
AN INTRODUCTION TO CONGRUENCES BETWEEN

MODULAR FORMS

EKNATH GHATE

The purpose of this note is to introduce the reader to some of the
basic concepts in the theory of congruences between modular forms.
Our exposition here has been distilled from various sources. We have
especially benefited from reading the papers of Hida and Ribet some
of which are listed in the references.

1. Congruence primes

Let S be a space of elliptic cusp forms of fixed level and weight. Let
K denote a number field and let O be the ring of integers of K. Let
S(O) respectively S(K) denote the space of cusp forms whose Fourier
coefficients lie in O respectively K. Note that S(O) is a lattice in S(K)
and for simplicity we shall denote it by M .

Definition 1. Let f =
∑

c(n, f)qn and g =
∑

c(n, g)qn be elements
of M = S(O), and let ℘ ⊂ O be a prime ideal. We say that f and g
are congruent modulo ℘, and write f ≡ g mod ℘, if

c(n, f) ≡ c(n, g) mod ℘

for each n = 1, 2, . . ..

Now suppose that we can decompose

S(K) = X ⊕ Y(1)

into a direct sum. Then we have projection maps πX : S(K) → X and
πY : S(K) → Y . Let us set

MX =M ∩X, MX = πX(M),

MY =M ∩ Y, MY = πY (M).

Note that MX ⊂ MX ⊂ X are lattices in X and that MY ⊂ MY ⊂ Y
are lattices in Y . We have the following chain of inclusions of lattices
in S(K)

MX ⊕MY ⊂M ⊂MX ⊕MY .
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Definition 2. Call

C(M) =
MX ⊕MY

M
the congruence module of the lattice M with respect to the decomposi-
tion (1) above.

Lemma 1. We have

•

C(M) ∼=
M

MX ⊕MY

,

• The maps πX and πY induce isomorphisms

MX

MX

M
MX⊕MYπX

∼
oo

πY

∼
// M

Y

MY
.

Proof. The proof is easy. �

Lemma 1 can be used to explain why C(M) is called a congruence
module. Choose a prime ℘ ⊂ O in the support of C(M). Say the
residue characteristic of ℘ is p. Then C(M) contains an element of
order p. By Lemma 1 we may pick a non-zero element h ∈ M whose
class

h ∈
M

MX ⊕MY

has order p. Concretely this means that there exist f ∈ MX and
g ∈MY such that

ph = f − g.

Clearly this means that f and g are congruent modulo ℘. Conversely,
say that there is a congruence between f ∈ X and g ∈ Y mod ℘.
Working the above argument backwards we see that ℘ is in the support
of C(M).

2. Hecke algebras and primes of fusion

Let us now introduce the Hecke algebra T ⊂ EndO(S) generated by
all the Hecke operators Tn. Then T preserves the lattice M . Moreover
T is free of finite type as an O module and thus is an integral extension
of O. Thus T has Krull dimension one. The following key fact tells us
that the rank of T as an O-module is rankO(M) = dimK S(K).

Lemma 2. The pairing

T×M −→ O

(T, f) 7→ c(1, T f)
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induces an isomorphism M ∼= HomO(T,O).

Proof. The pairing is clearly O-bilinear. It therefore induces two maps
M → HomO(T,O) and T → HomO(M,O).
We claim that these maps are injective. We will need the following

fact which follows from the explicit formula for the action of the nth

Hecke operator on q-expansions: c(n, g) = c(1, Tng) for g ∈ M . Now
suppose that (T, f) = 0 for all T ∈ T. Then c(n, f) = c(1, Tnf) =
(Tn, f) = 0 for all n. Thus f = 0 and the first map is injective. For
the second map suppose that (T, f) = 0 for all f ∈M . Then

c(n, Tf) = c(1, TnTf) = c(1, TTnf) = (T, Tnf) = 0

for all n. So Tf = 0 for all f ∈ M . Thus T = 0 proving that the
second map is injective.
We now prove the surjectivity of the first map. Before doing this we

remark that if we extend scalars to K then the two maps above are
automatically isomorphisms since both T⊗K andM⊗K = S(K) have
finite dimension over K. Now suppose that φ is an O-linear form on
T. Then we may think of φ as a K-linear form on T⊗K by extending
scalars. By the remark we just made there is an element f , a priori in
S(K), such that φ(T ) = (T, f) for all T ∈ T⊗K. Taking T = Tn ∈ T

we see that φ(Tn) = c(n, f) ∈ O. In particular f ∈ S(O) =M proving
the surjectivity. �

Let us now assume that the decomposition (1) is preserved by all
the Hecke operators Tn. Write TX respectively TY for the image of T
in EndO(X) respectively EndO(Y ). There is a natural inclusion

T →֒ TX ⊕ TY

T 7→ (T |X , T |Y ).

Because of Lemma 2 the dimension of T⊗K is the same as the dimen-
sion of S(K). In particular the index [TX ⊕ TY : T] is finite. We now
make the following definition.

Definition 3. Call

C(T) =
TX ⊕ TY

T

the congruence module of the Hecke algebra T with respect to the de-
composition (1) .

Let us explain why C(T) is called a congruence module. We start
with some general remarks. Let m be a maximal ideal of T. Let mX
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respectively mY denote the images of m in TX respectively TY . We have
the following commutative diagram

TX

����

Toooo // //

����

TY

����

TX/mX T/m
∼
oooo

∼
// // TY /mY .

Choose minimal prime ideals qX ⊂ mX and qY ⊂ mY , and let pX re-
spectively pY denote their pre-images under the maps T ։ TX respec-
tively T ։ TY . We thus obtain two homomorphisms T ։ T/pX and
T ։ T/pY which modulo m are the same. Let us now assume that
O is large enough so that T/pX and T/pY embed in O. Let ℘ denote
the maximal ideal of O corresponding to m. Then we have two algebra
homomorphisms T ։ O which modulo ℘ are the same.
By Lemma 2 any algebra homomorphism of T into O may be iden-

tified with a cusp form in M = S(O). Actually Lemma 2 shows that
any map of O modules T → O gives rise to a cusp form; in our case
since the maps are actually algebra homomorphisms the cusp forms we
obtain are normalized simultaneous eigenforms. The upshot is that we
have two normalized cusp forms that are simultaneous eigenforms of
all the Hecke operators which are congruent modulo ℘.
It is not necessarily the case that these two homomorphisms are

distinct so that we have a genuine congruence between cusp forms.
However this is true if the maximal ideal m lies in the support of C(T).
Indeed suppose that m ⊃ I where I = annT(C(T)). To show that two
homomorphisms of T into O constructed above are distinct it suffices
to show that T ։ T/pX and T ։ T/pY are distinct. We do this by
showing that pX 6= pY . Now I 6⊂ pX since otherwise the finite module
T/I would surject to the infinite module T/pX . So there exists an
element T ∈ I \ pX . Since T ∈ I we have that T (1, 0) ∈ T. That is,
there exists an element T ′ ∈ T such that T ′|X = T |X and T ′|Y = 0.
Clearly T ′ ∈ pY and T ′ 6∈ pX . This shows that pX 6= pY as desired.

Definition 4. Call a maximal ideal in the support of C(T) a prime of
fusion with respect to the decomposition (1).

We have just seen that primes of fusion yield congruences between
normalized simultaneous eigenforms in X and Y (after a possible ex-
tension of the ring O so that it contains the Hecke eigenvalues of these
eigenforms). The converse is also clearly true: if there is a congruence
between normalized simultaneous eigenforms in X and Y which are
congruent modulo ℘ then the maximal ideal m ⊂ T which is the kernel
of either homomorphism T ։ TX → O/℘ or T ։ T Y → O/℘ is a
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prime of fusion. In particular the residue characteristics of the primes
of fusion m ⊂ T are the residue characteristics of the congruence prime
℘ ⊂ O.
The following Lemma is essentially a restatement of the discussion

above.

Lemma 3. We have

annT

(

TX ⊕ TY

T

)

= annT

(

MX ⊕MY

M

)

.

In particular

SuppT(C(T)) = SuppT(C(M)).

Proof. Let e denote the endomorphism of S which acts as the identity
1X on X and as the zero map 0Y on Y . Thus e = (1X , 0Y ) ∈ TX ⊕TY .
Since (TX ⊗K)⊕ (TY ⊗K) = T⊗K we see that e ∈ T⊗K. We now
claim that

annT

(

TX ⊕ TY

T

)

= {T ∈ T
∣

∣ Te ∈ T}.(2)

Suppose that T ∈ LHS of (2). Then by definition Te ∈ T and so T ∈
RHS of (2). For the converse suppose that Te ∈ T. Let f = (0X , 1Y ) ∈
TX ⊕TY . Then since Te+Tf = T ∈ T we see that Tf ∈ T. Now pick
an arbitrary element (a, b) ∈ TX ⊕ TY . Say a = T ′|X and b = T ′′|Y .
Then T (a, b) = T ′(Te) + T ′′(Tf) ∈ T so that T ∈ LHS of (2).
On the other hand we claim that

annT

(

MX ⊕MY

M

)

= {T ∈ T
∣

∣ Te(M) ⊂M}.(3)

To see this suppose that T ∈ LHS of (3). Let m ∈M . Then Te(m) =
T (πX(m), 0) = T (πX(m), πY (0)) ∈ M showing that T ∈ RHS of (3).
Now suppose that T ∈ RHS of (3). Then Tf(M) ⊂ M . Let mX =
πX(m) and let m′

Y (m
′) for m,m′ ∈ M . Then T (mX ,m

′
Y ) = Te(m) +

Tf(m′) ∈M showing that T ∈ RHS of (3).
Let

OM := {T ∈ T⊗K
∣

∣ T (M) ⊂M}

denote the order of the lattice M . Clearly T ⊂ OM . Lemma 2 can be
used to show that OM = T. Now the Lemma follows from this and (2)
and (3). �
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3. The Eichler-Shimura isomorphism and cohomological

congruence primes

Let H be a finite dimensional complex vector space with an action
of all the Hecke operators Tn. In applications H will be (an eigenspace
under complex conjugation) of a parabolic cohomology group that de-
pends on the level and weight of the cusp forms in S. Suppose there is
a Hecke equivariant isomorphism

S
∼

// H(4)

of complex vector spaces, which we shall formally call the Eichler-
Shimura isomorphism. We shall assume that H comes equipped with
a K-structure which we denote by H(K). The Eichler-Shimura map
does not take the K-structure on S to the K-structure on H, which is
what makes the theory we wish to describe in this section interesting.
Let L ⊂ H(K) be a Hecke stable lattice. Suppose that we have a

Hecke stable decomposition

H(K) = A⊕B(5)

such that

X ⊗ C
∼

// A⊗ C and Y ⊗ C
∼

// B ⊗ C(6)

under the Eichler-Shimura isomorphism. Define the lattices LA ⊂ LA

and LB ⊂ LB in A respectively B exactly as in Section 1.

Definition 5. Call

Ccoh(L) =
LA ⊕ LB

L

the cohomological congruence module of the lattice L with respect to the
decomposition (5). The primes in SuppT(C

coh(L)) are called cohomo-
logical congruence primes.

We could also define the obvious Hecke congruence module with
respect to the decomposition (5) but by the Hecke equivariance of (4)
and by (6) it would be isomorphic to the module C(T) defined earlier
using the decomposition (1).

Lemma 4. We have

annT(C(T)) ⊂ annT(C
coh(L)).

Proof. The argument is a subset of the arguments used in the proof of
Lemma 3, so we do not repeat it here. �
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Lemma 4 shows that

SuppT(C
coh(L)) ⊂ SuppT(C(T)).(7)

Now let

OL = {T ∈ T⊗K
∣

∣ T (L) ⊂ L}

The reason that we do not obtain an equality in (7) as we did in
Lemma 3 is that T ⊂ OL but it may very well turn out that T 6= OL.
Thus the cohomological congruence module Ccoh(L) may a priori lose
some information about the primes of congruence between cusp forms
in X and cusp forms in Y . Let us give a toy example to drive home
this point.

Example 1. Let K = Q and O = Z. Suppose that H = A⊕B where
A = C and B = C. Then the standard lattice L = Z2 sits inside
H(Q) = Q2 and clearly Ccoh(L) = 0. Now suppose that

T =

{

A ∈ M2(Z)
∣

∣ A =

(

a 0
0 b

)

and a ≡ bmod p

}

.

Then T ⊂ End(H) in a natural way. Note that TA = Z = TB, so that
C(T) = Z/p. Thus p is a genuine congruence prime that is not captured
by the cohomological congruence module Ccoh(L). The problem of
course is that T 6= OL. Indeed the matrix 1

p

(

p 0
0 0

)

lies in T ⊗ Q and

preserves L but it does not lie in T.

For a finite T-module Z let Supp′
T(Z) denote the primes in the sup-

port of Z whose residue characteristics do not divide [OL : T]. Then
the following corollary is immediate.

Corollary 1. We have

Supp′
T(C

coh(L)) = Supp′
T(C(M)).

4. Congruence module of a primitive form

Let us assume that K contains the Hecke fields of the set of normal-
ized common eigenforms in S.
Let f be a normalized common eigenform that is a newform. Such

a cusp form is called a primitive form. Let X = X(f) denote the 1-
dimensional subspace of S spanned by f . Note that X is defined over
K. Let Y be the space of cusp forms that are orthogonal to f under
the Petersson inner product. Let us set C(f) = C(M) where we use
the decomposition

S = X(f)⊕ Y.(8)
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Definition 6. Call C(f) the congruence module of f .

Definition 7. A prime ideal ℘ ⊂ O is a prime of congruence for f if
there is a normalized simultaneous eigenform g ∈ S different from f
with f ≡ g mod ℘.

After what has already been said primes occurring in the support of
C(f) are exactly the congruence primes for f .

5. Adjoint L-values

We keep the notation of the previous sections. Thus f is a primitive
form in S, say of weight k ≥ 2 and level N . Let B denote the finite
set of primes of K whose residue characteristics consist of the primes
dividing 6N and the primes less than k − 2.
The following theorem due to Hida [7], [8] (with a technical contribu-

tion due to Ribet [12]) completely characterizes the congruence primes
of f outside B in terms of a special value of an L-function.

Theorem 1 (Hida). Let Lalg(1,Ad(f)) denote the ‘algebraic part’ of
the value at s = 1 of the adjoint L-function L(s,Ad(f)) attached to f .
Let ℘ be a prime of K with ℘ 6∈ B. Then ℘ is a congruence prime for
f if and only ℘

∣

∣ Lalg(1,Ad(f)).

Let Ccoh(f) be the cohomological congruence module with respect to
the analogue of the decomposition (8) of H. The proof of Theorem 1
proceeds in three main steps the last of which we have already taken
care of in these notes.

(1) Outside B, the primes dividing the ‘algebraic part’ of the ad-
joint L-value are the same as the primes in the support of the
cohomological congruence module Ccoh(f).

(2) The index [OL : T] is divisible only by the primes in B.

(3) Corollary 1 which in this case yields that

Supp′
T(C

coh(f)) = Supp′
T(C(f)).

There is a more precise version of Theorem 1 which relates the ‘alge-
braic part’ of L(1,Ad(f)) to the cardinality of a certain Selmer group
attached to the adjoint motive of f . For further details we refer the
reader to [9, Theorem 5.20].
Generalizations of Theorem 1 in the Hilbert modular setting have

been obtained by the author [5], [6] and in the imaginary quadratic
setting by Urban [16].



CONGRUENCES BETWEEN MODULAR FORMS 9

6. Discriminants of Hecke algebras

In this section we show that there is one number, namely the dis-
criminant of the Hecke algebra T, that captures all congruence primes
in S.
We start by recalling some basic linear algebra. Let V denote a finite

dimensional vector space over Q with a non-degenerate pairing

t : V × V → Q

Let L ⊂ V be a lattice which satisfies t(L,L) ⊂ Z. Then there is the
notion of the discriminant of the lattice L with respect to the pairing
t given by

d(L) = | det(t(ei, ej))|

where e1, e2, . . . , edim(V ) is any basis of L.
Now let L1, L2 denote two lattices in V such that t(Li, Li) ⊂ Z for

i = 1, 2. Suppose that there is an exact sequence

0 → L1 → L2 → L2/L1 → 0

where L2/L1 is a finite abelian group. Then (see Proposition 5, Section
2, Chapter 3 of Serre’s Local Fields)

d(L1) = d(L2) · [L2 : L1]
2.(9)

Now let S be a space of elliptic cusp forms of weight k, level N and
nebentypus ψ. We assume for simplicity that

• S does not contain any old forms (this happens for instance if
the conductor of ψ is N), and,

• S has a basis of cusp forms with integral coefficients (this hap-
pens if ψ is either the trivial character or a quadratic character).

The first hypothesis implies that S has a basis of primitive forms. Let
us choose a set of representatives f of the Galois orbits of this basis.
Then we have the decomposition

S(Q) = ⊕fXf

where Xf denotes the space spanned by f and its Galois conjugates.
Let T denote the Hecke algebra over Z. Since S has a basis over

Z, we can think of T as the subalgebra of EndZ(S(Z)) generated by
all the Hecke operators. Similarly we let Tf denote the subalgebra of
EndZ(Xf ) generated by all the Hecke operators.
Both T and ⊕fT

f are lattices in T⊗Q and they are related by the
exact sequence

0 → T → ⊕fT
f → C → 0



10 EKNATH GHATE

where C = (⊕fT
f )/T. The vector space T ⊗ Q has the natural trace

pairing

t(A,B) = tr(AB)

which takes values in Q, and values in Z on T and on each Tf . By (9)
we have

d(T) = |C|2 ·
∏

f

d(Tf ).

From what we have said in previous sections it is clear that C mea-
sures congruences between primitive forms in distinct Galois orbits.
On the other hand letO(f) denote the order generated by the Fourier

coefficients of f . Clearly Tf ∼
→O(f) where the isomorphism is induced

by Tn 7→ c(n, f) so that d(Tf ) = d(O(f)). Let Kf denote the quotient
field ofO(f) and letOf denote its ring of integers. We haveO(f) ⊂ Of .
Let K̄f denote the Galois closure of Kf .

Lemma 5. Assume O(f) = Of and K̄f = Kf . Then p
∣

∣ d(O(f)) if
and only if there exists a prime ℘ of Kf with ℘|p and a non-trivial
element γ ∈ Gal(Kf/Q) such that

fγ ≡ f mod ℘.(10)

Proof. Suppose p
∣

∣ d(O(f)) = d(Of ). Fix a prime ℘ of Kf lying over p.
Let I(℘) denote the inertia subgroup of Kf/Q at ℘. Since p ramifies
in Kf there exists a non-trivial γ ∈ I(℘). Since

γ(x) ≡ xmod ℘(11)

for all x in Of , the congruence holds in particular for all x = a(n, f) ∈
O(f) and (10) follows.
Conversely, if ℘ ⊂ Of and 1 6= γ ∈ Gal(Kf/Q) satisfy (10) then

(11) holds for all x in O(f) = Of . This implies that γ fixes ℘. and
moreover that γ ∈ I(℘). Thus p ramifies and p

∣

∣ d(Of ) = d(O(f)). �

The lemma says that, at least under the assumptions that O(f) =
Of and that Kf/Q is a Galois extension, the term d(Tf ) measures
congruences between f and other forms in the same Galois orbit. In
general Kf is rarely a Galois extension of Q and Of ⊂ O(f) may
be a proper containment. We leave to the reader to investigate what
happens in this situation. We only note that in general

d(O(f)) = d(Of ) · [Of : O(f)]2.
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7. Galois representation

Let f ∈ Sk(N,χ) be a cusp form of weight k, level N and nebentypus
χ. Assume that f is a normalized common eigenform for all the Hecke
operators Tp for p 6

∣

∣N . Let K be a sufficiently large number field so
that it contains the Hecke field of f and let ℘ be a prime of K. Eichler-
Shimura and Deligne attach a Galois representation to f when k ≥ 2:

ρf : Gal(Q/Q) → GL2(K℘)

which is unramified outside Np and is characterized by the property
that it is irreducible and

• tr(ρf (Frobℓ)) = c(ℓ, f)
• det(ρf (Frobℓ)) = ℓk−1χ(ℓ)

for all l 6
∣

∣Np.
Choosing a Galois stable lattice in the space of ρf we may assume

that ρf takes values in GL2(O℘) and therefore by reduction in GL2(F)
where F is the residue field of O℘. Let

ρ̄f : Gal(Q/Q) → GL2(F)

denote the semi-simplification of the representation so obtained; it is
independent of the choice of the Galois stable lattice we started with.
When k = 1 Deligne and Serre have shown that it is still possible

to attach a GL2(C)-valued Galois representation ρf to f which is un-
ramified outside N such that the Frobenius elements outside N satisfy
properties similar to the ones above. Given a prime ℘ of Q one can
similarly construct the reduced representation ρ̄f .
Now let k and l be integers larger than 1, and let let f ∈ Sk(N,χ)

and g ∈ Sl(M,ψ) be normalized common eigenforms outside their re-
spective levels. Let K be a number field that contains both their Hecke
fields and ℘ be a prime of K. We broaden the notion of congruence
and say that f and g are congruent modulo ℘ if

c(ℓ, f) ≡ c(ℓ, g) mod ℘

for all but finitely many primes ℓ. We sometimes write

f ≡′ g mod ℘

using the symbol ≡′ instead of ≡ to alert the reader that the Fourier
coefficients may fail to be congruent at finitely many primes. In terms
of the mod ℘ Galois representations attached to f and g, we have

ρ̄f ∼ ρ̄g ⇐⇒ f ≡′ g mod ℘
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since the isomorphism class of a semisimple representation of Gal(Q/Q)
into GL2 of a finite field is determined by the traces and the determi-
nants of the Frobenius elements outside a finite set of primes, and in
the setting of modular Galois representations it is well known that the
determinants are determined by the traces.

8. Horizontal congruences

Consider the 2 by 2 grid indexed by level N ≥ 1 on the x-axis and by
weight k ≥ 1 on the y-axis. The space S = Sk(N) depends on k and N .
We leave ambiguous whether we are fixing a nebentypus, such as the
trivial one, or are considering all nebentypus characters simultaneously.
Then S = Sk(N) corresponds to one point on this grid. So far we have
restricted our attention to congruences between modular forms in the
same space of cusp forms S = Sk(N). However, as we have already
hinted at in the section on Galois representations, there is nothing to
stop one from asking whether or not eigenforms in spaces of cusp forms
of different levels and/or weights can be congruent. In fact this happens
frequently and is the source of much interesting mathematics.
For convenience let us introduce some terminology. If there is a

congruence between Sk(N) and Sk(M) for N 6= M we shall say that
we have a horizontal congruence. Likewise congruences between Sk(N)
and Sl(N) for k 6= l will be referred to as vertical congruences. These
notions are illustrated in the diagram below.

✻

k

✲ N

•

•

•

•

•

•

•

•
S = Sk(N)

✻

Vertical
congruences

✲
Horizontal
congruences

•

•

•

•
Sl(N)

•

•

•

•

•

•

•

•

•

•

•

•

•

•
Sk(M)

•

•

•

•

In this section we describe some results on horizontal congruences.
Vertical congruences will be considered in the next section.
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Assume that the notation Sk(N) means cusp form of level N , even
weight k ≥ 2 and trivial nebentypus. Let f be a newform in Sk(N)
that is a simultaneous eigenform of all the Hecke operators of level N .
Let q be a prime such that q 6

∣

∣N . The simplest question regarding
horizontal congruences that one might ask is whether, given a prime ℘
in a sufficiently large number field K, there is a cusp form g ∈ Sk(Nq)
which is q-new and a simultaneous eigenform of all the Hecke operators
of level Nq such that f ≡ gmod ℘. There is a slight technical problem
that arises. Let Uq be the Hecke operator at q acting on Sk(Nq). Then
f is not an eigenvector of Uq considered as an oldform in Sk(Nq). But
there is a standard procedure to alter f slightly to make it an eigenform
of Uq. Let α and β be the roots of the polynomial

x2 − c(q, f)X + qk−1.

Then αβ = qk−1 and α + β = c(q, f). Let

fα = f(z)− βf(qz)

fβ = f(z)− αf(qz).

Then fα and fβ are q-old forms in Sk(Nq) that are eigenvectors of Uq

with respective eigenvalues α and β. Of course they are also eigenvec-
tors of the other Hecke operators and so are simultaneous eigenforms.
It makes more sense then to ask if say fα ≡ g mod ℘ for a q-new

simultaneous eigenform g ∈ Sk(Nq). Assume that this is true. Then
we have c(n, fα) ≡ c(n, g) mod ℘ for all n. In particular we have

c(q, fα) ≡ c(q, g) mod ℘.

Now it is well known (see for instance Miyake’s book [10, Theorem
4.6.17]) that c(q, g) = ±q(k−2)/2. On the other hand c(q, fα) = α.
We conclude that α ≡ ±q(k−2)/2 mod ℘. Multiplying this by β we get
β ≡ ±qk/2 mod ℘. We conclude that

c(q, f) = α + β ≡ ±q(k−2)/2(q + 1) mod ℘.(12)

The condition (12) is thus a necessary condition for fα to be congruent
to g modulo ℘. In fact this condition is also sufficient:

Theorem 2 (Ribet, Diamond). Let f be a primitive form in Sk(N) of
weight k ≥ 2. Then f has the same mod ℘ Hecke eigenvalues outside
q as some q-new eigenform in Sk(Nq) if and only if

c(q, f)2 ≡ qk−2(1 + q)2 mod ℘.

Ribet [13] proved the above theorem in the case k = 2. The case of
weight k ≥ 2 was treated by Diamond [4] (he also considers the case
when f has a non-trivial nebentypus).
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Theorem 2 is often described as a ‘level raising’ theorem. But hori-
zontal congruences are equally concerned with ‘level lowering’ results.
We now state a theorem in this direction. Below p denotes the residue
characteristic of a prime ℘ ⊂ O where O is the ring of integers of a
sufficiently large number field.

Theorem 3 (Mazur, Ribet). Suppose that p ≥ 3. Let q be a prime
such that q|N but q2 6

∣

∣N . Let f be a primitive form in S2(N). Assume
that the mod ℘ Galois representation ρ̄f attached to f is irreducible and
finite at q. Assume also that either

(1) q 6≡ 1 mod p, or,
(2) p is prime to N .

Then

f ≡′ g mod ℘

for some primitive form g ∈ S2(N/q).

Theorem 3 was proved by Mazur under condition 1) above and by Ribet
[14] under condition 2) above. The condition that the mod ℘-Galois
representation ρ̄f attached to f is ‘finite at q’ is a technical one. It
means that there is finite flat Fp-vector space scheme H over Zq such
that the representation ρ̄f restricted to a decomposition group Dq at q
is isomorphic to the natural representation of Dq on the Fp-vector space

H(Qq). When q 6= p the condition that ρ̄f is finite at q is equivalent to
ρf being unramified at q.
For an improved version of Theorem 3 we refer the reader to Theorem

1.5 of [15]. In [15], the author also gives an excellent survey of other
level lowering theorems in the literature, and explains how level lower-
ing is connected to Serre’s conjecture on the modularity of irreducible,
odd, two-dimensional mod p representations of Gal(Q/Q).

9. Vertical congruences

We now turn our attention to vertical congruences.
Let Sk(N,χ) denote the space of cusp of forms of weight k ≥ 1,

level N and nebentypus χ. Fix an embedding of Q into C. For each
prime p fix an embedding of Q into Qp and let ℘ denote the prime of

Q determined by this embedding.

Definition 8. Let f ∈ Sk(N,χ) be a primitive form. Then f is said
to be ordinary at p if c(p, f) is a ℘-adic unit.

Remark 1. Even if we fix the embedding of Q into C, the notion of
ordinarity of f at p depends on the embeddings of Q into Qp. For
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instance if one takes f to be a primitive form in S2(43, 1) then the
prime 17 = ℘℘′ splits into two primes in the real quadratic number
field generated by the Fourier coefficients of f , but since the norm of
c = c(17, f) is 17 we see that either c is a ℘-adic unit and c is divisible
by ℘′ or vice versa.

Let f be a primitive modular in Sk(N,χ). Let p be a prime that does
not divide N and assume that f is ordinary at p with respect to some
once and for all fixed embeddings of Q into C and Qp. Let ω denote
the Teichmüller character of level p. Then Hida has proved that f lives
in a family of p-ordinary modular forms. More precisely let α denote
the unique ℘-adic unit root of x2− c(p, f)x+χ(p)pk−1 and let β be the
other root. Let fα = f(z) − βf(pz) be the p-stable form constructed
from f as in the previous section. Then one has:

Theorem 4 (Hida). There are modular forms

fl ∈ Sl(Np, χω
k−l) for l = 1, 2, 3 . . .

(where f1 may be a ‘p-adic modular form’) such that

• fk = fα,
• fl is a normalized eigenform of level Np for each l ≥ 1,
• fl is ordinary at p for each l ≥ 1,
• fl1 ≡

′ fl2 mod ℘ for all l1, l2 ≥ 1.

It is the last condition on the members of this so called Hida fam-
ily that shows that vertical congruences exist in abundance: fk and
therefore f is congruent mod ℘ to a modular form of weight l for each
weight l ≥ 1.
The work of Coleman [2], Coleman-Mazur [3] and numerical data of

Gouvea (see http://www.colby.edu/personal/f/fqgouvea/slopes) shows
that non-ordinary eigenforms also live in families, so that such eigen-
forms are vertically congruent to every other member of their family.

10. Dihedral congruence primes

Let f =
∑

c(n, f)qn be a cusp form without complex multiplication.
Let χ be a quadratic Dirichlet character and let f ⊗ χ be the cusp
form whose q-expansion is given by

∑

χ(n)c(n, f)qn. Let Kf denote
the Hecke field for f . The Hecke field of f⊗χ is contained in Kf .

Definition 9. A prime ℘ of Kf is a dihedral congruence prime for f
with respect to χ if there is a congruence of the form f ≡′ f⊗χmod ℘.

Lemma 6. Let f be a primitive cusp form and let ℘ be a dihedral
congruence prime for f with respect to a quadratic character χ. If ρ̄f ,
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the mod ℘ Galois representation attached to f , is absolutely irreducible,
then

ρf = Ind
Fχ

Q φ

for a mod ℘ character φ of the Galois group of Fχ, where Fχ is the
quadratic field corresponding to χ.

The lemma explains why ℘ is called a dihedral congruence prime: it
can be checked that the image of ρ̄f in PGL2(F) is a dihedral group.
Now suppose that f is a primitive cusp form and that ℘ is a dihedral

congruence prime with respect to a real quadratic character χ. The
lemma above produces a character φ : Gal(Q/Fχ) → F× where Fχ is
the real quadratic field corresponding to χ and F is the residue field of
the ring of integers of Kf at ℘. By composing φ with the reciprocity
map

A×
Fχ

→ Gal(F ab
χ /Fχ)

we may think of φ as a finite order Hecke character of Fχ. Let c be
its conductor and let φ0 : (OFχ

/c)× → F× be the associated Dirichlet
character. Then φ0(ǫ+) = 1 for each totally positive unit ǫ of Fχ. On
the other hand since

φφσ = ψωk−1

where ψ is the nebentypus of f and ω is the mod p Teichmüller char-
acter, one can often compute what φ0 is explicitly. As a consequence
one can characterise the dihedral congruence primes of f with respect
to χ in terms of a totally positive fundamental unit of Fχ.
We illustrate the above discussion with the following theorem. Let D

denote the discriminant of a quadratic field and let D = D1D2 denote
a factorisation of D into two fundamental discriminants with D1 > 0.
Let χD and χD1

denote the quadratic characters corresponding to D
and D1.

Theorem 5 (Hida, Brown-Ghate). Let f ∈ Sk(|D|, χD) be a primitive
form. Let p ≥ 3 be a prime such that p 6

∣

∣D and let ℘ be a prime of Q
lying over p. Assume that k−1 is not a multiple of p−1. If f satisfies
a congruence of the form

f ≡′ f ⊗ χD1
mod ℘

and f is ordinary at ℘ and ρ̄f is absolutely irreducible then

p
∣

∣ NF1/Q(ǫ
k−1
+ ± 1)

for some (any) totally positive fundamental unit ǫ+ of F1.
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Under certain conditions one can also establish a converse to this
result using theta series and Hida families; for the details we refer the
reader to [1].

11. Congruences with Eisenstein series

So far in this article we have only considered congruences between
cusp forms. However one could equally well consider congruences be-
tween modular forms. For instance let ∆ be the unique primitive cusp
form of level one and weight 12 given by

∆ = q
∏

n

(1− qn)24 =
∑

τ(n)qn

and let Ek denote Eisenstein series of level one and (even) weight k ≥ 4
given by

Ek(z) =
(−1)k/2(k − 1)!

2(2π)k
·
∑ 1

(mz + n)12
= −

Bk

2k
+
∑

σk−1(n)q
n,

where Bk is the kth Bernoulli number and σr(n) =
∑

d|n d
r. When

k = 12 one checks that 691|B12 and Ramanujan proved the pretty
congruence

τ(n) ≡ σ11(n) mod 691

for all n ≥ 1. More generally one has the following result.

Proposition 1. Let k ≥ 4 be an even integer. Let p > k be a prime
such that p|Bk. Then there is a primitive cusp form f =

∑

c(n, f)qn

of weight k and level 1 and a prime ℘ of Kf lying over p such that
c(n, f) ≡ σk−1(n) mod ℘ for all n ≥ 1.

Let p be an odd prime. Let i be an odd integer with 3 ≤ i ≤ p− 2.
Let Ai be the eigenspace under the action of Gal(Q(µp)/Q) of the class
group of the pth cyclotomic field Q(µp) corresponding to the ith power
of the Teichmüller character. Herbrand’s theorem is that if Ai 6= 0 then
p|Bp−i. Conversely Ribet has shown [11] that if p|Bp−i then Ai 6= 0.
The proposition can be viewed as the starting point for Ribet’s proof
of the converse of Herbrand’s theorem.
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