
FILTERED MODULES WITH COEFFICIENTS
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Abstract. We classify the filtered modules with coefficients corresponding to two-dimensional

potentially semi-stable p-adic representations of the Galois group of Qp under some assumptions

(e.g., p is odd). We focus on the new features that arise when the coefficients are not necessarily

Qp.

1. Introduction

Let E be a finite extension of Qp and let ρ : Gal(Q̄p/Qp) → GL2(E) be a continuous two-
dimensional local p-adic Galois representation with coefficients in E. In recent work towards a
p-adic local Langlands correspondence, Breuil has suggested associating to a potentially semi-stable
representation ρ a GL2(Qp)-Banach space Π(ρ) which determines ρ up to isomorphism [Bre03],
[Bre04].

Following the work of Breuil, a new technique was introduced for semi-stable (non-crystalline)
representations by Colmez [Col04] using the theory of (ϕ,Γ)-modules. Using this technique, Berger
and Breuil [BB06] have treated the case where ρ is ‘crystabeline’, that is, ρ becomes crystalline
over a potentially abelian extension of Qp. The case where ρ is ‘trianguline’ has been treated by
Colmez in [Col05], [Col07]. Special cases have also been proved by Breuil and Mézard [BM05].
The correspondence ρ 7→ Π(ρ) is expected to be compatible with similar modulo p correspondences
([BM05], [Ber05]). Also the representations Π(ρ) appear in the completed étale cohomology of
p-towers of modular curves (see the work of Breuil and Emerton [Bre04], [Eme05], [BE05]).

After the fundamental theorem of Colmez and Fontaine [CF00], potentially semi-stable Galois
representations ρ as above are described by admissible filtered (ϕ,N)-modules with coefficients. A
very first step in the construction of the p-adic local Langlands correspondence is to write down
these filtered modules. An independent but closely related question is to identify those filtered
modules with coefficients arising from the local components of Galois representations attached to
elliptic modular eigenforms.

The goal of this paper is to write down new admissible filtered (ϕ,N)-modules with coefficients
E corresponding to two-dimensional representations ρ. The emphasis is on understanding what new
features arise when E is a general finite extension of Qp. Recall that the case E = Qp was treated
completely by Fontaine and Mazur [FM95, app. A] at least if p ≥ 5 (see also Volkov [Vol01]). The
study of the case where E is arbitrary was initiated by Breuil and Mézard [BM02]. More recently
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Savitt [Sav05] has treated cases where ρ becomes crystalline over a tamely ramified extension of Qp.
In this paper we will extend some of the results in these papers. In particular we will treat cases
where ρ becomes crystalline over wildly ramified extensions of Qp. A novel feature of our work is
that we write down explicit Galois stable lines which are candidates for the filtration. Computing
these lines turns out to be more than just an exercise, since in general one is no longer working in
a vector space over a field but in an F ⊗F0 E-module, where F is a finite, often wildly ramified,
extension of Qp, and F0 is the maximal unramified extension of Qp in F .

The text is organized as follows: the first part is devoted to definitions and notation concerning
filtered modules with coefficients (§2.1), potentially semi-stable representations (§2.3) and Galois
types (§2.5). Roughly, the Galois type of a potentially semi-stable representation ρ is the Weil-
Deligne representation WD(ρ)|Ip restricted to the inertia group of Gal(Q̄p/Qp). There is nothing
original in this section, but for the sake of completeness we present some of the tools we will need for
our study. The computations of the filtered modules are carried out in the second part. We consider
four different cases depending on the Galois type of ρ: special case (§3.1), ramified principal series
cases (§3.2), unramified supercuspidal case (§3.3) and ramified supercuspidal case (§3.4).

2. Preliminaries

2.1. Filtered modules with coefficients. Let p be a prime. Let F be a finite Galois extension of
Qp and let F0 be the maximal unramified extension of Qp contained in F . Let E be another finite
extension of Qp. A filtered (ϕ,N, F,E)-module (with descent data, i.e., Gal(F/Qp)-action) is a free
of finite rank (F0 ⊗Qp

E)-module D endowed with

• the Frobenius endomorphism: an F0-semi-linear, E-linear, bijective map ϕ : D → D,
• the monodromy operator: an (F0⊗Qp

E)-linear, nilpotent endomorphism N : D → D which
satisfies Nϕ = pϕN ,

• an F0-semi-linear, E-linear action of Gal(F/Qp) (the action on F0 is via the projection to
Gal(F0/Qp)), which commutes with the action of ϕ and N ,

• a decreasing filtration (FiliDF )i∈Z of (F ⊗Qp
E)-submodules of DF = F ⊗F0 D satisfying

FiliDF = 0 for i� 0 and FiliDF = DF for i� 0

and which are stable under the action of Gal(F/Qp).

Let D be a filtered (ϕ,N, F,E)-module. Then by forgetting the E-module structure, D is also
a filtered (ϕ,N, F,Qp)-module. Let d = dimF0 D. Then ΛdF0

D is a filtered (ϕ,N, F,Qp)-module of
dimension 1 over F0. Set

tH(D) = max{i ∈ Z | Fili(F ⊗F0 ΛdF0
D) 6= 0}, tN (D) = valp(λ),

where for a non-zero element x of ΛdF0
D, ϕ(x) = λx, with λ ∈ F×0 . One says that D is admissible

(originally weakly admissible) if

• tH(D) = tN (D),
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• for any F0-submodule D′ of D stable by ϕ and N , tH(D′) ≤ tN (D′), where D′F ⊂ DF is
equipped with the induced filtration.

It turns out that the filtered (ϕ,N, F,E)-module D is admissible if the second condition above is
replaced by the following weaker condition (cf. [BM02, prop. 3.1.1.5]):

• for any (F0 ⊗Qp E)-submodule D′ of D stable by ϕ and N , tH(D′) ≤ tN (D′), where again
D′F ⊂ DF is equipped with the induced filtration.

2.2. Fontaine’s rings. We wish to recall briefly the definition of some of Fontaine’s rings of periods
(cf. [Fon94b], [Ber04]). For F a finite extension of Qp, we set GF = Gal(Q̄p/F ), and set Gp = GQp .
Fontaine’s rings are topological Qp-algebras B equipped with an action of Gp such that BGF is a field
for every finite extension F of Qp. For us the main example will be Bst which sits (non-canonically)
between Bcris and BdR.

Let

Ẽ+ = lim
←−
x7→xp

OCp =
{
x = (x(0), x(1), . . . , )

∣∣ x(i) ∈ OCp , (x(i+1))p = x(i)
}
.

Addition given by (x + y)(i) = limn→∞(x(i+n) + y(i+n))p
n

and componentwise multiplication turn
Ẽ+ into a perfect ring of characteristic p. Let Ã+ = W (Ẽ+) be the ring of Witt vectors, and let
B̃+ = Ã+[1/p]. Elements of Ã+, respectively B̃+, may be written as

∑
pk[xk], where the sum is

over k ≥ 0, respectively k ≥ −n for some n ≥ 0, and [ ] denotes the Teichmüller representative.
There is a ring homomorphism θ : B̃+ → Cp which maps

∑
pk[xk] to

∑
pkx

(0)
k , and ker(θ) = (ω)

is a principal ideal. We let B+
dR be the completion of B̃+ with respect to ker(θ). So elements of B+

dR

can be written as
∑
bnω

n with bn ∈ B̃+.
Fix an element ε = (ε(0), ε(1), . . .) ∈ Ẽ+ where ε(n) is a primitive pn-th root of unity. Then

θ(1− [ε]) = 0 and t := log[ε] converges as a series in B+
dR. Define BdR = B+

dR[1/t].
Then BdR has a natural filtration given by Fili BdR = tiB+

dR. Also, under the natural Galois
action, BGF

dR = F for any finite extension F of Qp.
Now set

B+
cris =

{
x =

∑
bn
ωn

n!
∈ B+

dR

∣∣ bn ∈ B̃+, bn → 0
}
,

where the convergence of the bn is in the p-adic topology. Finally set Bcris = B+
cris[1/t]. Then Bcris

has a Frobenius map ϕ : Bcris → Bcris, and BGF
cris = F0.

Now let Bst = Bcris[Y ] be the polynomial ring in one variable over Bcris. Extend the Frobenius
map to Bst by defining ϕ(Y ) = pY . There is also the monodromy operator N = − d

dY on Bst which
satisfies Nϕ = pϕN . Finally the Galois action on Y may be specified, and again one has BGF

st = F0

([Fon94b]). Set p̃ = (p(0), p(1), . . .) ∈ Ẽ+, where p(n) is a primitive pn-th root of p. We will think of
Bst as a subring of BdR by mapping Y to log[p̃], though the definition of this last element depends
on a choice, that of logp(p), which we will take to be 0.
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2.3. Potentially semi-stable representations. Let E be a finite extension of Qp. We recall here
that a representation ρ : Gp → GLn(E) = GL(V ) is said to be semi-stable over F or F -semi-stable
if the dimension of Dst,F (V ) = (Bst ⊗Qp

V )GF over F0 = BGF
st is equal to the dimension of V

over Qp (in general it may be less). If such an F exists, ρ is said to be a potentially semi-stable
representation.

Potentially semi-stable representations are known to be Hodge-Tate. We recall the definition of
the associated Hodge-Tate weights. Let

(Cp ⊗Qp
V ){i} = {x ∈ Cp ⊗Qp

V | g(x) = νi(g)x,∀g ∈ Gp},

where ν is the p-adic cyclotomic character and Gp acts on Cp and on V . This is an E-vector space
of finite dimension. By [Fon94a, §3], there is a Gp-equivariant isomorphism⊕

i∈Z

Cp ⊗Qp (Cp ⊗Qp V ){i} ∼−→Cp ⊗Qp V

of (Cp ⊗Qp E)-modules (where the Gp-action is Cp-semi-linear and E-linear). The integers i such
that (Cp ⊗Qp V ){i} 6= 0, counted with multiplicity dimE(Cp ⊗Qp V ){i}, are by definition the
Hodge-Tate weights of the representation V .

It is known by the fundamental work of Colmez and Fontaine [CF00] that there is an equivalence
of categories between the F -semi-stable representations ρ : Gp → GLn(E) with Hodge-Tate weights
in {0, . . . , k − 1} and the admissible filtered (ϕ,N, F,E)-module D of rank n over F0 ⊗Qp E such
that Fil1−k(DF ) = DF and Fil1(DF ) = 0. The equivalence of categories is induced by the functor
Dst,F defined above. The Frobenius, monodromy, and filtration on Bst induce the corresponding
objects on Dst,F (V ). There is also an induced action of Gal(F/Qp) on Dst,F (V ).

We remark that the jumps in the filtration on DF = F ⊗F0 Dst,F (V ) are the negatives of the
Hodge-Tate weights of V . That is, if h is a Hodge-Tate weight, one has Fil−h(DF ) 6= Fil−h+1(DF ).

2.4. Weil-Deligne representations. Let ρ : Gp → GLn(E) be an F -semi-stable representation.
Let us recall the definition of the Weil-Deligne representation associated to ρ. Let Wp be the Weil
group of Qp and WF the Weil group of F . Recall that Wp/WF = Gal(F/Qp). One equips Dst,F (V )
with an action of Wp by making

g ∈Wp act by (g mod WF ) ◦ ϕ−α(g),(2.1)

where the image of g in Gal(F̄p/Fp) is the α(g)-th power of the arithmetic Frobenius at p. Since
both Gal(F/Qp) and ϕ act F0-semi-linearly, evidently WF acts F0-linearly.

Now assume that E contains F . (To define the Weil-Deligne representation one need only assume
that E contains F0, but the stronger assumption F ⊂ E will be used later.) Then

Dst,F (V ) '
∏

σ:F0↪→E
Dσ,F ,(2.2)

where Dσ,F = Dst,F (V )⊗(F0⊗QpE,σ) E is an E-vector space of dimension n with an induced action
of (Wp, N). In particular the Dσ,F are Weil-Deligne representations. By [BM02, lemme 2.2.1.2]
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the isomorphism class of Dσ,F is independent of the choice of σ (and F ) and is by definition the
Weil-Deligne representation WD(ρ) attached to ρ. Note that if inertia acts on a vector in Dσ,F by
χ, then under the identification (2.2) inertia acts on the corresponding vector in Dst,F (V ) by 1⊗χ.

2.5. Galois types. Let Ip be the inertia group at p. A Galois type τ of degree n is an equivalence
class of representations

τ : Ip → GLn(Q̄p)

with open kernel which extend to representations of the Weil group Wp ([BCDT, §1]). An F -semi-
stable representation ρ : Gp → GLn(Q̄p) has Galois type τ if WD(ρ)|Ip ' τ . Write Qpm for the
unique unramified extension of Qp of degree m and Zpm for its ring of integers. Also write Wpm for
the Weil group of Qpm . Let us recall the following classical lemma:

Lemma 2.1. Assume p > 2. Let τ be a Galois type of degree 2. Then τ has one of the following
forms:

(1) τ ' χ1|Ip ⊕ χ2|Ip , where χ1, χ2 are characters of Wp finite on Ip,
(2) τ ' IndWp

Wp2
(χ)|Ip = χ|Ip ⊕ χσ|Ip , where χ is a character of Wp2 finite on Ip which does not

extend to Wp, and σ is the generator of Gal(Qp2/Qp),
(3) τ ' IndWp

WK
(χ)|Ip , where K is a ramified quadratic extension of Qp, χ is a character of WK ,

finite on IK , such that χ|IK does not extend to Ip.

In the first two cases τ is reducible, and in the third case τ is irreducible.
Again let p > 2. Let ρ : Gp → GL2(E) be a potentially semi-stable representation and let

τ = WD(ρ)|Ip be its Galois type. Here are some useful facts ([BM02, §2]).

Lemma 2.2. The potentially semi-stable representation ρ is semi-stable over F if and only if τ |IF
is trivial.

Lemma 2.3. If ρ is not potentially crystalline (that is, N 6= 0), then τ is a scalar.

Proof. Suppose that ρ becomes semi-stable over F , and let D = Dst,F (V ) be the associated filtered
(ϕ,N, F,E)-module. The action of g ∈ Wp satisfies gN = pα(g)Ng. Hence WD(ρ) stabilizes kerN
and so is reducible. In particular the action of Ip is reducible and therefore a direct sum of two
characters. Since N commutes with Ip, these two characters must be the same on Ip. �

There are therefore three possibilities:

• N 6= 0 and τ is a scalar (special or Steinberg case),
• N = 0 and τ is as in (1) of Lemma 2.1 (principal series case),
• N = 0 and τ is as in (2) or (3) of Lemma 2.1 (supercuspidal case).



6 E. GHATE AND A. MÉZARD

2.6. Question. Given a potentially semi-stable representation ρ : Gp → GL2(E), one may associate
to it

• its Galois type, i.e., the Weil-Deligne representation WD(ρ)|Ip , and,
• its Hodge-Tate weights.

The following question is of interest: given a Galois type τ of degree 2 and an integer k > 1, what are
the (isomorphism classes of) potentially semi-stable representations ρ : Gp → GL2(E) having type
τ and Hodge-Tate weights 0 and k − 1? More specifically, which of these representations occur as
the local components of Galois representations attached to elliptic modular cusp forms (cf. [Bre01,
p. 32])?

To answer these questions it suffices, by what has been said above, to write down the corresponding
filtered modules. In this paper we will essentially classify rank two filtered modules with coefficients
when p > 2 and F ⊂ E, concentrating on the new features that arise when E 6= Qp (and F 6= Qp).
For the filtered modules arising from cusp forms, we will indicate (in some cases) how the filtered
modules depend on the underlying form.

Our arguments below are broken down according to the type τ of the representation. For the
remainder of this article we assume that F ⊂ E, p > 2, and k > 1.

3. Rank two filtered modules

3.1. Special case. In this case τ is a scalar. No new issues arise when one has coefficients. We
assume τ = 1 and briefly recall the construction of the filtered module in this case (see also [Maz94,
§9], [FM95, p. 65]). We have F = F0 = Qp. Since N 6= 0 there exists a basis e1, e2 of D = Dst,Qp

(V )
such that N(e1) = e2 and N(e2) = 0. Since Nϕ = pϕN we must have that ϕ(e1) = p

αe1 + ce2 and
ϕ(e2) = 1

αe2, with c, α ∈ E. Replacing e1 with a linear combination of e1 and a scalar multiple of e2,

we may assume c = 0. SinceD is admissible, tH(D) = tN (D), i.e., valp
(
ϕ(e1∧e2)
e1∧e2

)
= valp( p

α2 ) = 1−k.
So valp(α) = k/2.

Assume Fil0DF = Fil0D = E(ae1 + be2). The only sub-(ϕ,N)-module of D is D2 = 〈e2〉. If
a = 0, then the admissibility condition shows that tH(D2) ≤ tN (D2), so that 0 ≤ − valp(α), which
is clearly impossible. If a 6= 0, D is admissible.

The admissible filtered (ϕ,N, F,E)-module associated to ρ is (up to isomorphism) given by Dst =
Ee1 ⊕ Ee2 with

Dst =



ϕ(e1) = p
αe1

ϕ(e2) = 1
αe2

valp(α) = k/2
N(e1) = e2

N(e2) = 0
Fil0D = E(e1 − Le2)

L ∈ E.
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If f =
∑∞
n=1 anq

n is a cuspidal newform of weight k ≥ 2, level N and character ε, and p||N but
is coprime to the conductor of ε, then by work of Faltings the associated local Galois representation
ρf |Gp : Gp → GL2(E) is known to be semi-stable [Maz94, §12]. The associated filtered module
Dst(ρf |Gp) is as above with α = pap (see [Bre01, pp. 31-32], where the normalizations are slightly
different from ours). It is known that a2

p = ε(p)pk−2 [Miy89, Thm. 4.6.17(ii)] so valp(α/p) = k/2−1
and valp(α) = k/2. The quantity L is then by definition the L-invariant of f (using the definition
of the L-invariant due to Mazur in [Maz94]).

3.2. Ramified principal series case. We now assume τ ' χ1|Ip ⊕χ2|Ip (and N = 0). In this case
new features may arise since neither F nor E is necessarily Qp.

Let us say we are in the unramified principal series case if both characters χ1 and χ2 are trivial
on Ip, that is, τ = 1. In this case F = Qp and the corresponding filtered module already occurs in
the literature (cf. [Bre01, pp. 30-32], where the normalizations are slightly different from ours). If
τ 6= 1 we shall say we are in the ramified principal series case. We shall assume (χ1χ

−1
2 )|Ip 6= Id and

compute the filtered modules in this case.
We note ρ is potentially crystalline. The characters χi|Ip factor through Gal(Qnr

p (ζpm)/Qnr
p ) '

Gal(Qp(ζpm)/Qp) for m ≥ 1. Hence we may take F = Qp(ζpm) and F0 = Qp.
Now write D = Ee1 ⊕ Ee2, where g ∈ Gal(F/Qp) acts by χn on en for n = 1, 2. Write

ϕ(e1) = qe1 + re2, ϕ(e2) = se1 + te2,

where the coefficients q, r, s, t ∈ E. Since ϕ commutes with the action of Gal(F/Qp), r = 0 = s, so

that ϕ(e1) = 1
αe1 and ϕ(e2) = 1

β e2, for some α, β ∈ E. Since D is admissible, valp
(
ϕ(e1∧e2)
e1∧e2

)
= 1−k,

whence valp(α)+valp(β) = k−1. Now Dn = 〈en〉, for n = 1, 2, are sub ϕ-modules, and since tH(Dn)
is 0 or 1 − k, which in either case is ≥ 1 − k, the admissibility condition tH(Dn) ≤ tN (Dn) shows
that valp(α), valp(β) ≤ k − 1. So we have (without loss of generality) that

0 ≤ valp(α) ≤ valp(β) ≤ k − 1.

There are two cases to consider, depending on the valuations of α and β, or put another way,
depending on the slopes of the Newton polygon of ϕ.

I) Ordinary Case: valp(α) = 0, valp(β) = k − 1.
We make a table that summarizes the various possibilities for admissibility of the two sub ϕ -

modules Dn = 〈en〉 depending on various choices for the filtration. Savitt has observed that any
(F ⊗F0 E)-submodule of a filtered module with descent data (i.e., Gal(F/Qp)-action) has to be
free [Sav05, Lemma 2.1]. Thus Fil0(DF ) is spanned by a vector of the form xe1 + ye2, where x,
y ∈ F ⊗Qp E, and x, y are not both zero. Without loss of generality we may assume that Fil0(DF )
is spanned by either of the axes e1 or e2, or some linear combination v = xe1 + ye2, where x, y are
non-zero elements of F ⊗Qp E.
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Fil0(DF ) tH(D1) tN (D1) D1 ADM? tH(D2) tN (D2) D2 ADM? Type

e1 0 0 Yes 1− k 1− k Yes D = D1 ⊕D2

e2 1− k 0 No 0 1− k No D not admissible

v 1− k 0 No 1− k 1− k Yes D2 ⊂ D

We shall refer to the first and third cases in the table above as the ordinary split case (Dord−split),
and the ordinary non-split case (Dord−non−split) respectively. In both these cases the corresponding
Galois representation is reducible. In the first case it is decomposable or split, whereas in the third
case it is indecomposable or non-split, whence the terminology. In the second case in the table above
D is not admissible since tH(D2) > tN (D2) if k > 1.

II) Non-Ordinary Case: 0 < valp(α) ≤ valp(β) < k − 1.
In this case, if Fil0(DF ) were spanned by e1 or e2, then the admissibility condition for D would

imply that either 0 ≤ − valp(α) or 0 ≤ − valp(β), both of which are clearly impossible. So Fil0(DF )
must be (F ⊗Qp E)v. But now D does not have admissible subobjects (one clearly sees that neither
D1 nor D2 is admissible).

As already noted above Fil0(DF ) is a free (F⊗QpE)-module of rank 1. Let us make some remarks
about the vector v which spans Fil0(DF ) when this module is not one of the two axes. A first
requirement is that the line (F ⊗Qp E) · v should be stable under Gal(F/Qp). It is not immediately
evident that such a stable line exists. As it turns out such a line does exist and moreover is unique
(up to isomorphism). In order to show this we start with the following useful lemma.

Lemma 3.1. Every Galois stable line (F ⊗Qp
E) · v in DF is spanned by an invariant vector v.

Proof. Let G = Gal(F/Qp). Then G = (Z/pm)× is a cyclic group. We first claim that H1(G, (F⊗Qp

E)×) = 0. Let g be a generator of G. Let N = 1+g+g2 + · · ·+gr−1, where r = φ(pm) = pm−1(p−1)
is the order of G and let D = g − 1. Then for any G-module A one knows

H1(G,A) =
ker(N : A→ A)
Im(D : A→ A)

.

Apply this to A = (F ⊗Qp
E)× =

∏
σ E
× noting that g acts by cyclically permuting the factors.

Then (x0, x1, x2, . . . , xr−1) lies in the kernel of N iff
∏
xi = 1. Similarly (x0, x1, x2, . . . , xr−1)

lies in the image of D iff it has the form (y1y0 ,
y2
y1
, y3y2 , . . . ,

y0
yr−1

). Taking (y0, y1, y2, . . . , yr−1) =
(1, x0, x0x1, x0x1x2, . . . , x0x1 · · ·xr−2) we are done.

We now show that every Galois stable line in DF is spanned by an invariant vector. Say (F ⊗Qp

E) · v is stable by G = Gal(F/Qp). Then for h ∈ G we have h · v = chv for some ch ∈ (F ⊗Qp
E)×.

One easily checks that ch ∈ Z1(G, (F ⊗Qp
E)×) is a 1-cocycle. Since H1(G, (F ⊗Qp

E)×) = 0 we see
that ch is a 1-coboundary. Say ch = c/h(c) for some c ∈ (F ⊗Qp

E)×. Replacing v by cv we see that
we may assume that ch = 1 and that v is invariant under G. �
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Remark 3.2. As pointed out to us by D. Prasad, the vanishing of the first cohomology group in the
proof above is in fact a special case of a general vanishing result: namely Hi(G, (F ⊗Qp

E)×) = 0 for
any finite group G = Gal(F/Qp) and any i > 0. Indeed (F ⊗Qp

E)× =
∏
E× with the permutation

action of G is just IndGH(E×), the G-module induced from the trivial subgroup H = {1} to G of the
trivial H-representation E×. By Shapiro’s lemma, Hi(G, IndGH(E×)) = Hi(H,E×) = 0 if i > 0 since
H is trivial.

By the lemma we are reduced to constructing Galois invariant vectors v in DF . Using Gauss
sum-like elements we now prove the following proposition.

Proposition 3.3. Let F = Qp(ζpm). There exist explicit elements x, y ∈ F ⊗Qp
E, both non-zero,

such that

v = xe1 + ye2

is invariant by Gal(F/Qp). Every Galois stable line in DF (which is not one of two axes) is of the
form (F ⊗Qp

E) · (cxe1 + dye2), for some non-zero c, d in E. In particular up to an isomorphism
obtained by scaling e1 and e2 we may assume that Fil0(DF ) = (F ⊗Qp

E) · (xe1 + ye2).

Proof. Write Gal(F/Qp) = ∆ × Γ, where ∆ = (Z/pZ)× and Γ = Z/pm−1Z. These groups are also
cyclic: write δ for a generator of ∆, and γ for a generator of Γ corresponding to 1 + p under the
identification Gal(F/Qp) = (Z/pm)×. Note that every character χ of Gal(F/Qp) is of the form

χ = ωiχζa , with i, a ∈ Z, 0 ≤ i < p− 1, 0 ≤ a ≤ pm−1 − 1,

where ω is the Teichmüller character on ∆, and χζa is the character on Γ which maps γ to ζa,
where ζ = ζpm−1 is a primitive pm−1-th root of unity. Thus we have χ1|Ip = ωiχζa and similarly
χ2|Ip = ωjχζb for integers 0 ≤ i, j < p− 1, and 0 ≤ a, b < pm−1 − 1.

Suppose that the vector x′e1 + y′e2 with x′, y′ in F ⊗Qp
E is Gal(F/Qp) invariant. Then it must

be invariant by Γ. Since Gal(F/Qp) acts by 1⊗ χn on en for n = 1, 2, we must have

γ(x′) = (1⊗ ζ−apm−1)x′ and γ(y′) = (1⊗ ζ−bpm−1)y′.(3.1)

After some amount of searching we take

x′ =
pm−1−1∑
r=0

ζ
(1+p)r

pm ⊗ ζrapm−1 and y′ =
pm−1−1∑
r=0

ζ
(1+p)r

pm ⊗ ζrbpm−1 .

Note that the conditions (3.1) are satisfied since γ
(
ζ

(1+p)r

pm

)
= ζ

(1+p)(r+1)

pm . Moreover, we see that x′

and y′ are unique up to multiplication by an element of Qp(ζp) ⊗ 1 or an element of 1 ⊗ E. This
follows from a dimension count of the eigenspaces of the E-linear operator γ on

∏
σ E = F ⊗Qp E.

In any case, we have

γ(x′e1) = x′e1 and γ(y′e2) = y′e2.
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Now taking an average over ∆, let

x′′ =
∑

s∈(Z/pZ)×

δs(x′) and y′′ =
∑

s∈(Z/pZ)×

δs(y′).

A check shows that x′′ and y′′ are non-zero elements in F ⊗Qp
E. Moreover, by construction, ∆ fixes

both x′′ and y′′. Now let π ∈ F be such that πp−1 + p = 0. So Qp(π) = Qp(ζp) and δ(π) = ω(δ)π.
We set x = π−ix′′ and y = π−jy′′. Again by construction,

δ(xe1) = xe1 and δ(ye2) = ye2.

Also γ continues to fix the quantities xe1 and ye2.
It follows that v = xe1 + ye2 is invariant under Gal(F/Qp) = ∆× Γ. Also x and y are unique up

to multiplication by elements of 1 ⊗ E. Now Fil0(DF ) is a Gal(F/Qp) stable line in DF (which is
not one of the two axes). It follows from Lemma 3.1 that Fil0(DF ) = (F ⊗Qp

E)(cxe1 + dye2) for
some non-zero elements c, d in 1 ⊗ E. After scaling e1 and e2 (this induces an isomorphism of the
filtered module D) we see that we may assume Fil0(DF ) = (F ⊗Qp

E)(xe1 + ye2). This proves the
proposition. �

Remark 3.4. The referee has pointed out that the construction of the elements x and y can be
simplified as follows. By the normal basis theorem, choose θ ∈ F such that the conjugates of θ are a
basis for F . Then every element of F⊗Qp

E can be written uniquely as
∑
g(θ)⊗ag, where the sum is

over g ∈ Gal(F/Qp). If Gal(F/Qp) acts on such an element via 1⊗χ−1
1 , then ah−1g = χ−1

1 (h)ag for
all h, g ∈ Gal(F/Qp). Taking g = 1 in this relation we obtain ah = χ1(h)a1, for all h ∈ Gal(F/Qp).
Thus the element above must be a scalar multiple of

∑
g(θ)⊗ χ1(g) by an element of 1⊗E. Then

define x =
∑
g(θ)⊗ χ1(g), and define y similarly using χ2 instead of χ1.

Let x and y be the elements constructed in the proposition. To summarize, the admissible filtered
(ϕ,N, F,E)-modules associated to ρ are given by D = Ee1 ⊕ Ee2 with

Dord−split =



ϕ(e1) = 1
αe1

ϕ(e2) = 1
β e2

α, β ∈ E, valp(α) = 0, valp(β) = k − 1
N = 0
g(e1) = χ1(g)e1

g(e2) = χ2(g)e2

Fil0(DF ) = (F ⊗Qp E)e1
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Dord−non−split =



ϕ(e1) = 1
αe1

ϕ(e2) = 1
β e2

α, β ∈ E, valp(α) = 0, valp(β) = k − 1
N = 0
g(e1) = χ1(g)e1

g(e2) = χ2(g)e2

Fil0(DF ) = (F ⊗Qp
E)(xe1 + ye2)

Dnon−ord =



ϕ(e1) = 1
αe1

ϕ(e2) = 1
β e2

α, β ∈ E, 0 < valp(α) ≤ valp(β) < k − 1
N = 0
g(e1) = χ1(g)e1

g(e2) = χ2(g)e2

Fil0(DF ) = (F ⊗Qp
E)(xe1 + ye2).

These filtered modules arise frequently in nature. Indeed assume that

• f =
∑∞
n=1 anq

n is a cuspidal newform of weight k ≥ 2, level N , and character ε, and,
• p|N and the power of p dividing N equals the power of p dividing the conductor of ε.

The local Galois representation ρf |Gp : Gp → GL2(E) attached to f becomes crystalline over a
cyclotomic extension F = Qp(ζpm). Moreover the corresponding filtered module is one of three
filtered modules above, as follows.

Let ¯ denote complex conjugation. Then the number field Q(an) generated by the Fourier co-
efficients of f is a CM field, and not a totally real field, since ā` = a` · ε−1(`) for all primes ` 6 |N
and ε is non-trivial. Decompose ε = εp · ε′ into its p and prime-to-p parts, and write λ(a) for the
unramified character of Wp which takes Frobp to a. Then we claim that the underlying Weil-Deligne
representation has trivial monodromy operator (so in particular ρf |Gp : Gp → GL2(E) is potentially
crystalline) and moreover the corresponding representation of Wp is given by the sum of characters:
λ(ap) ⊕ εp · λ(ε′(p)āp). This can be seen by noting that the Weil-Deligne representation is known
to be an invariant of the compatible system of Galois representations attached to f , and so can be
computed using a λ-adic Galois representation attached to f , say Vλ, for a place λ lying over ` 6= p.
Since the local L-factor attached to f at p is 1/(1 − app−s) we see that the inertial invariants V Ipλ
are one-dimensional and Frobp acts on this line by ap, so one character in the Weil representation
is λ(ap). To get the other character note that det(Vλ) is ενk−1

` = εpε
′νk−1
` , where ν` is the `-adic

cyclotomic character. Now ν` is unramified at p and takes Frobp to p, as is ε′ which takes Frobp to
ε′(p). Moreover by [Miy89, theorem 4.6.17(1)] one has the relation ap · āp = pk−1. Thus as a charac-
ter of Wp we have det(Vλ) = εp ·λ(ε′(p)āpap), so the other character in the Weil representation must
be εp · λ(ε′(p)āp). Further the type is τ = 1⊕ εp. Since this is not a scalar the monodromy operator
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must be trivial. Thus ρf |Gp is potentially crystalline, and becomes crystalline over F = Qp(εp).
This proves the claim.

The discussion above shows that the filtered module associated to ρf |Gp : Gp → GL2(E) is one
of the filtered modules above with F = Qp(ζpm), where pm is the exact power of p dividing N and
cond(ε), and χ1 = 1 and χ2 = εp. Moreover the parameters α and β in the filtered modules are
given by

α = ap and β = ε′(p)āp.

Now if f is ordinary at p (i.e., valp(ap) = 0), then the filtered module associated to ρf |Gp is one of
Dord−split or Dord−non−split. It is known that if f has CM, then the filtered module is Dord−split,
and if f does not have CM, then the filtered module is often Dord−non−split (see [GV04], [GV07] for
more precise statements). If on the other hand f is not ordinary at p (i.e., valp(ap) > 0), then the
associated filtered module is Dnon−ord.

Finally we note that when

• p 6 |N and so p does not divide the conductor of ε,

then we are in the unramified principal series case, and we refer to [Bre01, pp. 30-32] for the
corresponding filtered modules (with slightly different normalizations).

3.3. Unramified supercuspidal case. We now assume that the type τ is as in case (2) of
Lemma 2.1, that is, τ ' IndWp

Wp2
(χ)|Ip = χ|Ip ⊕ χσ|Ip , where χ is a character of Wp2 which does not

extend to Wp, and is finite on Ip, and σ is the generator of Gal(Qp2/Qp).

3.3.1. Description of Gal(F/Qp). We must choose a finite extension F/Qp2 over which ρ becomes
crystalline, and which simultaneously has the property that F/Qp is Galois. To do this we use some
facts from local class field theory as presented in Iwasawa’s book [Iwa86].

Set K = Qp2 . For an integer m ≥ 1, let Km be the unique cyclic unramified extension of K of
degree m. Fix a uniformizer π of K and let f(X) = πX +Xq, where q = p2 is the cardinality of the
residue field of K = Qp2 . Let Wn

f denote the (π)n+1-torsion of the Zp2-module whose underlying
set is the ring of integers of the completion of the algebraic closure of K and whose Zp2-module
structure is induced by the formal group attached to f(X). Then K(Wn

f ) is a totally ramified
abelian extension of K, and

Gal(K(Wn
f )/K) ∼= U/Un+1 = F×q × Zp2/πn,(3.2)

where U and Un+1 are the units, respectively principal units of level n+ 1, of Zp2 . Moreover if we
choose π ∈ Qp, then K(Wn

f )/Qp is also Galois since f(X) is defined over Qp.
By local class field theory every finite abelian extension L/K is contained in KmK(Wn

f ), for some
m and n. Now choose a finite cyclic extension L/K such that χ|IL = 1 . Then L ⊂ KmK(Wn

f ) for
some m and n. We take F = KmK(Wn

f ), noting that τ |IF is trivial so that ρ is crystalline over
F . Moreover, with the choice of uniformizer π = p, which we now fix, the extension F/Qp is even
Galois.
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Let us describe Gal(F/Qp) in more detail. Let f (n)(X) denote the n-th iterate of f(X) and let α
denote a root of f (n+1)(X) which is not a root of f (n)(X). Then K(Wn

f ) = Qp2(α). Now Qp(α)/Q
is a totally ramified extension of degree equal to the ramification index e(F/Qp) = (q − 1)qn and
F/Qp(α) is an unramified extension of degree 2m. Let σ be a generator of Gal(F/Qp(α)). So σ has
order 2m and projects to the generator of Gal(K/Qp), also denoted σ above.

Note K(W 0
f ) = Qp2(π2), where π2 is a root of Xp2−1 +p = 0. Set ∆ := Gal(K(W 0

f )/K). Then ∆
is isomorphic to the tame part of the inertia subgroup of Gal(F/Qp). Choose a generator δ of ∆; so
δ has order p2−1. Since the order of δ is prime to p, it lifts uniquely to an element, again denoted δ,
in Gal(K(Wn

f )/K), of order p2−1 (alternatively use the representation (3.2) of this Galois group as
a direct product). This element in turn extends uniquely to an element in Gal(F/K) ⊂ Gal(F/Qp)
fixing Km, and we again denote this element by δ. Finally, let Γ = Zp2/pn = Z/pn ⊕ Z/pn. Then
Γ is isomorphic to the wild part of the inertia subgroup. Choose generators γ1 and γ2 of Γ; so γ1,
γ2 each have order pn. Again γ1, γ2 lift to elements in Gal(F/K) ⊂ Gal(F/Qp) fixing Km, and we
denote these by the same symbols.

The elements δ, γ1, γ2 generate the full inertia subgroup Gal(F/Km) of Gal(F/Qp). This is
a normal subgroup. Since σ2 fixes K(Wn

f ) the action of σ on Gal(F/Km) by conjugation is an
involution. This action coincides with the action of Gal(K/Qp) on Gal(K(Wn

f )/K) by conjugation.
Using a standard functorial property of the Artin map [Iwa86, thm. 6.11] this last action is given
by the natural action of Gal(K/Qp) on Z×p2/Un+1 = F×q × U1/Un+1 with U1/Un+1

∼= Zp2/pn =
(Zp ⊕ Zp · α)/pn = Z/pn ⊕ Z/pn · ᾱ, where Zp2 = Zp[α] and ασ = −α.

In view of all this, we see that Gal(F/Qp) is a semi-direct product of the cyclic group 〈σ〉, σ2m = 1,
with the product of three cyclic groups 〈δ〉 × 〈γ1〉 × 〈γ2〉, δp

2−1 = 1, γp
n

1 = 1, γp
n

2 = 1, with the
relations

σ−1δσ = δp, σ−1γ1σ = γ1, and σ−1γ2σ = γ−1
2 .(3.3)

We also see that F0 = Km = Q2m
p and that Gal(F0/Qp) = 〈σ〉 = Z/2m.

3.3.2. Description of the Galois action. Now recall D is a free (F0 ⊗Qp E)-module of rank 2. Let
Di = D ⊗F0⊗E,σi E, for i = 0, 1, . . . , 2m − 1, be the component of D corresponding to σi thought
of as an embedding F0 ↪→ E. Each Di is a Weil-Deligne representation with an action of Wp (the
action of N = 0). Moreover by (2.1) the action of Ip matches with the action of the inertia subgroup
of Gal(F/Qp), namely ∆×Γ. Thinking of χ|Ip as a character of this last group, write χ = ωj2 ·χ1 ·χ2,
where ω2 is the fundamental character of level 2, and χl is the character which takes γl to the pn-th
root of unity ζl, for l = 1, 2. Since χ does not extend to Wp, we have χ 6= χσ on Wp2 , which follows
if either j 6≡ 0 mod p + 1 or ζ2 6= ζ−1

2 . In any case we see that each Di has a basis vi1, vi2 such
that, if i is even, then:δ · vi1 = ωj2(δ) · vi1, γ1 · vi1 = ζ1 · vi1, γ2 · vi1 = ζ2 · vi1,

δ · vi2 = ωpj2 (δ) · vi2, γ1 · vi2 = ζ1 · vi2, γ2 · vi2 = ζ−1
2 · vi2,
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and if i is odd, then:δ · vi1 = ωpj2 (δ) · vi1, γ1 · vi1 = ζ1 · vi1, γ2 · vi1 = ζ−1
2 · vi1,

δ · vi2 = ωj2(δ) · vi2, γ1 · vi2 = ζ1 · vi2, γ2 · vi2 = ζ2 · vi2.

It remains to specify the action of σ. Using the fact that σ takes Di to Di+1 and the relations (3.3)
we see that:

σ · vi1 = ai+1vi+1,1,

σ · vi2 = bi+1vi+1,2,

where ai, bi ∈ E are constants. Applying σ repeatedly and noting that σ2m = 1 we see that∏
ai =

∏
bi = 1. Thus replacing ai+1vi+1,1 by vi+1,1 (and similarly bi+1vi+1,2 by vi+1,2) we see that

we may assume

σ · vi1 = vi+1,1,

σ · vi2 = vi+1,2.

Note that the vi1 are now determined up to multiplication by the same constant (similarly for the
vi2).

3.3.3. Definition of action of ϕ. The operator ϕ acts in a cyclic manner as well, taking Di to Di+1.
Since ϕ commutes with, say, the action of the inertia subgroup, we see that:

ϕ · vi1 = cvi+1,2,

ϕ · vi2 = dvi+1,1,

where c and d are constants in E. The fact that these constants may be taken to be independent of
i follows easily from the fact that ϕ commutes with σ. Now set

f1 = v01 + v11 + · · ·+ v2m−1,1,

f2 = c(v02 + v12 + · · ·+ v2m−1,2).

This is a basis for D. After what we have said above for the vi1 and the vi2 the vectors f1 and f2

are fixed up to multiplication by the same constant. Note that ϕ(f1) = f2 and ϕ(f2) = 1
t f1, with

1
t = cd ∈ E. The admissibility condition implies that 1 − k = tH(D) = tN (D) = valp( 1

t ) so that
valp(t) = k − 1.

It will actually be more convenient when computing the filtration in the next subsection to work
with an alternative basis of D, namely

e1 =
√
d · v01 +

√
c · v12 + · · ·+

√
d · v2m−2,1 +

√
c · v2m−1,2,

e2 =
√
c · v02 +

√
d · v11 + · · ·+

√
c · v2m−2,2 +

√
d · v2m−1,1.

Here we might need to replace E by a finite extension, again denoted by E, so that it contains
√
c and

√
d. Again e1 and e2 are determined up to multiplication by the same constant, and
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ϕ(e1) =
√
cd · e1, and ϕ(e2) =

√
cd · e2. Set 1

t = cd, as before. The admissibility condition again
implies that 1− k = tH(D) = tN (D) = valp( 1

t ) so that valp(t) = k − 1.

3.3.4. Description of the filtration. There is one last matter to take care of, that of the filtration.
For this we mimic some of the ideas used in the ramified principal series case.

Note that every Gal(F/Qp) stable line in DF is spanned by an invariant vector. As in the proof
of Lemma 3.1 it suffices to show that H1(G, (F ⊗Qp E)×) = 0, where G = Gal(F/Qp). One could
possibly check this directly, as in the proof of Lemma 3.1, but in any case this follows immediately
from Remark 3.2.

We now construct a Gal(F/Qp) invariant vector v = xe1 +ye2, with x and y ∈ F ⊗QpE. While it
is possible to construct x and y explicitly as in the proof of Proposition 3.3 (this was done in an earlier
version of this paper), we follow the referee’s suggestion (cf. Remark 3.4) to simplify the construction.
First note that σ switches e1 and e2. It follows that v has the form v = xe1 +σ(x)e2 with σ2(x) = x.
Recall that χσ denotes the character of Gal(F/K) defined by χσ(g) = χ(σ−1gσ) = χ(σgσ−1), where
the last equality follows from the fact that σ2 lies in the abelian group Gal(F/K). By construction
I(F/K) acts on e1 and e2 by 1 ⊗ χ and 1 ⊗ χσ respectively. Hence I(F/K) must act on x by
1 ⊗ χ−1. To construct x ∈ F ⊗Qp E with these properties we first note that σ2(x) = x forces
x to lie in K(Wn

f ) ⊗Qp
E, since K(Wn

f ) is the fixed field of 〈σ2〉. Now K(Wn
f )/Qp is a normal

extension. By the normal basis theorem choose θ ∈ K(Wn
f ) whose conjugates form a basis of

K(Wn
f )/Qp. Now every element of K(Wn

f ) ⊗Qp
E, and in particular x, can be uniquely expressed

as
∑
g∈Gal(K(Wn

f )/Qp) g(θ)⊗ ag. In view of the structure of Gal(K(Wn
f )/Qp) we may further write

x =
∑

g∈I(F/K)

g(θ)⊗ ag +
∑

g∈I(F/K)

σg(θ)⊗ bg.

Since I(F/K) must act on x by 1 ⊗ χ−1 we see that ah−1g = χ−1(h)ag and bh−σg = χ−1(h)bg, for
all h, g ∈ I(F/K), where h−σ := σ−1h−1σ. Taking g = 1 we see that x has the form:

a ·
∑

g∈I(F/K)

g(θ)⊗ χ(g) + b ·
∑

g∈I(F/K)

σg(θ)⊗ χσ(g),

where a, b ∈ E. Note that a and b are parameters which determine an element in P1(E). Now the
line

Fil0(DF ) = (F ⊗Qp
E)(xe1 + σ(x)e2)

is stable by Gal(F/Qp). Since e1 and e2 are only well determined up to multiplication by the same
constant, the isomorphism class of the filtered module is parametrized by (a, b) ∈ P1(E).

To summarize, the admissible filtered modules attached to ρ in this case are given by

Dunr−sc[a : b] = (F0 ⊗Qp E)e1 ⊕ (F0 ⊗Qp E)e2
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with

Dunr−sc[a : b] =



ϕ(e1) = 1√
t
e1

ϕ(e2) = 1√
t
e2

t ∈ OE , valp(t) = k − 1
N = 0

σ(e1) = e2

σ(e2) = e1

g(e1) = (1⊗ χ(g))e1, g ∈ I(F/K)
g(e2) = (1⊗ χσ(g))e2, g ∈ I(F/K)

Fil0(DF ) = (F ⊗Qp E) (xe1 + σ(x)e2) , x = x(a, b)
(a, b) ∈ P1(E).

3.4. Ramified supercuspidal case. Let us now assume that K/Qp is a ramified quadratic exten-
sion, and that τ = IndWp

WK
(χ)|Ip = IndIpIK (χ|IK ), where χ is a character of WK , finite on IK , such

that χ|IK does not extend to Ip. Let ι be the non-trivial element of Gal(K/Qp).

3.4.1. Description of Gal(F/Qp). As before, we must write down a Galois extension F of Qp such
that τ |IF = 1. Let Km denote the unramified extension of K of degree m, for m ≥ 1. Let π be
a uniformizer of K, let f(X) = πX + Xp, and as before let Wn

f , for n ≥ −1, denote the (πn+1)-
torsion of the ring of integers of the completion of the algebraic closure of K, where the OK-module
structure is induced by the formal group associated to f . Then Kn

π = K(Wn
f ) is a totally ramified

abelian extension of K with

Gal(Kn
π/K) ∼= U/Un+1 = F×p ×OK/πn,

where U and Un+1 are the units, respectively principal units of level n + 1, of OK . Note that
OK/π2n = Z/pn ⊕ Z/pn. By local class field theory every abelian extension of K is contained in
KmKn

π for some m, n.
Now choose L/K finite cyclic such that χ|IL = 1. Then L ⊂ KmKn

π for some m, n. Neither
L/Qp nor Kn

π/Qp is necessarily a Galois extension. The problem of course is that these fields are
not preserved by (a lift of) ι ∈ Gal(K/Qp). Equivalently, the polynomial f is not defined over Qp

but over K. To remedy this assume that πι = −π and consider the Lubin-Tate extension Kn
−π

corresponding to the polynomial f−π(X) = −πX +Xp. Then (Kn
π )ι = Kn

−π and Kn
πK

n
−π is Galois

over Qp. Noting K× = 〈π〉×UK , we have Norm(Kn
π ) = 〈π〉×Un+1 and Norm(Kn

−π) = 〈−π〉×Un+1

so that the intersection of these two norm subgroups is the index two subgroup 〈π2〉×Un+1. Since the
composition of abelian extensions of K corresponds (via local class field theory) to the intersection
of the corresponding norm subgroups we see that Kn

πK
n
−π is an index two over-field of Kn

π obtained
by composing Kn

π with an unramified quadratic extension. Indeed if Kn
π = K(α), then Kn

−π = K(β)
with β = ζα and ζp−1 = −1, and Kn

πK
n
−π = K(α, ζ). Replacing m by 2m to ensure it is even we

see that K2mKn
π is a Galois extension of Qp. Finally since OK/π2n = Z/pn ⊕ Z/pn, we will find it

convenient to replace n by 2n so that it too is even.
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Now set F = K2mK2n
π . From what we have just said F/Qp is a Galois extension containing both

L and Lι. In particular τ |IF = 1 and ρ becomes crystalline over F .
In order to describe the Galois group of F/Qp explicitly, note that there is an exact sequence

1→ Gal(F/K)→ Gal(F/Qp)→ Gal(K/Qp)→ 1,(3.4)

where

Gal(F/K) = Gal(F/K2n
π )×Gal(F/K2m) = 〈σ〉 × (∆× Γ), Gal(K/Qp) = 〈ι〉,

with σ2m = 1, and

∆ = F×p = 〈δ〉 with δp−1 = 1,

Γ = OK/π2n = 〈γ1〉 × 〈γ2〉 with γp
n

i = 1 for i = 1, 2.

Here ∆ and Γ are the tame and wild parts of the inertia subgroup I(F/K) = Gal(F/K2m).
We now claim that the exact sequence (3.4) does not split. Write ι ∈ I(F/Qp) for a lift of the

order 2 element ι ∈ I(K/Qp) = Gal(K/Qp). Then this element does not have order 2 in Gal(F/Qp),
since otherwise it would have order prime to p and would lie in the tame part of I(F/Qp). But this
subgroup already contains the order 2 element δ(p−1)/2 which is necessarily different from ι since it
fixes K. This means that the tame part of I(F/Qp) is not cyclic, a contradiction.

However we may assume that ι2 = δ. Indeed note that I(F/K) is a normal subgroup of I(F/Qp)
and the conjugation action of ι is given by:

sι−1δι = δ, ι−1γ1ι = γ1, and ι−1γ2ι = γ−1
2 .(3.5)

These relations can be checked using the functoriality of the Artin map as in the unramified su-
percuspidal case. Thus the action of ι on δ, γ1 and γ2 can be determined by looking at the action
of ι on K×/Norm(K2n

π ) = F×p × U1/U2n+1, with U1/U2n+1
∼=OK/(π)2n = (Zp ⊕ Zp · π)/(p)n =

Z/pn ⊕ Z/pn · π̄, and noting πι = −π. In any case the relations (3.5) along with the identity
(ι2)ι = ι(ι2) show that ι2 belongs to the center of I(F/Qp), and hence ι2 = δaγb1 for some a, b. Since
b ≡ 2c mod pn for some c, we may modify ι to assume b = 0. We may similarly modify ι so that
a = 0 or 1, but after what has been said above about the cyclicity of tame inertia, we must have
a = 1. Thus we may assume that ι2 = δ, as claimed.

It remains to describe the commutator of ι and σ. Note that ισι−1 6= σ since as remarked above
K2n
π /Qp is not a normal extension. However L = K2n

π K2n
−π = K(α, ζ), the fixed field of 〈σ2〉, is a

normal extension of Qp, and an easy check using the Artin map once more shows that ισ2ι−1 = σ2.
Indeed L×/Norm(F ) = (〈α〉 × O×L )/(〈αm〉 × O×L ) and αι = ζα and ζ is a norm. It follows that
ισι−1σ−1 is an order 2 element of Gal(F/K), and so must be either σm, or δ(p−1)/2, or a product
of these two elements. The first and last cases are impossible since ισι−1σ−1 fixes Qp2m , so in
particular fixes the group of (p2m−1)-th roots of 1, whereas σm : u 7→ up

m

acts non-trivially on this
group. Hence

ι−1σι = σ · δ(p−1)/2.(3.6)
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Summarizing we see that Gal(F/Qp) is generated by the abelian index two subgroup Gal(F/K) =
〈σ〉 ×∆× Γ, with notation as above, and the element ι satisfying ι2 = δ ∈ ∆ and the commutation
relations (3.5), (3.6) above. We note that F0 = Qp2m and the inertia subgroup of Gal(F/Qp) is a
(non-split) extension of ∆× Γ by a group of order 2.

3.4.2. Description of the Galois action. Now D is a free (F0⊗Qp
E)-module of rank 2. As before set

Di = D⊗F0⊗E,σiE, for i = 0, 1, . . . , 2m−1. Each Di is a Weil-Deligne representation and the action
of Ip is given by the action of the inertia subgroup of Gal(F/Qp). Now write χ|IK = ωj · χ1 · χ2,
where ω is the Teichmüller character, and χi(γi) = ζi, with ζi a pn-th root of 1, for i = 1, 2 (the
condition that χ|IK does not extend to Ip is equivalent to ζ2 6= ζ−1

2 ). It follows that there is a basis
vi1, vi2 of Di such that:ι · vi1 = vi2

ι · vi2 = ωj(δ) · vi1
and

δ · vi1 = ωj(δ) · vi1, γ1 · vi1 = ζ1 · vi1, γ2 · vi1 = ζ2 · vi1,

δ · vi2 = ωj(δ) · vi2, γ1 · vi2 = ζ1 · vi2, γ2 · vi2 = ζ−1
2 · vi2.

Note that for each i, the vectors vi1 and vi2 are determined up to multiplication by the same constant.
Since σ commutes with γ2 and σ : Di → Di+1, arguments similar to those in section 3.3.2, along

with the relation (3.6), show that we may assume

σ · vi1 = vi+1,1,

σ · vi2 = (−1)j · vi+1,2.

We note that ωj(δ(p−1)/2) = (−1)j . Now all the vi1 and vi2 are determined up to multiplication by
the same constant (independent of i).

3.4.3. Definition of action of ϕ. Since ϕ : Di → Di+1 commutes with the action of Gal(F/Qp) and
in particular with the action of γ2 we see that

ϕ · vi1 = cvi+1,1,

ϕ · vi2 = dvi+1,2,

where c and d are constants. Again the fact that these constants can be taken independent of i
follows from the fact that ϕ commutes with σ. Moreover, since ϕ commutes with ι, we must have
c = d. Set

e1 = v01 + v11 + · · ·+ v2m−1,1,

e2 = v02 + v12 + · · ·+ v2m−1,2.

After what has been said above concerning the vij we see that e1 and e2 are determined up to
multiplication by the same constant. Clearly ϕ(e1) = ce1 and ϕ(e2) = ce2. Set t = 1/c2. The
admissibility condition implies that valp(t) = k − 1.
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3.4.4. Definition of the filtration. Finally we describe the filtration on DF . As in section 3.3.4 every
Gal(F/Qp) stable line in DF is spanned by an invariant vector. Say v = xe1 + ye2 is such a
vector. Note that I(F/K) acts on e1 and e2 by χ and χι respectively, where χι(g) = χ(ι−1gι), for
g ∈ Gal(F/K). Thus I(F/K) must act on x and y by 1 ⊗ χ−1 and 1 ⊗ (χι)−1 respectively. Since
ιe1 = e2 and ιe2 = (1⊗ ωj(δ))e1, we see that v has the form xe1 + ι(x)e2. Further since σ fixes e1

and acts by (−1)j on e2 and satisfies the commutation relation (3.6), we see that σ(v) = v forces
σ(x) = x.

To construct x ∈ F ⊗Qp
E with these properties we proceed as before. First note that σ(x) = x

implies that x ∈ K2n
π ⊗Qp

E. Choose θ ∈ K2n
π such that the conjugates of θ under the action of

I(F/K) ∼= Gal(K2n
π /K) form a basis of K2n

π over K = Qp(π). Then the elements g(θ), πg(θ), for
g ∈ I(F/K) form a basis of K2n

π over Qp. Now every element in K2n
π ⊗Qp

E, and x in particular,
can be written uniquely as ∑

g∈I(F/K)

g(θ)⊗ ag +
∑

g∈I(F/K)

πg(θ)⊗ bg.

Using the action of I(F/K) we see that ah−1g = χ−1(h)ag for all h, g ∈ Gal(F/K), and similarly
for bg. Taking g = 1 we see that x has the form:

a ·
∑

g(θ)⊗ χ(g) + b ·
∑

πg(θ)⊗ χ(g),

where a, b ∈ E. Then Fil0(DF ) = (F ⊗Qp E)(xe1 + ι(x)e2) for some a, b ∈ E. Since e1 and
e2 are only determined up to multiplication by the same constant, (a, b) ∈ P1(E) parametrize all
possibilities for Fil0(DF ).

To summarize, the admissible filtered modules attached to ρ are given by

Dram−sc[a : b] = (F0 ⊗Qp
E)e1 ⊕ (F0 ⊗Qp

E)e2

with

Dram−sc[a : b] =



ϕ(e1) = 1√
t
e1

ϕ(e2) = 1√
t
e2

t ∈ OE , valp(t) = k − 1
N = 0

σ(e1) = e1

σ(e2) = (−1)j · e2

ι(e1) = e2

ι(e2) = (1⊗ ωj(δ))e1

g(e1) = (1⊗ χ(g))e1, g ∈ I(F/K)
g(e2) = (1⊗ χι(g))e2, g ∈ I(F/K)

Fil0(DF ) = (F ⊗Qp E) (xe1 + ι(x)e2) , x = x(a, b)
(a, b) ∈ P1(E).
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In both the unramified and ramified supercuspidal cases the filtration depends on a parameter in
P1(E). When f is a primitive elliptic modular cusp form of weight k ≥ 2, level N , and character ε,
and p2|N but the power of p dividing N is different from the power of p dividing cond(ε), then the
associated filtered module can be of supercuspidal type. In such cases it seems to be an open and
intriguing question to relate this parameter to the underlying form.
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