varieties of dim 0, correspondences)→ (Artin motives)

and every Artin motive is a direct factor of an H(X).
6.2. Let us make this definition explicit. Let Q̄ be an algebraic closure of Q, and G the

Galois group Gal(Q̄/Q). A variety of dimension 0 is the spectrum of a finite product A of
number fields, and Galois theory (in Grothendieck’s formulation) says that the functor

X = spec(A) 7→ X(Q̄) = Hom(A, Q̄) :

(category of varieties of dimension 0 over Q, and morphisms of schemes) → (category of
finite sets on which G acts continuously) is an equivalence of categories. The inverse functor
is I 7→ Spec of the ring of G-invariant functions of I into Q̄

A correspondence of a variety X of dimension 0, in another, Y , is a formal linear combi-
nation of connected components of X × Y with coefficients in Q. The mapping∑

aiZi 7→
∑

ai(characteristic function of Zi(Q̄) ⊂ (X × Y )(Q̄))

identifies correspondences and G-invariant functions, with rational values, on (X×Y )(Q̄) =
X(Q̄)× Y (Q̄), and identifies the composition of correspondences with matrix products.

Let us write H for the contravariant functor X 7→ the vector space QX(Q̄), equipped with
the natural G action; (correspondence F : X → Y ) 7→ the morphism F ∗ : QY (Q̄) → QX(Q̄)

with matrix tF . It is fully faithful, and identifies the category of Artin motives with the
category of rational representations of G.

6.3. In this model, if Q̄ is the algebraic closure of Q in C, the functor “Betti realization”
HB is the functor “underlying vector space”. The Hodge structure is pure of type (0, 0),
and the involution F∞ is the action of complex conjugation F∞ ∈ G. Indeed, we have an
isomorphism, functorial on correspondences,

H∗(X(C),Q) = QX(C) = QX(Q̄) = H(X).

The functor “l-adic realization” Hl is the functor Hl(V ) = V ⊗ Ql. In fact we have an
isomorphism, functorial on correspondences,

H∗(X(Q̄),Ql) = Q
X(Q̄)
l = QX(Q̄) ⊗Ql.

Similarly we calculate the de Rham realization. For X = Spec(A), we have H∗DR(X) = A.
Letting A = HomG(X(Q̄), Q̄) = (QX(Q̄) ⊗ Q̄)G, we obtain

(6.3.1) HDR(V ) = (V ⊗ Q̄)G.



Formula (6.3.1) realizes HDR(V ) as a subspace of V ⊗Q̄. This subspace is a Q-structure: we
have (V ⊗ Q̄)G⊗ Q̄

∼→ V ⊗ Q̄. Therefore, after extending scalars to Q̄, HB(V ) and HDR(V )
are canonically isomorphic. Extending scalars further to C, we obtain the isomorphism
(0.4.1) (verified for V = H(X)).

6.4. Let E be a finite extension of Q. The category of Artin motives with coefficients in
E is the category constructed from the category of Artin motives as in 2.1. We will identify
this with the category of finite dimensional E-vector spaces, having a G-action.

Artin motives with coefficients in E, of rank 1 over E, correspond to the characters
ε : G → E∗. We are going to calculate their periods. So let ε : G → E∗ and let f
be the conductor of ε. ε factors through a character, again denoted by ε, of the quotient
(Z/fZ)∗ = Gal(Q(exp(2πi/f))/Q) of G. We write [ε] for the vector space Es, of dimension
1 over E, on which G acts via ε. The Gauss sum

g =
∑

ε(u)⊗ exp(2πiu/f) ∈ [ε]⊗ Q̄

is non-zero, and G-invariant : it is a basis, over E, of HDR([ε]). The determinant of I :
HB([ε]) ⊗ C

∼→ HDR([ε]) ⊗ C, calculated in the bases 1 and g, is g−1. Hence, for every
complex embedding σ of E, we have σg · σ̄g = f , a rational number independent of σ, from
which we obtain

δ([ε]) ∼
∑

ε−1(u)⊗ exp(−2πiu/f) ∈ (E ⊗C)∗.

PROPOSITION 6.5. Let D be the motive [ε](n). It is a motive over Q, with coefficients
in E, of rank 1 and weight −2n. Set ε(−1) = (−1)η, with η = 0 or 1. We have

ε∗(D) ∼ (2π)−niη−nδ(D).

We know that the constant of the functional equation of the Dirichlet L-function L(σ, [ε], s) =∑
σε−1(n) · n−s (σ is a complex embedding of E) is given by

ε(σ, [ε], s) = iη · f s ·
∑

σε(u)−1exp(−2πiu/f).

Furthermore, by (5.1.9), we have δ(D) = (2πi)nδ([ε]). We conclude by applying (6.4.1) and
by noting that for s an integer (s = n), fn is rational and independent of σ.

This proposition verifies (5.6.1) for the motives [ε](n). To complete the proof of 5.6, it
only remains to state the

Conjecture 6.6. Every motive over Q, with coefficients in E and of rank 1 is of the form
[ε](n), for ε a character of G = Gal(Q̄/Q) with values in the roots of unity of E and n an
integer.

PROPOSITION 6.7. Conjecture 2.8 is true for Artin L-functions.

For Artin motives, we dispose of the functional equation of the L-functions. First note
the determinant of an Artin motive, with a Tate twist, is as predicted in 6.6. Therefore the
arguments in sections 5 and 6 show the compatibility of 2.8 with the functional equation,
and so it suffices to prove 2.8 for the motives V (n), for V an Artin motive, and n an integer



≤ 0. If V (n) is critical, F∞ acts on V by multiplication by −(−1)n, and c+ = 1 (cf. 3.1). So
it remains to prove that, for every embedding σ of E into C, and every automorphism τ of
C, we have τL(σ, V (n)) = L(τσ, V (n)).

We deduce this from results of Siegel [14]. See [2, 1.2].

7. L-functions attached to Modular Forms

7.1 Set q = e2πiz, and let f =
∑
anq

n be a primitive holomorphic cusp form (new form) of
weight k ≥ 2, conductor N , and character ε. The Dirichlet series

∑
ann

−s admits an Euler
product, with local factors at p 6 |N equal to (1− app−s + ε(p)pk−1p−2s)−1.

Let E be the sub-field of C generated by the an. The form f gives rise to a motive
M(f) of rank 2, with coefficients in E, with Hodge type {(k - 1, 0) (0, k - 1)}, determinant
[ε−1](1− k) (notation as in 6.4), and L-function given by the Dirichlet series

∑
ann

−s.
I have not tried to define M(f) as being a motive in Grothendieck’s sense. One difficulty is

that M(f) appears naturally as a direct factor in the cohomology of a non-compact variety,
or as a direct factor in the cohomology of a complete modular curve, with coefficients in
the direct image of a locally constant sheaf (rather, a local system of motives!) defined in
the complement of a neighbourhood of the boundary of this modular curve. This avoids
Grothendieck’s formalism, but permits us to define the realizations of the motive M(f).

7.2. First, let us assume that k = 2, and that ε is trivial. Let X be the Poincaré half-
plane, N the conductor of f , Γ0(N) the sub-group of SL(2,Z) consisting of all matrices whose
reduction mod N is of the form (∗

0
∗
∗), and set ωf =

∑
anq

n ·dq/q =
∑
anq

n ·2πidz. The form
ωf is a holomorphic differential form on the completed curve M̄(Γ0(N)) of M(Γ0(N)) =
X/Γ0(N). It is an eigenvector of the Hecke operators:

(7.2.1) T ∗nωf = anωf (for n relatively prime to N)

and is characterized up to a factor by (7.2.1). This is a consequence of the strong multiplicity
1 theorem and the theory of primitive forms; the reader can, if he or she prefers, complete
(7.2.1) by an analogous condition for n not prime to N , and do the same below as well: the
assertion then becomes elementary, because condition (7.2.1) completely determines (up to
a factor) the Taylor development of ωf at the point i∞.

Let us shorten M(Γ0(N)) to M and M̄(Γ0(N)) to M̄ . These curves have a natural Q-
structure, for which the Hecke operators are defined over Q. The form ωf is defined over E,
and its conjugate under an automorphism σ of C is ωσf (apply σ to the coefficients).

Define the motive M(f) as being, in the language 2.1(B), the sub-motive of H1(M̄)E
kernel of the endomorphisms T ∗n − an. If we only want to consider the kernels of projectors,
replace T ∗n − an by P (Tn − an∆)∗ for P a suitable polynomial. We know that M(f) has the
properties stated in 7.1.

In each of the cohomology theories H that interest us, the map

(7.2.2) H1
c(M) −→ H1(M̄)

is surjective, and the system of eigenvalues of the T ∗n on the kernel do not appear in H1(M̄).
TheH-realization of M(f) is therefore again the common kernel of the T ∗n−an inH1

c(M)⊗E.



The cohomology groupH1
c (M,Q) has mixed Hodge structure of type {(0, 0), (0, 1), (1, 0)},

and quotient H1(M̄,Q) of type {(0, 1), (1, 0)}. In particular (7.2.2) induces an isomorphism
on the subspaces F 1 of the Hodge filtration; every holomorphic differential form ω on M̄
thus defines a cohomology class on M with proper support. One may see this directly : if
I ⊂ O is the ideal of points, H∗c(M), in de Rham cohomology, is the hypercohomology on
M̄ of the complex I → Ω1 (analytically, this complex is a resolution of the constant sheaf
C on M , extended by 0 on M̄), and the H1 ?? H◦(M̄,Ω1).

To simplify matters, assume that E = Q and calculate c+(M(f)(1)). The motive
M(f)(1) is the dual of M(f) and c+ is therefore a period of M(f) (1.7): it is necessary
to integrate ωf against a rational cohomology class of M̄ , fixed by F∞. Realizing M(f) in
H1
c(M), one sees that ωf can then be integrated against a cohomology class without support

in M , fixed by F∞. All the non-zero integrals of this type will be commensurable.
To calculate F∞, it is useful to write M as a quotient of X± = C −R by the subgroup

of GL(2,Z) consisting of the matrices having reduction mod N of the form (∗
0
∗
∗). Hence

complex conjugation is induced by z → z̄, and the image of iR+ in M(C) is a cycle without
support fixed by F∞. The formula L(M(f), 1) = −

∫ i∞
0 ωf justifies 1.8 for M(f)(1) : the

second expression is either 0 or ∼ c+(M(f)(1)).

REMARK 7.3. We also have

c±(M(f)(1)) ∼
∫ i∞

a/b
ωf ±

∫ i∞

−a/b
ωf .

7.4. For arbitrary ε (and E), it is necessary to replace Γ0(N) by Γ1(N) : the subgroup
of SL(2,Z) consisting of the matrices having reduction mod N of the form (1

0
∗
1
). As above,

to calculate F∞, it is more convenient to work with X± and the subgroup of GL(2,Z)
consisting of the matrices having reduction mod N of type (1

0
∗
∗). Otherwise, a dualization

appears, hidden in 7.2 by the symmetry of the operators Tn. For a convenient definition of
Tn, we have

(a) M(f) is the common kernel of the T ∗n − an in H1(M), M̄ = X/Γ1(N).
(b) We have tT ∗nωf = anωf , and T ∗nωf = ānωf (note the relation ān = ε(n)−1an), in such

a way that ωf is in the de Rham realization of M(f) = M(f)∨(−1).
We find that c+(M(f)(1)) ∈ (E ⊗ C)∗/E∗ ∈ C∗Hom(E,C)/E∗ is given by the system of

periods

c+(M(f)(1)) ∼
( ∫ i∞

0
ωσf

)
σ
,

if the latter expression is non-zero. We note that if any one of the integrals is zero, then
they all are zero. This is the case if and only if the system of eigenvalues an of the Tn does
not appear in the part of the homology without support generated by the cycle iR+ and its
transformations by the Tn. This justifies 2.8, and partially justifies 2.7, for M(f)(1).

REMARK 7.5. The system of eigenvalues of the Tn in Ker(H1
c(M) −→ H1(M̄)) are linked

to Eisenstein series, hence those that appear in the H1(M̄) are linked to parabolic forms.
This is why these sets are disjoint. It follows that the mixed Hodge structure of H1

c (M,Q) is
the sum of Hodge structures : the extension of H1(M̄,Q) by Ker(H1

c (M,Q)→ H1(M̄,Q))



splits. This, generalized to the case of any congruence subgroup of SL(2,Z), is equivalent
to the theorem of Manin [9] which states that the difference between two points is always
of finite order in the Jacobian (cf. [6, 10.3.4. 10.3.8, 10.1.3]). The proof we have given does
not differ otherwise in substance from Manin’s.

7.6. If the weight k is arbitrary, it is necessary to replace the cohomology of M̄ by the
cohomology of M̄ with coefficients in a convenient sheaf. To describe what happens, I will
replace M and M̄ by Mn and M̄n (respectively) relative to the congruence group Γ(n), with
n a multiple of N and ≥ 3. Afterwards we return to M and M̄ by taking invariants by an
appropriate finite group. Let g : E → Mn be the universal elliptic curve and j the inclu-
sion of Mn in M̄n. The cohomology group to consider is H1(M̄n, j∗Symk−2(R1g∗Q)). The
realizations of M(f) are direct factors of this group, calculated in the corresponding coho-
mology theory. As before, we may realize them in H1

c (Mn, Symk−2(R1g∗Q)). To calculate
c± of the dual of M(f), it is necessary then to integrate the class in H1

c defined by f against
the homology classes without support of Mn with coefficients in the local dual system of
Symk−2(R1g∗Q). If we take as the cycle the image of iR+, equipped with different sections
of the dual (a basis), we obtain Eichler’s integrals∫ i∞

0
f(q) · dq

q
· (2πiz)l (0 ≤ l ≤ k − 2)

(even periods for even l, odd for l odd) - and we know how to write L(M(f), n) for n critical
in terms of these periods.

PROPOSITION 7.7. Let M be a motive of rank 2, with coefficients in E, of Hodge
type {(a, b), (b, a)} with a 6= b. Then, d±SymnM and c±SymnM are given by the following
formulas:

(1) If n = 2l + 1, then d± = l + 1, and

c±SymnM = c±(M)(l+1)(l+2)/2c∓(M)l(l+1)/2δ(M)l(l+1)/2;

(2) If n = 2l, then d+ = l + 1, d− = l and

c+SymnM = (c+(M)c−(M))l(l+1)/2δ(M)l(l+1)/2,

c−SymnM = (c+(M)c−(M))l(l+1)/2δ(M)l(l−1)/2.

This is a question of simple linear algebra, that we will treat using “dimensional analysis”.
(a) HB(M) is a vector space of rank 2 over E, having an involution F∞ of the form (1

0
0
−1

)
in an appropriate basis e+, e−. The d±SymnM are the dimensions of the + and − parts of the
nth symmetric power, with respective bases {e+n , e+n−2

e−
2
, · · ·} and {e+n−1

e−, e+n−3
e−

3
, · · ·}

- from which the result follows.
(b) Let ω, η be a dual basis of HDR(M), such that ω annihilates F+HDR(M). The sub-

space F± of HDR(SymnM)∨ ∼ SymnHDR(M)∨ then has basis ωn, ωn−1η, · · · , ωn−d±+1ηd
±−1,

and

(7.7.1)+ c+SymnM =< ωn ∧ (ωn−1η) ∧ · · · , e+n ∧ (e+n−2

e−
2

) ∧ · · · >,



(7.7.1)− c−SymnM =< ωn ∧ (ωn−1η) ∧ · · · , (e+n−1

e−) ∧ (e+n−3

e−
3

) ∧ · · · > .

(c) Set V = HB(M)⊗C ∼ HDR(M)⊗C; this is an E ⊗C-module. The formulas above
show that c±SymnM only depends on the E ⊗ C-module V , on the choice of its basis e+,
e−, on ω ∈ V ∗, and on the image η̄ of η in V ∗/ < ω > : the d±-vector in the left of the
scalar product (7.7.1) does not change if we replace η by η + λω. Otherwise, < ω, e+ >
and < ω, e− > are invertible, and η̄ is a basis of V ∗/ < ω >. The system (V, e+, e−, ω, η̄) is
therefore described up to isomorphism by the quantities c+ =< ω, e+ >, c− =< ω, e− > and
δ =< ω ∧ η, e+ ∧ e− >, in (E ⊗C)∗. Replace e+, e−, ω, and η̄ by λe+, µe−, ω, and νη̄/λµ,
and replace c+, c− and δ by λc+, µc−, and νδ. For c+ = c− = δ = 1, the right half of (7.7.1)±

is in Q∗. Therefore, in the general case, c±SymnM is a rational multiple of the product of
c+(M), c−(M) and δ(M)/c+(M)c−(M) raised to the respective powers corresponding to the
degrees of e+, e− and η in (7.7.1). We are spared half of the calculation if we note that
replacing F∞ by −F∞, exchanges e+ and e−, hence c+ and c−, respects δ, and exchanges
(7.7.1)± for n odd, and preserves them for n even.
If n = 2l + 1 then d+ = d− = l + 1, and

deg η in (7.7.1)± = 0 + 1 + ...+ l = l(l + 1)/2,

deg e+ in (7.7.1)+ = (2l + 1) + (2l − 1) + · · ·+ 1 = (l + 1)2

= deg e− in (7.7.1)−,

deg e+ in (7.7.1)− = 2l + (2l − 2) + · · ·+ 0 = l(l + 1)

= deg e− in (7.7.1)+;

If n = 2l then d+ = l + 1, d− = l, and

deg η in (7.7.1)+ = 0 + 1 + · · ·+ l = l(l + 1)/2,

deg η in (7.7.1)− = 0 + 1 + · · ·+ l = l(l − 1)/2,

deg e± in (7.7.1)+ = 2l + (2l − 2) + · · ·+ 0 = l(l + 1),

deg e± in (7.7.1)− = (2l − 1) + (2l − 3) + · · ·+ 1 = l2.

7.8. This proposition provides a conjecture for the values at the critical integers of
L(SymnM(f), s). We have:

(7.8.1) L(σ,M(f), s) =
∑

σann
−s =

∏
p

Lp(σ,M(f), s)

where for almost every p

Lp(M(f), s) = (1− app−s + ε(p)pk−1−2s)−1 = ((1− α′pp−s)(1− α′′pp−s))−1,

where ε is a Dirichlet character. We have also
∧2M(f) = [ε−1](1− k), from which it follows

that

(7.8.2) δ(M(f)) ∼ (2πi)1−k ·
∑

ε(u)⊗ exp (−2πiu/F ),

if ε has conductor F , and

(7.8.3) L∗(M(f),m) ∼ (2πi)mc±(M(f)), ± = (−1)m, for 1 ≤ m ≤ k − 1.



Now

(7.8.4) L(σ, SymnM(f), s) =
∏
p

Lp(σ, SymnM(f), s)

where for almost every p

Lp(SymnM(f), s)−1 =
n∏
i=0

(1− (α′p)
i(α′′p)

n−ip−s).

Conjecturally, for m critical, we have

L(SymnM(f),m) ∼ (2πi)md
±SymnM(f) · c±SymnM(f), ± = (−1)m,

where c± and d± are given in terms of c±(M) and δ(M) (characterized by (7.8.2), (7.8.3))
in the formulae 7.7.

For numerical evidence in favor of this conjecture, see [18].

8. Algebraic Hecke Characters

We will use the same notation as in [3, paragraph 5], where the reader will find the essential
definitions relating to algebraic Hecke characters (= grössencharaktere of type A0).

Conjecture 8.1. Let k and E be two finite extensions of Q, and χ an algebraic Hecke
character of k with values in E.

(i) There exists a motive M(χ) with coefficients in E, of rank one over E, such that, for
every place λ of E, the λ-adic representation HλM(χ) is that defined by χ: the geometric
Frobenius at P prime to the conductor of χ and to the residue characteristic l of λ acts by
multiplication by χ(P).

(ii) This motive is characterized up to isomorphism by this property.
(iii) Every motive of rank 1 is of the form M(χ).
(iv) Decompose k ⊗ E into a product of fields: k ⊗ E =

∏
Ki, and write the algebraic

part χalg : k∗ → E∗ of χ in the form χalg(x) =
∏
NKi/E(x)ni. The decomposition of k ⊗ E

induces a decomposition of HDR(M(χ)) into the HDR(M(χ))i = HDR(M(χ)) ⊗k⊗E Ki; with
this notation, the Hodge filtration is the filtration by the

⊕
ni≥pHDR(M(χ))i.

The uniqueness property 8.1(ii) imposes the following formalism on the M(χ)

(8.1.1) M(χ′χ′′) ∼M(χ′)⊗M(χ′′).

(8.1.2) If ι : E −→ E ′ is a finite extension of E, M(ιχ) is obtained from M(χ)

by extension of scalars from E to E ′.

(8.1.3) If k′ is a finite extension of k, M(χ ◦Nk′/k) is obtained from M(χ) by



extension of scalars from k to k′.

REMARK 8.2. Set the notation:
c = complex conjugation, Q̄ = the algebraic closure of Q in C, S = Hom(k, Q̄) =

Hom(k,C), J = Hom(E, Q̄) = Hom(E,C). The decomposition of k ⊗ E into the Ki corre-
sponds to the partition of S × J into the Gal(Q̄/Q)-orbits.

Every algebraic homomorphism η : k∗ → E∗ can be written in the form
∏
NKi/E(x)ni . If

the Gal(Q̄/Q)-orbit of (σ, τ) ∈ S × I corresponds to Ki, i.e., if σ ⊗ τ : k ⊗ E → C factors
through Ki, we will write n(η;σ, τ), or simply n(σ, τ), for the integer ni. The function n(σ, τ)
is constant on the Gal(Q̄/Q)-orbits. If η is the algebraic part of a Hecke character χ, we
also have

(8.2.1) The integer w = n(η;σ, τ) + n(η; cσ, τ) is independent of σ and τ.

It is the weight of χ (and of M(χ)). We will sometimes write n(χ;σ, τ) for n(χalg;σ, τ).
Conversely, a homomorphism η satisfying (8.2.1) is almost of the form χalg, for a suitable

Hecke character χ:
(a) one of its powers is of that form;
(b) there is a finite extension ι : E → E ′ of E such that ιη is of that form;
(c) there is a finite extension k′ of k such that η ◦Nk′/k is of that form.
The rule 8.1(iv) allows us to obtain the Hodge bigradation of HσM(χ) from its E-module

structure: the direct factor HσM(χ) ⊗E,τ C of HσM(χ) ⊗ C is of Hodge type (p, q), with
p = n(χ;σ, τ) and q = w − p = n(χ;σ, cτ).

EXAMPLE 8.3. Let A be an abelian variety over k, with complex multiplication by E.
Suppose H1(A) is of rank 1 over E (CM-type). It follows from Shimura-Taniyama theory
that H1(A) satisfies the condition 8.1(i), for an algebraic Hecke character χ of k with values
in E, and that the algebraic part χalg of χ is defined over the k ⊗ E-module Lie(A):

χalg(x) = detE(x⊗ 1,Lie(A))−1.

EXAMPLE 8.4. Let k be the field of nth roots of unity, let V be the Fermat hypersurface
with projective equation

∑m
i=0 Xi

n = 0 and let M be the motive “primitive cohomology with
dimension half that of V ”. Let G be the quotient of µm+1

n by its diagonal subgroup. This
group acts on V by (αi) ∗ (Xi) = (αiXi), and on M by transport of structure. Decomposing
M by means of the decomposition of the group algebra Q[G] into a product of fields, we
obtain motives satisfying 8.1(i) for suitable algebraic Hecke characters: those introduced by
Weil in his study of Jacobi sums.

EXAMPLE 8.5. The motive Z(−1) satisfies 8.1(i) for χ = the norm. For χ of finite
order, a suitable Artin motive satisfies 8.1(i).

8.6. For every σ ∈ S, Hσ(M(χ)) is of rank 1 over E. Choose a basis eσ of each
Hσ(M(χ)). Beyond its E-module structure, the sum of the Hσ(M(χ)) ⊗ C has a natural
k ⊗C = CS-module structure — in sum, a k ⊗ E ⊗C-module structure, free of rank 1, for
which e =

∑
eσ is a basis.



8.7. The De Rham realization HDR(M(χ)) is a k ⊗E-module, free of rank 1. Let ω be a
basis of it. The sum of the Iσ : Hσ(M(χ))⊗C

∼→ HDR(M(χ))⊗k,σC is the k⊗E⊗C-module
isomorphism (0.4)

I : ⊕σHσ(M(χ))⊗C
∼−→ HDR(M(χ))⊗Q C.

Let ω be a basis of the k ⊗ E-module HDR(M(χ)), and set p′(χ) = ω/I(e) ∈ (k ⊗ E ⊗C)∗.
This period depends on χ, ω and e. Taken modulo (k ⊗E)∗ and E∗S, it depends only on χ.
We will write p′(χ;σ, τ) — or simply p′(σ, τ) — for the component with index (σ, τ) in the
image under the isomorphism k ⊗ E ⊗C

∼→ CS×J .

8.8. Let A be as in 8.3 and let’s calculate the periods p′(σ, τ), modulo Q̄
∗
, for the motive

H1(A). We will start by extending scalars from k to Q̄
∗
, by means of σ. If n(σ, τ) = 1,

there exists a holomorphic 1-form ω defined over Q̄ such that u∗ω = τ(u)ω for u ∈ E, and,
for Z ∈ H1(A(C)), we have p′(σ, τ) ∼

∫
Z ω. We can pass from there to the general case by

means of the formula p′(σ, τ) · p′(σ, cτ) ∼ 2πi.

8.9. Conjecture 8.1(ii) asserts in particular that if two motives satisfy the condition of
8.1(i), they have the same period p. For the motives as in 8.4, the periods are expressed in
terms of values of the Γ-function and, working mod Q̄

∗
, 8.1 suggests the formation of the

conjecture of B. Gross [7] relating certain periods with products of values of the Γ-function.
Comparing 8.4 and 8.5 leads to Conjectures 8.11 and 8.13 below. The result stated after

0.10 implies their proofs.

8.10. Let N be an integer, k = Q(exp(2πi/N)), P a prime ideal of k, prime to N , kP the
residue field and q = NP = |kP |. We will write t for the inverse of reduction mod P , from
the N th roots of 1 in kP to those of k.

For a ∈ N−1Z/Z, a 6= 0, consider the Gauss sum g(P , a,Ψ) = −∑ t(x−a(q−1))Ψ(x). The
sum is extended to k∗P and Ψ : kP → C∗ is a nontrivial additive character.

Let a =
∑
N(a)δa in the free abelian group with basis N−1Z/Z − {0}. If

∑
n(a)a = 0,

the product of the g(P , a,Ψ)n(a) is independent of Ψ and so we set g(P ,a) = g(P , a,Ψ)n(a).
Weil [16] has shown that, as a function of P , g(P ,a) is an algebraic Hecke character χa
of k with values in k. Write 〈a〉 for the representative of a between 0 and 1 in Z/N . If
a =

∑
n(a)δa satisfies

(∗) For every u ∈ (Z/N)∗, we have
∑

n(a)〈ua〉 = 0,

then by Weil’s calculation of the algebraic part of χa, χa is of finite order; we will still write
χa for the character of Gal(Q̄/k) equal to χa(P) on the geometric Frobenius in P .

Set Γ(a) = Γ(〈a〉)n(a). One of the first parts of the conjecture: the algebraicity of Γ(a)
when a satisfies (∗), has been proven by Koblitz and Ogus: see the appendix. More precisely,
we wish to obtain:

Conjecture 8.11. If a satisfies (∗), we have σΓ(a) = χa(σ) · Γ(a) for all σ ∈ Gal(Q̄/k).

If a is invariant under a subgroup H of (Z/N)∗, we can make 8.11 more precise by re-
placing Gal(Q̄/k) by Gal(Q̄/kH), and by using SGA 41/2 6.5 to define a character of this



group, with values in the roots of unity of kH . This is what we do below.

8.12. Let H be a subgroup of (Z/N)∗, P a prime ideal of kH , prime to N , κ its residue
field and Ψ : κ→ C∗ a nontrivial additive character. For a ∈ N−1Z/Z−{0}, let Pa,i be the
prime ideals of kH(exp(2πia)) lying above P . If κ′ is the residue field of Pa,i, and if |κ′| = q′,
we write g(Pa,i, a,Ψ) for the Gauss sum −∑ t(x−a(q′−1))Ψ(Trκ′/κx) (the sum extended to
κ′∗). The product g(P , a,Ψ) =

∏
i g(Pa,i, a,Ψ) depends only on the orbit of a under H.

Let a =
∑
n(a)δa, invariant under H, and satisfying

∑
n(a)a = 0. For every orbit 0 of

H in N−1Z/Z− {0}, we write n(0) for the constant value of n(a) on 0. We set

g(P ,a) =
∏

a mod H

g(P , a,Ψ)n(a).

As a function of P , g(P ,a) is an algebraic Hecke character χa of kH with values in kH .
To prove this, by additivity we may assume n(a) ≥ 0 for all a. We then apply [3, 6.5] for
F = kH , F̄ = Q̄, k = our k, and I = a disjoint sum of copies of orbits H : n(0) copies of 0;
for i ∈ I, with image a/N in N−1Z/Z, we let λi be the composition Ẑ(1)F̄ → (Z/N)(1)F̄ =

µN(k)
xa→ k∗; the Hecke character thus obtained is the product of χa with the character

“signature of the permutation representation of H on I”. One particular case of this result
already appears in Weil [17]. The character χa in 8.10 is the composition of χa above with
the norm Nk/kH .

Conjecture 8.13. Let P be a prime ideal of kH , prime to N , and FP a geometric Frobenius
of P. If a, invariant under H, satisfies (∗), we have

FPΓ(a) = g(P ,a) · Γ(a).

In particular, if the group of roots of unity of kH is of order N ′, we have Γ(a)N
′ ∈ kH .

From 8.13 we can derive the following, apparently more general, variation. We replace
the condition (∗) by

(∗′)
∑

n(a)〈ua〉 = k is an integer independent of u ∈ (Z/N)∗.

The Hecke character NP−k ·g(P ,a) is therefore of finite order. We identify it with a character
χ of Gal(Q̄/kH), and we hope to have

σ((2πi)−kΓ(a)) = χ(σ) · ((2πi)−kΓ(a)).

8.14. If k is a totally imaginary quadratic field extension of a totally real field, or, as we
shall say, a field of CM-type, Shimura [13] has determined the critical values of L-functions
of algebraic Hecke characters of k, up to multiplication by an algebraic number. He expresses
them in terms of periods of abelian varieties of CM-type, with complex multiplication by k.
In the rest of the section, we will show that his theorem is compatible with Conjecture 2.8,
which expresses them in terms of periods of motives over k, of rank 1.



8.15. Let χ and M(χ) be as in 8.1. Exclude the case 8.5, and suppose that Rk/QM(χ)
satisfies 1.7. The field k is therefore totally imaginary, and the Hodge numbers hpp are
zero: with the notation of 8.1 and 8.2, no ni is equal to w/2. Our first job is to calculate
c+Rk/QM(χ) in terms of periods p′(χ;σ, τ). Recall that it is the determinant of the E ⊗C-
module isomorphism

I+ : H+
BRk/QM(χ)⊗C

∼−→ HDRRk/QM(χ)⊗C,

calculated in bases defined over E.
Choose the eσ in 8.6 such that F∞eσ = ecσ. Therefore the eσ ± ecσ form a basis of

H±BRk/QM(χ) ⊂ HBRk/QM(χ) = ⊕σ∈SHσ(M(χ)). We note in passing that
d+ = d− = 1

2
[k : Q]. Let S̄ be the quotient of S by Gal(C/R). To calculate c+ = det(I+),

we will use the basis (eσ + ecσ) of H+
B . It is indexed by S̄.

By 8.1(iv), the Hodge filtration of HDRRk/QM(χ) = HDR(M(χ)) depends on its k ⊗ E-
module structure: if we write (k ⊗ E)+ for the direct factor of k ⊗ E consisting of the
product of the Ki such that ni < w/2, the quotient H+

DRRk/QM(χ) of HDRRk/QM(χ) is the
corresponding direct factor:

H+
DRRk/QM(χ) = HDR(M(χ))⊗k⊗E (k ⊗ E)+.

Let ω be as in 8.7, and use the k ⊗ E ⊗ C = CS×J -module structure of HDR(M(χ)) to
decompose ω : ω =

∑
ωσ,τ . By definition, we have I(eσ) =

∑
τ p
′(σ, τ)−1ωσ,τ , and therefore

I+(eσ + ecσ) =
∑

n(σ,τ)<w/2

p′(σ, τ)−1ωσ,τ +
∑

n(σ,τ)>w/2

p′(cσ, τ)−1ωcσ,τ ;

it is the sum, indexed by τ ∈ J , of terms equal to p′(σ, τ)−1ωσ,τ for n(σ, τ) < w/2, and equal
to p′(cσ, τ)−1ωcσ,τ for n(σ, τ) > w/2. For σ̄ ∈ S̄, with representative σ, set

ωσ̄ =
∑

n(σ,τ)<w/2

ωσ,τ +
∑

n(cσ,τ)<w/2

ωcσ,τ .

The I+(eσ + ecσ) are multiples of the ωσ̄ by elements of E ⊗ C; the ωσ̄ therefore form a
basis of H+

DR. In the bases eσ + ecσ and ωσ̄, the matrix of I+ is diagonal; its determinant
det′(I+) ∈ (E ×C)∗ = C∗J has for its coordinates

det′(I+)τ =
∏

n(σ,τ)<w/2

p′(σ, τ)−1.

Let the functions ES̄ → ES : 1σ̄ → 1σ + 1cσ, for σ̄ the image of σ, ES ⊗C
∼→ k⊗E ⊗C,

be derived from the isomorphism of k⊗C with CS, and the projection of k⊗E to (k⊗E)+.
Composing the functions, we obtain an E ⊗C-module isomorphism:

ES̄ ⊗C
∼−→ (k ⊗ E)+ ⊗C.

We will write its determinant as D(χ), calculated on each side in a basis defined over E.
Identifying HDR with k ⊗ E by means of the basis ω, we see that this is the determinant
of the identity function of H+

DR ⊗C, calculated on the left side in the basis ωσ̄, and on the



right side in a basis defined over E. Writing Dτ (χ) for its components in CJ , we find, for
c+ = det′(I+) ·D(χ), the following formula.

PROPOSITION 8.16. We have

c+Rk/QM(χ) =

 ∏
n(σ,τ)<w/2

p′(σ, τ)−1 ·Dτ (χ)


τ∈J

.

REMARK 8.17. Suppose k is of CM-type, a quadratic extension of k0, totally real. The
quotient S̄ of S is therefore identified with the set of complex embeddings of k0, and the
diagram

ES̄ ⊗C
∼−→ k0 ⊗ E ⊗C

∩
↓

∩
↓

ES ⊗C −→ k ⊗ E ⊗C −→ (k ⊗ E)+ ⊗C

is commutative. The composition function k0 ⊗E → (k⊗E)+ is therefore an isomorphism,
and D(χ) is still the determinant of ES̄ ⊗C

∼→ k0 ⊗ E ⊗C, derived by extension of scalars
from Q to E from the isomorphism C S̄ ∼→ k0 ⊗ C. This provides us with a representative
for D(χ) in (Q ⊗C)∗ = C∗ ⊂ (E ⊗C)∗, well defined mod E∗, namely, the determinant of
the inverse of the matrix (σa), for σ ∈ S̄ and a running through a basis of k0 over Q. The

isomorphism CS̄ ∼→ k0 ⊗C transforms the quadratic form
∑
xi

2 into the form Tr(xy). This
allows us to identify (det(σa))2 with the discriminant of k0:

D(χ) ∼ the square root of the discriminant of k0.

8.18. Write p′′(χ;σ, τ) for the image of p′(χ;σ, τ) in C∗/Q̄
∗
. It depends only on χ, σ

and τ . If an algebraic homomorphism η : k∗ → E∗ satisfies (8.2.1), one of its powers is the
algebraic part of a Hecke character: ηN = χalg. Also, if χalg

′ = χalg
′′, χ′ and χ′′ only differ

by a character of finite order and χ′M = χ′′M for a suitable M . We obtain from (8.1.1) that
p′′(χM ;σ, τ) = p′′(χ;σ, τ)M , and this allows us to state without ambiguity

p(η;σ, τ) = p(χ;σ, τ)1/N , for ηN = χalg.

These periods obey the following formalism:
(8.18.1) p(η′η′′;σ, τ) = p(η′;σ, τ)p(η′′;σ, τ).
(8.18.2) p(η;σ, τ) does not change when we replace E by an extension E ′ of E, and τ by

one of its extensions to E ′.
(8.18.3) p(η;σ, τ) does not change when we replace k by an extension k′ of k, σ by one

of its extensions to k′, and χ by χ ◦Nk′/k.
(8.18.4) If α is an automorphism of k, and β is an automorphism of E, we have p(η;σ, τ) =

p(βηα−1, σα−1, τβ−1).
(8.18.5) The complex conjugate of p(η;σ, τ) is p(η; σ̄, τ̄).
(8.18.6) For k = F = Q, p(Id; Id, Id) = 2πi.
The formulas (8.15.1) to (8.15.3) are consequences of (8.1.1) to (8.1.3); (8.18.4) and

(8.18.5) can be seen by transport of structure, and (8.18.6) is a consequence of (8.5).



8.19. Let η : k∗ → E∗ be a homomorphism satisfying (8.2.1). We also assume that
n(η;σ, τ) is never w/2, which allows us to define (k ⊗ E)+ as in 8.15. Define η∗ : E∗ → k∗

by
η∗(y) = detk(1⊗ y, (k ⊗ E)+).

This homomorphism still satisfies (8.2.1), and

n(η∗;σ, τ) = 1 if n(η;σ, τ) < w/2,

= 0 if n(η;σ, τ) > w/2.

If η∗ is the algebraic part of a Hecke character χ∗, M(χ∗) is the H1 of an abelian variety
over E, with complex multiplication by k, whose Lie algebra is isomorphic to (k ⊗ E)+, as
a k ⊗ E-module.

PROPOSITION 8.20. With the hypotheses and notation of 8.19, Let E be a subfield of
C, and write 1 for the inclusion of E in C. We have∏

n(σ,1)<w/2

p(η;σ, 1) =
∏
σ

p(η∗; 1, σ)n(η;σ,1).

If ι : E → E ′ ⊂ C is a finite extension of E, the left-hand side does not change when we
replace η by ιη (8.18.2). We have (ιη)∗ = η∗ ◦ NE′/E and, by (8.18.3), the right-hand side
does not change either.

If ι : k → k′ is a finite extension of k of degree d, the left-hand side is taken to the
power d when we replace k by k′, and η by η ◦Nk′/k: a complex embedding of k is induced
by d embeddings of k′, and we apply (8.18.3). The same is true for the right-hand side, by
(8.18.2) and the equality (η ◦Nk′/k)

∗ = ιη∗.
These compatibilities lead us to suppose that E is Galois and that k is isomorphic to

E. For each isomorphism ω of k with E, set n(ω) = n(η; 1 ◦ ω, ω). Writing the group
of homomorphisms of k∗ in E∗ additively, we have η =

∑
n(ω)ω. Since p(η; 1 ◦ ω, 1) =

p(η ◦ ω−1; 1, 1) (8.15.4), we have

(8.20.1)
∏

n(σ,1)<w/2

p(η;σ, 1) =
∏

n(ω)<w/2

p(η ◦ ω−1; 1, 1) = p

 ∑
n(ω)<w/2

η ◦ ω−1; 1, 1

 .
On the other hand,∑

n(ω)<w/2

η ◦ ω−1 =
∑

n(ω1)<w/2; ω2

n(ω2)ω2 ◦ ω1
−1 =

∑
ω2

n(ω2)
∑

n(ω1)<w/2

ω2 ◦ ω1
−1

=
∑
ω2

n(ω2)ω2 ◦ η∗.

This allows us to continue (8.20.1) by

=
∏
ω

p(ω ◦ η∗; 1, 1)n(ω) =
∏
ω

p(η∗; 1, 1 ◦ ω)n(ω) =
∏
σ

p(η∗; 1, σ)n(η;σ,1),

(applying 8.15.4 again), which proves 8.20.



8.21. Combining 8.16 and 8.20, we find the following expression, mod Q̄
∗
, for the com-

ponent with index 1 of c+Rk/QM(χ) ∈ (E ⊗C)∗/E∗ = C∗J/E∗,

c1
∗Rk/QM(χ) ∼

∏
σ

p(χ∗alg; 1, σ)n(χ;σ,1).

If χ (i.e., M(χ)) is critical, Conjecture 2.8 then asserts that

L(1 ◦ χ, 0) ∼
∏
σ

p(χ∗alg; 1, σ)−n(χ;σ,1) (mod Q̄
∗
).

For E large enough, χ∗alg is the algebraic part of a Hecke character χ∗, and the periods can be
interpreted as periods of abelian integrals (8.19), (8.3). The final result is that which Shimura
proved for k of CM-type, or abelian over a field of CM-type (with a restriction on the weight).

REMARK 8.22. If η : k∗ → E∗ satisfies (8.2.1), there exist subfields k′ of k and ι : E ′ → E
of E, either of CM-type, or equal to Q, and a factorization η = ιη′Nk′/k. We then have
p(η;σ, τ) = p(η′;σ|k′, τ |k′).

If k and E are now of CM-type (or Q), still writing c for their complex conjugation, we
have cσ = σc, cτ = τc, and ηc = cη, so

p(η;σ, τ)− = p(η; cσ, cτ) = p(η;σc, τc) = p(cηc−1;σ, τ) = p(η;σ, τ) :

the periods, a priori in C∗/Q̄
∗
, are real, i.e., in R∗/(Q̄

∗ ∩R∗).

REMARK 8.23. Let G be the Galois group of the union of extensions of CM-type of Q
in Q̄ ⊂ C, and c ∈ G complex conjugation. It is a central element of G. If φ is a locally
constant function on G with integer values, we will set φ∗(x) = φ(xc). Suppose that φ+ φ∗

is constant. Let G1 be a finite quotient of G such that φ factors by a function φ1 on G1, and
k is the corresponding field. The hypothesis above implies that the endomorphism

∑
φ1(σ)σ

of k∗ satisfies (8.2.1). The period p(
∑
φ1(σ)σ; 1, 1) does not depend on the choice of G1; we

set P (φ) = p(
∑
φ1(σ)σ; 1, 1). The functional P is a homomorphism in C∗/Q̄

∗
of the group

of locally constant functions with integer values on G which satisfy φ+ φ∗ = constant.
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