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1 Introduction

The twisted tensor L-function of f , which we denote by G(s, f), is a certain
Dirichlet series associated to a quadratic extension of number fields K/F , and
a cuspidal automorphic function f over K. It was introduced in [1] by Asai,
following previous work of Shimura, in the case when f is a Hilbert modular
cusp form over a real quadratic extension K of Q.

In the past twenty odd years, this L-function has been considered more
generally: for instance [11] and [12] deal with quadratic extensions of totally
real fields, [17] with imaginary quadratic extensions of Q, and [3], [4] and [14]
with general quadratic extensions of number fields. All these papers have been
primarily concerned with establishing analytic properties of G(s, f) analogous
to those in [1], such as meromorphic continuation to the entire complex plane,
location and finiteness of the number of poles, and functional equation.

The aim of this paper is to prove a rationality result for G(s, f) in the
imaginary quadratic setting. If K is an imaginary quadratic field, and f a cusp
form associated to K, we establish that there is a ‘period’ Ωj(f) such that

G(j, f)

Ωj(f)
∈ E

for a finite set of integers j depending on the weight of f . Here E is a finite
extension of the number field generated by the Fourier coefficient of f . Moreover,
the period Ωj(f) is the product of a fixed (probably transcendental) constant
Ω(f), a power of 2πi depending on j and a certain Gauss sum.

If we assume that G(s, f) is motivic, we may interpret our result in the
framework of Deligne’s famous conjectures on motivic L-functions, outlined in
[2]. Indeed, assuming that there is a rank 2 motive associated to f defined over
K, the integers j above are the critical integers (in the sense of [2]) in the right
half of the critical strip of the appropriately defined motive, whose L-function
is G(s, f). Moreover, the general shape of the period Ωj(f) is predicted by this
conjectural framework (Proposition 3 and Remarks 3 and 4).
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Unfortunately, since it is only conjectured that G(s, f) is motivic, we cannot
realize Ωj(f) as a motivic period. Rather, we follow an alternative program of
Hida outlined in [10], to define a period independently of the motivic setting.
Indeed, in [10], Hida has used his period to establish rationality results for other
L-functions: for the standard L-function associated to a cusp form over an
arbitrary number field, as well as for the Rankin product L-function of two such
forms. Our proof in the ‘twisted tensor case’ follows very closely the methods
of that paper.

Let us now briefly summarize the method of proof. The cusp form f may be
realized as a tuple of functions on H, the symmetric space (upper half hyperbolic
three space) associated to K, each of which satisfies an automorphy condition
with respect to a congruence subgroup of K. Since Q has class number one,
for the purposes of our computations it turns out that it suffices to work with
any one of these functions; we pick one, for which the corresponding congruence
subgroup is Γ0(N) (N is a fixed ideal ofK, the level), and continue to denote this
function by f . Now f ∈ Sn(Γ0(N), χ−1

N
), the corresponding space of cusp forms

with ‘nebentypus’ character χ−1
N

. Via the Eichler-Shimura-Harder isomorphism

δ : Sn(Γ0(N), χ−1
N

) −→ H1
cusp(Γ0(N)\H, L̃(n,C))

we may realize f as a differential 1-form, δ(f), on the locally symmetric threefold

Γ0(N)\H. Note that δ(f) takes values in the sheaf L̃(n,C) constructed (up to a
twist) from the irreducible SL2(K)-module L(n,C) = Symn(C2)⊗Symn(C2),
with SL2(K) acting on the two factors via the two embeddings of K into C.

Imitating the (now) standard method of Asai and Shimura (in [1]), we repre-
sent G(s, f) as the Rankin-Selberg convolution of δ(f)

∣∣
H

with an elliptic mod-

ular Eisenstein series. Here δ(f)
∣∣
H

denotes the restriction of δ(f) to the elliptic
modular twofold corresponding to the inclusion Q ⊂ K. Since L(n,C) is no
longer irreducible as an SL2(Q)-module, δ(f)

∣∣
H

decomposes accordingly as a
sum of differential forms indexed by the irreducible SL2(Q)-factors. Actually
it is these forms that we integrate, and so in reality we obtain a finite collection
of integral expressions for G(s, f) (see Section 6.3, Equation 29).

By specializing these expressions at s = 0, we may interpret the resulting
special values of G(s, f) in terms of the perfect pairing between ordinary and
compactly supported de Rham cohomology, that is, in terms of the Poincaré
duality pairing. There is a natural E-rational structure on these complex coho-
mology groups. This rational structure differs, of course, from that coming from
the Whittaker model (Fourier expansion for f), via the Eichler-Shimura-Harder
map δ. Following Hida, we measure the difference in these rational structures
via the period Ω(f) ∈ C× defined as follows:

δ(f) = Ω(f) η(f),

where η(f) is an E-rational cohomology class. Then, since (the class of) the
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Eisenstein series at s = 0 is E-rational, we are led to the rationality result we
seek (Theorem 1).

There is an interesting computational complication that we must tackle along
the way. In reality, each of the integral expressions contains an algebraic sum
of Gamma factors. It is not a priori obvious that this sum does not vanish at
s = 0, and that, for this reason, in the proof of Theorem 1, we are not dividing
by zero! Though it seems quite difficult to establish this non-vanishing by direct
computation we are nonetheless able to do this indirectly thanks to a suggestion
of Hida (see Proposition 5).

The methods of this paper readily generalize to the CM case: that is, we
are able to obtain a rationality result for the twisted tensor L-function attached
to a cusp form over a CM field. Though the idea of proof is the same, the
calculations are more complicated. The details will appear in [5]. We should
also point out that that an algebraicity result for G(s, f) had been obtained by
Shimura much earlier in the totally real case, but only for those Hilbert modular
forms f coming from the Jacquet-Langlands correspondence (see [15]).
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Notation

From now on K will be an imaginary quadratic field, say K = Q(
√
−D),

D > 0, with −D the discriminant of K. Let O be the ring of integers of K. Fix
an ideal N ⊂ O, and let N > 0 denote the generator of the ideal N ∩ Z.

We denote the two embeddings of K into C by i and c. Let n = nii+ ncc
and v = vii+ vcc be formal sums in Z[{i, c}]. We assume ni, nc ≥ 0.

Let W (n∗,C) be the space of homogeneous polynomials of degree n∗ =
ni + nc + 2 over C in two variables s =

(
S
T

)
. In general we will consider

functions f : X → W (n∗,C), for various spaces X , in which case we will
sometimes write f(x, s) or f(x,

(
S
T

)
), to emphasize the dependence of f on the

variables s =
(

S
T

)
.

2 Cusp forms associated to K

We consider modular forms on the adèle group GA = GL2(KA), where KA is
the adèle ring of K.
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Identify the center of GA with the idele group K×
A

. Let χ : K×\K×
A

→ C×

be a Hecke character, whose conductor divides N, and whose infinity type is
−n− 2v.

Let Ô =
∏

℘ finite O℘. Fix U0(N) =
{(

a
c

b
d

)
∈ GL2(Ô) | c ≡ 0 mod NÔ

}
, a

compact open subgroup of the finite part of GA. Note χ|Ô×
may be considered

as a character on (O/NO)×, and we will denote this character by χN. For
uf =

(
a
c

b
d

)
∈ U0(N) we set χN(uf ) = χN(d) =

∏
℘|N χ℘(d℘).

Definition 1 A cusp form (of weight (n,v), level N, and central action χ) is
a function f : GA →W (n∗,C) satisfying the following properties

1. f(γg, s) = f(g, s) for all γ ∈ GL2(K)

2. f(zg, s) = χ(z)f(g, s) for all z ∈ K×
A

3. f(gu, s) = χN(uf )f(g, u∞
(

S
T

)
) for u = uf · u∞ ∈ U0(N) · SU2(C)

4. f is an eigenfunction of the operators Dσ, for σ = i, c:

Dσf = (n2
σ/2 + nσ)f,

where Dσ/4 denotes a component of the Casimir operator in the Lie alge-
bra sl2(C)⊗R C (see [9], Section 1.3), and where we consider f(gfg∞, s)
as a function of g∞ ∈ GL2(C)

5. f satisfies the cuspidal condition

∫

U(Q)\U(A)

f(vg, s) du = 0

for all g ∈ GA, where

U(Q) =
{
v =

(
1 u
0 1

) ∣∣ u ∈ K
}
,

U(A) =
{
v =

(
1 u
0 1

) ∣∣ u ∈ KA
}

and du is the Lebesgue measure on KA.

Let us denote the space of such forms by S(n,v)(N, χ). Any such form f spans

the space for a cuspidal automorphic representation of GA whose infinity com-
ponent is

π∞
(
z−(ni+vi+3/2) z̄−(vc+1/2), z−(nc+vc+3/2) z̄−(vi+1/2)

)
.

Further since we are dealing with cusp forms we may assume (see [10], Section
2.5, Corollary 2.2) that ni = nc, so from now on we simply denote this common
value by n. In particular n∗ = 2n+ 2.
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2.1 Fourier expansions

If f : GA → W (n∗,C) is a cusp form as above, then f has Fourier expansion
(cf. [10], Theorem 6.1):

f
( y x

0 1

)
= |y|K

∑

ξ∈K×

c (ξyd, f)W (ξy∞) eK(ξx).

Here

• | |K is the usual idele character of K×
A

trivial on K×

• d is an idele such that dO = ϑ, the different of K

• The Fourier coefficient c ( , f) may be considered as a function on the
fractional ideals of K that vanishes outside the integral ideals

• W : C× →W (n∗,C) is the Whittaker function

W (s) =

n∗∑

α=0

(
n∗

α

)
1

svi s̄vc

(
s

i|s|

)n+1−α

Kα−(n+1)(4π|s|) Sn∗−αTα

where Kα(x) is (a modified Bessel function which is) a solution to the
differential equation

d2Kα

dx2
+

1

x

dKα

dx
−
(

1 +
α2

x2

)
Kα = 0

having asymptotic behaviour Kα(x) ∼
√

π
2xe

−x as x→ ∞

• eK is an additive character of KA, trivial on K, defined as follows

eK =
∏

℘

(ep ◦ trK℘/Qp
) · (e∞ ◦ trC/R),

where ep(
∑

j cjp
j) = e

−2πi
∑

j<0
cjpj

and e∞(r) = e2πir.

2.2 Hyperbolic three space H

Since we will need to work with certain functions and differential forms associ-
ated to f defined on hyperbolic upper half three space

H =

{(
x −y
y x̄

)∣∣∣∣ x ∈ C, y ∈ R, y > 0

}
,

we discuss some of its properties here (cf. [9], Section 1.1).
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Note SL2(C) acts transitively on H, via

γ · z = (ρ(a) z + ρ(b)) (ρ(c) z + ρ(d))−1

where γ =
(

a
c

b
d

)
∈ SL2(C), z =

(
x
y
−y
x̄

)
∈ H and ρ(t) =

(
t
0

0
t̄

)
. Fix a point

ε =
(

0
1
−1
0

)
∈ H. Then the stabilizer of ε is SU2(C) and so we may identify the

symmetric spaces
SL2(C)

/
SU2(C)

' H.

Note that the Poincaré upper half plane H naturally sits in H via

x+ iy ↪→
(

x −y
y x

)
.

The above action of SL2(C) on H extends the standard action of SL2(R) on
H via fractional linear transformations.

Let

π : SL2(C) −→ SL2(C)
/
SU2(C)

' H

denote the canonical projection. It TεH denotes the tangent space of H at
ε ∈ H, then the differential of π at the identity I ∈ SL2(C) induces a surjection
dIπ : sl2(C) → TεH, whose kernel is su2(C). On the other hand we have the
decomposition

sl2(C) = su2(C) ⊕ p

where p is the Lie algebra of the subgroup of upper triangular matrices in
SL2(C) with real diagonal entries. Thus we may canonically identify p with
TεH. Under this identification the basis P = 1

2 ( 1 0
0 1 ), R = ( 0 1

0 0 ), and S = ( 0 i
0 0 )

of p generate the vector fields 1
y

∂
∂y , 1

y
∂
∂r , and 1

y
∂
∂s on H, under translation by

g = 1√
y

( y x
0 1

)
∈ SL2(C). Here x = r + is. Furthermore, P , Q = 1/2(R − iS)

and Q = 1/2(R+ iS) form a basis for the complexified Lie algebra p
C

= p⊗R C

and generate the vector fields 1
y

∂
∂y , 1

y
∂
∂x , and 1

y
∂
∂x̄ .

A computation shows that the adjoint action of SU2(C) on p
C

(which co-
incides with the natural action of dεu ⊗ 1 on Tε(H) ⊗ C for u ∈ SU2(C)) is
nothing but the symmetric square of the standard representation of GL2(C)
on C2. More precisely, let ρm = Symm(C2) be the mth symmetric tensor
representation of the standard representation of GL2(C) on C2. Thus

ρm

((
a b
c d

))(
S
T

)m
=
((

a b
c d

)(
S
T

))m
,

where (
S
T

)m
= (Sm, Sm−1T, . . . , STm−1, Tm)t.

Then, in the ordered basis Q, −P , −Q of p
C
, we have

Ad(u) ⊗ 1 = ρ2(u), (1)
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for all u ∈ SU2(C).
Let us translate this into the dual setting. Note that dx, dy, dx̄ form a ‘basis’

(over C∞(H), the space of C∞ functions on H), for Ω1(H), the space of C∞

global 1-forms on H. There is a left action of SL2(C) on Ω1(H) induced by pull
back: for γ ∈ SL2(C) and ω ∈ Ω1(H) set γ · ω = ω ◦ γ−1 where

(f1(z)dx+ f2(z)dy + f3(z)dx̄) ◦ γ = (2)

f1(z)d(x ◦ γ) + f2(z)d(y ◦ γ) + f3(z)d(x̄ ◦ γ).

Evaluation at the origin ε ∈ H induces a map

Ω1(H) → Tε(H)∗, ω 7→ ωε

and this map is SU2-equivariant. Let L(2,C) denote the space of homogeneous
polynomials over C of degree two in a =

(
A
B

)
. Under the action g · P (

(
A
B

)
)) =

P (gι
(

A
B

)
) (where gι = det(g)g−1 is the adjoint of g), L(2,C) is a model for

the representation dual to ρ2. Moreover, in view of (1) above, the map from
Tε(H)∗ ⊗ C to L(2,C) defined by

dxε 7→ A2, −dyε 7→ AB, −dx̄ε 7→ B2 (3)

is an isomorphism of SU2(C)-modules. Composing the evaluation map with the
map (3) above, we get an SU2(C)-map

Ω1(H) → L(2,C). (4)

We introduce the automorphy factor j(γ, z) = ρ(c) z + ρ(d). Let Θ(γ) =(
ρ(a) ρ(b)
ρ(c) ρ(d)

)
. Then since Θ(γ)

(
z
Id2

)
=

(
γz
Id2

)
j(γ, z), we indeed see that

j(γ1γ2, z) = j(γ1, γ2z) j(γ2, z),

for all γ1, γ2 ∈ SL2(C).
Using the automorphy factor we may describe the behaviour of differential

forms on H under pull back. Indeed if γ ∈ SL2(C), a lengthy, but elementary,
computation yields (cf. [10], Equation 2.4)




d (x ◦ γ)
−d (y ◦ γ)
−d (x̄ ◦ γ)


 = ρ2(

tj(γ, z))−1




dx
−dy
−dx̄


 . (5)

The pull back action of γ ∈ SL2(C) described in (2) above, induces via the
map (4), a map on L(2, C) which, in view of (5), may easily be checked to be
given by

P (
(

A
B

)
) 7→ P (tj(γ−1, ε)−1

(
A
B

)
). (6)

We will use this fact later in the construction of the Eichler-Shimura-Harder
isomorphism.
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2.3 Relation between forms on GL2(KA) and H

Let h denote the class number of K. Starting with an ‘adèlic’ cusp form f ∈
S(n,v)(N, χ), we show how to associate h ‘cusp forms’ Fi on GL2(C), and thus,

h ‘cusp forms’ fi on H, to f .
The strong approximation theorem gives us the decomposition

GL2(KA) =
h∐

i=1

GL2(K) ti U0(N)GL2(C)

where ti =
(

ai

0
0
1

)
, for certain finite ideles ai. We may assume a1 = 1. Set

ai = aiO. For a a fractional ideal of O, we define the discrete subgroup Γa of
SL2(K) via

Γa =
{(

a b
c d

) ∣∣ a, d ∈ O, b ∈ a, c ∈ a−1N, ad− bc = 1
}
.

We see that SL2(K) ∩ tk U0(N) t−1
k GL2(C) = Γai

.
Define for i = 1, . . . , h,

Fi : GL2(C) −→ W (n∗,C)

Fi(g) = f(tig).

Each of the Fi is a ‘cusp form’ on GL2(C), and determines in turn a ‘cusp form’
fi on H as follows. Define fi : H →W (n∗,C) by

fi(z,
(

S
T

)
) = Fi(g, j(g, ε)

t
(

S
T

)
),

where g ∈ SL2(C) is chosen such that g · ε = z. It is a routine matter to check
that fi is well defined and that it satisfies the automorphy condition

fi(γz, s) = χ−1
N

(d) fi(z, j(γ, z)
t s),

for all γ =
(

a
c

b
d

)
∈ Γai

. Thus fi ∈ Sn(Γai
, χ−1

N
), the space of cusp forms on H

satisfying the above automorphy condition.
The Fourier expansion of f also descends to H. In fact one may check each

fi has Fourier expansion

fi

((
x −y
y x̄

)
,
(

S
T

))
= |ai|K y

n∗∑

α=0

(
n∗

α

) [ ∑

ξ∈K×

c (ξaid) (7)

(
ξ

i|ξ|

)n+1−α
1

ξvi ξ̄vc
Kα−n−1(4πy|ξ|) eK(ξx)

]
Sn∗−αTα

We will use the above expansion when i = 1.
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3 What is the Twisted Tensor L-function?

3.1 Definitions

Let f ∈ S(n,v)(N, χ) be as in Definition 1. In addition, we will hereafter assume

that f is a normalized primitive form. In this section we recall the definition of
the twisted tensor L-function of f , and the ‘twisted’ twisted tensor L-function
of f (the tongue-twisting terminology is regretted, but the latter L-function will
not play a big role in this paper, even though a rationality result for it should
be provable using the techniques of this paper).

Let
ψ = χ|Q · | |2n+2vi+2vc

Q
: Q×\Q×

A
−→ C×,

where | |Q is the usual idele character of Q×
A

. We will regard ψ as a Dirichlet
character

ψN : (Z/NZ)× → C×,

though we note that LN (s, ψ) = LN(s, ψ−1
N ). We will also need the quadratic

character (i.e. the Legendre symbol) associated to K:

χD =
(−D)

: (Z/DZ)× → {±1}.

Recall that

χD(p) =





1 if p splits in K,

−1 if p is inert in K,

0 if p|D, i.e. if p ramifies in K.

Definition 2 The standard L-function associated to f is

D(s, f) =
∑

m⊂O

c (m, f)

N(m)s
.

In analogy with [1] we also make the following definitions:

Definition 3 The twisted tensor L-function of f is

G(s, f) = LN (2s− 2n− 2vi − 2vc − 2, ψ−1
N ) ·

∞∑

m=1

c (m, f)

ms
.

Note that the twisted tensor L-function is essentially a ‘sub’ L-function of
D(s, f), obtained by restricting the summation to (integral) ideals coming from
Q. The choice of nomenclature ‘twisted tensor’ is more natural in the context
of automorphic representations (see for instance [3]) and here we use this name
for lack of a better alternative. However, in the literature G(s, f) is sometimes
referred to as an L-function of Asai type.
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Definition 4 The ‘twisted’ twisted tensor L-function of f is

G(s, f, χD) = LN (2s− 2n− 2vi − 2vc − 2, ψ−1
N ) ·

∏

p|D
(1 + χ(℘)p−s+1) ·

∞∑

m=1

c (m, f)χD(m)

ms
.

Definition 5 The Rankin product L-function of f (and f c) is

H(s, f) = LN(2s− 2, χχc) ·
∑

m⊂O

c (m, f) c (m̄, f)

N(m)s
.

Here f c denotes the common eigenform of the Hecke operators with eigenvalues
c (m, f c) = c (m̄, f), and χc is the character defined by χc(℘) = χ(℘̄).

The Hecke L-functions appearing in the definitions above ensure that each
of the above L-functions has a ‘good’ Euler product expansion.

3.2 Euler product expansions

Each of the above L-functions has a well known Euler product expansion (see
[1], [11], [15], [17]) which we list for the sake of completeness, as well as for
the purposes of our (conjectural) interpretation of these L-functions as motivic
L-functions in Section 4. For simplicity we write c(m) for c (m, f). Recall that
D(s, f) =

∏

℘|N

1

1 − c(℘)N(℘)−s
·
∏

℘6 | N

1

1 − c(℘)N(℘)−s + χ(℘)N(℘)1−2s
.

Let α℘ and β℘ denote the reciprocal roots of the polynomial

1 − c(℘)X + χ(℘)N(℘)X2.

A routine computation (see [6], Chapter 3.2) shows that the (reciprocal of
the) p-Euler factor of H(s, f) is given by 1

Hp(s,f) =





(1 − α℘α℘̄p
−s)2(1 − α℘β℘̄p

−s)2(1 − β℘α℘̄p
−s)2(1 − β℘β℘̄p

−s)2

if p = ℘℘̄,

(1 − α2
℘p

−2s)(1 − χ(℘)p−2s+2)2(1 − β2
℘p

−2s)

if p = ℘,

(1 − α2
℘p

−s)(1 − χ(℘)p−s+1)2(1 − β2
℘p

−s)

if p = ℘2.

Lemma 1 LN(2s− 2, χ|Q) = LN (2s− 2n− 2vi − 2vc − 2, ψ−1
N ).
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Proof

LN(2s− 2, χ|Q) = LN (2s− 2, ψ · | |−2n−2vi−2vc
Q

)

=
∏

p 6 | N

1

1 − ψ(ω̃p) |ω̃p|−2n−2vi−2vc
QA

p−(2s−2)

=
∏

p6 | N

1

1 − ψ(ω̃p)p−(−2n−2vi−2vc+2s−2)

= LN (2s− 2n− 2vi − 2vc − 2, ψ)

= LN (2s− 2n− 2vi − 2vc − 2, ψ−1
N ). 2

Using Lemma 1, one may similarly compute that the (reciprocal of the)
p-Euler factor of G(s, f) is given by 1

Gp(s,f) =





(1 − α℘α℘̄p
−s)(1 − α℘β℘̄p

−s)(1 − β℘α℘̄p
−s)(1 − β℘β℘̄p

−s)

if p = ℘℘̄,

(1 − α℘p
−s)(1 − χ|Q(p)p−2s+2)(1 − β℘p

−s)

if p = ℘,

(1 − α2
℘p

−s)(1 − χ(℘)p−s+1)(1 − β2
℘p

−s)

if p = ℘2.

Finally, another use of Lemma 1, shows that the (reciprocal of the) p-Euler
factor for G(s, f, χD) is given by 1

Gp(s,f,χD) =





(1 − α℘α℘̄p
−s)(1 − α℘β℘̄p

−s)(1 − β℘α℘̄p
−s)(1 − β℘β℘̄p

−s)

if p = ℘℘̄,

(1 + α℘p
−s)(1 − χ|Q(p)p−2s+2)(1 + β℘p

−s)

if p = ℘,

(1 − χ(℘)p−s+1)

if p = ℘2.

Remark 1 Following Asai, we note the splitting formula (cf. [1], Theorem 3)

H(s, f) = G(s, f) ·G(s, f, χD).

This follows immediately from the Euler product expansions above.

4 Motivic Interpretation of G(s, f)

It is natural to expect that each of the L-functions in Section 3 is motivic, in
the sense of [2]. In this section we make this conjectural identification concrete.
In particular, this allows us to compute the ‘critical strip’ for the twisted tensor
L-function of f and to state Deligne’s conjecture describing its behaviour at the
critical integers.

11



4.1 Motives

Let f be as in Section 3. Following [10], we hypothesize the existence of a rank 2
motive M over K, with coefficients in E, a finite extension of Q(f) (the number
field generated by the Fourier coefficients of f), and weight w = n+ 1 + vi + vc.
We have the following realizations of M (see [2])

• Betti realization: Hσ(M), where σ = i, c. Each is a two-dimensional
E-vector space.

• de Rham realization: HDR(M), a two-dimensional E ⊗K-module.

• `-adic realization: H`(M). This is a two-dimensional E ⊗ Q`-module
equipped with a continuous action of Gal(Q̄/K), say ρ. We expect ρ to
be unramified outside N`, and we also expect the identity

D℘(s, f) = (1 − α℘N(℘)−s)−1(1 − β℘N(℘)−s)−1

= det(1 − ρ(Frob℘)N(℘)−s, H`(M)I℘)−1 (8)

to hold for all ℘. In particular we expect that D(s, f) = L(s,M).

We have the Hodge decompositions (see [10], Section 8)

Hi(M) ⊗ C = H
(n+1+vi,vc)
i (M) ⊕H

(vi,n+1+vc)
i (M)

= (E ⊗ C) x⊕ (E ⊗ C) y

Hc(M) ⊗ C = H(n+1+vc,vi)
c (M) ⊕H(vc,n+1+vi)

c (M)

= (E ⊗ C) yc ⊕ (E ⊗ C) xc.

If F∞ : Hσ(M) → Hσc(M) is the isomorphism induced functorially from the
action of complex conjugation, then F∞ ⊗ 1 takes x to xc and y to yc.

Similarly, for the conjugate form f c, we hypothesize the existence of the
rank 2 motive M c over K, conjugate to M . It is also expected to have weight
w, coefficients in E, and realizations similar to the ones above. In fact we may
identify

Hi(M
c) = Hc(M) and Hc(M

c) = Hi(M). (9)

In this case the Hodge decompositions are

Hi(M
c) ⊗ C = H

(n+1+vc,vi)
i (M c) ⊕H

(vc,n+1+vi)
i (M c)

= (E ⊗ C) a⊕ (E ⊗ C) b

Hc(M
c) ⊗ C = H(n+1+vi,vc)

c (M c) ⊕H(vi,n+1+vc)
c (M c)

= (E ⊗ C) bc ⊕ (E ⊗ C) ac

with F∞ ⊗ 1 taking a to ac and b to bc. Because of (9), we identify a = yc,
b = xc, ac = x and bc = y.

12



Further if ρc : Gal(Q̄/K) −→ Aut(H`(M
c)) denotes the corresponding `-

adic representation of M c, then we may identify H`(M
c) with H`(M) and ρc

with the conjugate action of ρ, namely

ρc(h) = ρ(chc−1). (10)

Let us now consider the motive M ⊗M c, a rank 4 motive over K, of weight
2w = 2n+2+2vi +2vc, with coefficients in E, obtained by tensoring the above
two motives. This has realizations

• Betti: Hσ(M ⊗M c) = Hσ(M) ⊗E Hσ(M c), for σ = i, c

• de Rham : HDR(M ⊗M c) = HDR(M) ⊗E⊗K HDR(M c)

• `-adic : H`(M ⊗M c) = H`(M)⊗E⊗Q`
H`(M

c), with Galois action ρ⊗ρc :
Gal(Q̄/K) −→ Aut(V ⊗ V c), where V = V c = H`(M), but the action on
V c is as in (10).

Except for finitely many ℘ we have

(ρ⊗ ρc)(Frob℘) = ρ(Frob℘) ⊗ ρ(Frob℘̄)

=
( α℘ 0

0 β℘

)
⊗
( α℘̄ 0

0 β℘̄

)

so that

det(1 − (ρ⊗ ρc)(Frob℘)N(℘)−s)−1 = H℘(s, f).

This yields the identification

H(s, f) = L(s,M ⊗M c).

Let us now realize G(s, f) and G(s, f, χD) as motivic L-functions. We first
extend the representation ρ ⊗ ρc in two different ways. Set G = Gal(Q̄/Q),
H = Gal(Q̄/K). We have the exact sequence

1 −→ H −→ G −→< c >−→ 1

where c denotes the nontrivial automorphism of Gal(K/Q). We have also
been denoting c to be ‘complex conjugation,’ regarding it an automorphism
of Gal(Q̄/Q) with c2 = 1. In our computations, it will be convenient sometimes
to think of c more generally as an arbitrary lift of the nontrivial element of
Gal(K/Q) to G, in which case we simply have c2 ∈ H , say c2 = h0.

Now define R± : G −→ Aut(V ⊗ V c) via

R±(h)(v1 ⊗ v2) = hv1 ⊗ chc−1v2 if h ∈ H,

R±(c)(v1 ⊗ v2) = ±v2 ⊗ h0v1.

13



Here we are omitting ρ from the notation. One can easily check that R± :
G −→ Aut(V ⊗V c) are well defined homomorphisms, such that R±|H = ρ⊗ρc.
Furthermore, R+ (respectively R−) is independent of the choice of c ∈ G up to
isomorphism. Regarding χD =

(
−D
)

as a character of G (trivial on H) we see
that R− = R+ ⊗ χD.

Having defined two extensions of ρ⊗ρc to G, we also expect that the motive
M ⊗M c descends to Q in two corresponding ways, which we denote by (M ⊗
M c)+ and (M ⊗M c)−. These are expected to be rank 4 motives over Q, of
weight 2w, with coefficients in E, defined with respect to the descent data

i+ : M ⊗M c −→ M c ⊗M u⊗ v 7→ v ⊗ u

i− : M ⊗M c −→ M c ⊗M u⊗ v 7→ −v ⊗ u.

Thus, (M ⊗M c)+ has realizations

• Betti: HB((M ⊗ M c)+) = Hi(M) ⊗ Hi(M
c)

i+
= Hi(M

c) ⊗ Hi(M) =
Hc(M) ⊗Hc(M

c)

• de Rham: HDR((M ⊗ M c)+) = (HDR(M) ⊗ HDR(M c))Gal(K/Q) for a
suitable action of Gal(K/Q) on the differentials over K.

• `-adic: H`((M ⊗M c)+) = H`(M) ⊗E⊗Q`
H`(M

c)
i+
= H`(M

c) ⊗ H`(M),
with Gal(Q̄/Q)-action given by R+.

We have analogous realizations for (M ⊗M c)−. The Hodge decomposition of
(M ⊗M c)± is

HB((M ⊗M c)±) ⊗ C

= H
(2n+2+vi+vc,vi+vc)
B ⊕ H

(n+1+vi+vc,n+1+vi+vc)
B

⊕H
(n+1+vi+vc,n+1+vi+vc)
B ⊕ H

(vi+vc,2n+2+vi+vc)
B

= (E ⊗ C) (x⊗ a) ⊕ (E ⊗ C) (x⊗ b)

⊕ (E ⊗ C) (y ⊗ a) ⊕ (E ⊗ C) (y ⊗ b).

Note that the (p, p)-space is two dimensional. One may compute the action of
F∞ ⊗ 1 on this four dimensional space as follows:

x⊗ a 7→ xc ⊗ ac = b⊗ y 7→ ±y ⊗ b

x⊗ b 7→ xc ⊗ bc = b⊗ x 7→ ±x⊗ b

y ⊗ a 7→ yc ⊗ ac = a⊗ y 7→ ±y ⊗ a

y ⊗ b 7→ yc ⊗ bc = a⊗ x 7→ ±x⊗ a

where the last map is i±. Thus we see that for (M ⊗M c)+, F∞ ⊗ 1 acts by(
1
0

0
1

)
on the (p, p)-part, whereas for (M ⊗M c)−, it acts by

(−1
0

0
−1

)
.
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Proposition 1

G(s, f) = L(s, (M ⊗M c)+)

G(s, f, χD) = L(s, (M ⊗M c)−).

Proof The proof is based on comparing Euler factors at p.

Case p = ℘℘̄ Pick eigenbases for Frob℘ and Frob℘̄ respectively. Say Frob℘e1 =
α℘e1, Frob℘e2 = β℘e2; Frob℘̄e3 = α℘̄e3, Frob℘̄e4 = β℘̄e4. Then since we may
assume that Frobp = Frob℘ ∈ H a simple computation shows (in the basis
e1 ⊗ e3, e1 ⊗ e4, e2 ⊗ e3, e2 ⊗ e4)

R±(Frobp) =

( α℘α℘̄

α℘β℘̄

β℘α℘̄

β℘β℘̄

)
.

Thus det(1 −R±(Frobp)p
−s)−1 =

(1 − α℘α℘̄p
−s)(1 − α℘β℘̄p

−s)(1 − β℘α℘̄p
−s)(1 − β℘β℘̄p

−s).

Case p = ℘ First assume that Frob2
p = Frob℘. Since we are interested in

computing characteristic polynomials only, we may assume that Frobp = c
and Frob℘ = h0 = c2. Pick an eigenbasis of Frob℘. Say Frob℘e1 = α℘e1
and Frob℘e2 = β℘e2. Then again it is easy to compute that (in the basis
e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2)

R±(Frobp) = R±(c) =

(±α℘

±β℘

±α℘

±β℘

)

∼
(±α℘

±
√

α℘β℘

∓
√

α℘β℘

±β℘

)
.

Thus det(1 −R±(Frobp)p
−s)−1 =

(1 ∓ α℘p
−s)(1 − α℘β℘p

−2s)(1 ∓ β℘p
−s).

Case p = ℘2 First assume Frobp = Frob℘ ∈ H . Then we may assume that

c2 = h0 = 1. Again pick an eigenbasis for Frob℘. Say Frob℘e1 = α℘e1 and
Frob℘e2 = β℘e2. Then (in the basis e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2) we have

R±(Frobp) =

( α2
℘

α℘β℘

α℘β℘

β2
℘

)
.

Further the action of c is given by

R±(c) =

(
±1

±1
±1

±1

)
.
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We pick an eigenbasis for c, namely e1 ⊗ e1,
e1⊗e2+e2⊗e1

2 , e2 ⊗ e2,
e1⊗e2−e2⊗e1

2 In
this basis

R±(c) =

(±1
±1

±1
∓1

)
.

Since (V ⊗ V )Ip = (V ⊗ V )c is a 3 (respectively 1) dimensional space, we see
that in the basis e1 ⊗ e1,

e1⊗e2+e2⊗e1

2 , e2 ⊗ e2 (respectively e1⊗e2−e2⊗e1

2 )

R+(Frobp)|(V ⊗V )c =

(
α2

℘

α℘β℘

β2
℘

)

(respectively
R−(Frobp)|(V ⊗V )c = α℘β℘).

Hence

det(1 −R+(Frobp)p
−s)−1 = (1 − α2

℘p
−s)(1 − α℘β℘p

−s)(1 − β2
℘p

−s)

(respectively

det(1 −R−(Frobp)p
−s)−1 = (1 − α℘β℘p

−s)). 2

Finally note that since R− = R+ ⊗ χD, we can recover Asai’s splitting
formula in Remark 1 because of the easily proved

Proposition 2 Let R1 and R2 denote extensions of a representation R of H,
to G, with the property that R2 = R1 ⊗χD. Then L(s,R) = L(s,R1) ·L(s,R2).

4.2 Critical values

Let us compute the critical strips of G(s, f) and G(s, f, χD). We already saw
in the last section, that F∞ acts by a scalar on the (p, p) part (+1 or -1). This
is fortunate, for it is a prerequisite for the existence of critical values!

Recall, the integer j is critical for L(s, (M ⊗M c)±) ⇐⇒ 0 is critical for
L(s, (M ⊗M c)±(j)). The Hodge numbers of (M ⊗M c)±(j) are

(2n+ 2 + vi + vc − j, vi + vc − j),
(n+ 1 + vi + vc − j, n+ 1 + vi + vc − j),
(n+ 1 + vi + vc − j, n+ 1 + vi + vc − j),

(vi + vc − j, 2n+ 2 + vi + vc − j).

Following the recipe in Section 5 of [2], we see that j is critical for (M ⊗
M c)± ⇐⇒

1. 2n+ 2 + vi + vc − j ≥ 0 and vi + vc − j ≤ −1.
Thus vi + vc + 1 ≤ j ≤ 2n+ 2 + vi + vc.
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2. The action of F∞ on the (p, p) spaces, which is given in the two cases by(±(−1)j 0

0 ±(−1)j

)
, should be

{(
1 0
0 1

)
if n+ 1 + vi + vc − j < 0,(−1 0

0 −1

)
if n+ 1 + vi + vc − j ≥ 0.

We conclude that the critical strip for (M ⊗M c)+ is

{j ∈ [vi + vc + 1, n+ 1 + vi + vc] | j is odd } ∪
{j ∈ (n+ 1 + vi + vc, 2n+ 2 + vi + vc] | j is even }

whereas for (M ⊗M c)− it is

{j ∈ [vi + vc + 1, n+ 1 + vi + vc] | j is even} ∪
{j ∈ (n+ 1 + vi + vc, 2n+ 2 + vi + vc] | j is odd }.

Note that since the parity of the critical values is reversed in the two cases, the
‘product’ L-function H(s, f) = L(s,M ⊗M c) does not have any critical values.
Of course one could check this directly by looking at the Gamma factors!

4.3 Deligne’s conjecture

Recall that there is a comparison isomorphism

I : HB((M ⊗M c)+) ⊗ C
∼−→ HDR((M ⊗M c)+) ⊗ C.

Let H±
B ((M ⊗M c)+) = ker

[
F∞ ∓ 1 : HB((M ⊗M c)+) → HB((M ⊗M c)+)

]
.

Let F± denote the part of the Hodge filtration on HDR((M ⊗M c)+) as in [2],
and set H±

DR((M⊗M c)+) = HDR((M⊗M c)+)/F∓. Then we have the induced
maps

I± : H±
B ⊗ C ↪→ HB ⊗ C

I−→ HDR ⊗ C → H±
DR ⊗ C.

Let

c±((M ⊗M c)+) = det(I±) ∈ (E ⊗ C)∗

δ((M ⊗M c)+) = det(I) ∈ (E ⊗ C)∗

where the determinants are calculated in E-rational bases of H±
B and H±

DR.
Then Deligne conjectures that for every critical integer j,

L(j, (M ⊗M c)+)

c+((M ⊗M c)+(j))
∈ E ⊗ 1 ⊂ E ⊗ C.
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Here c+((M⊗M c)+(j)) is defined as above with the motive (M⊗M c)+ replaced
with (M ⊗M c)+(j). In any case we have the formula (see [2], Equation (5.1.8))

c+((M ⊗M c)+(j)) =

{
c+((M ⊗M c)+) · (2πi)3j if j is even,

c−((M ⊗M c)+) · (2πi)j if j is odd.
(11)

It is interesting, but perhaps not surprising, that we may express c+((M ⊗
M c)+) in terms of the periods of the motive N = ResK/QM . Indeed, recall that
the latter is a rank 2 motive over Q, having coefficients in E, and realizations

• Betti: HB(N) = Hi(M) ⊕Hc(M)

• de Rham : HDR(N) = HDR(M) regarded as an E ⊗ Q-module

• `-adic : H`(N) = IndG
H H`(M).

As above, we also have the periods c+(N), δ(N) and c−(N).

Proposition 3 We have the period relations

c+((M ⊗M c)+)
.
= c+(N) δ(N),

δ((M ⊗M c)+)
.
= δ(N)2,

c−((M ⊗M c)+)
.
= c+(N),

where
.
= denotes equality up to multiplication by an algebraic number.

Proof We have already picked bases for the complexifications of the Betti
realizations Hi(M) and Hc(M). Consequently, HB(N) ⊗ C has x, y, xc, yc as
a basis over E ⊗ C. We note that a basis for H+

B (N) is (x+ xc)/2, (y + yc)/2.
Say HDR(M) is spanned by ω1, ω2, and HDR(M c) by ωc

1, ω
c
2 - both as

E ⊗ K-modules. Then, we may assume that HDR(N) is spanned by ω1, ω2,
ωc

1, ω
c
2 as an E ⊗ Q-module. Further, if F−HDR(M) is spanned by ω1, and

F−HDR(M c) is spanned by ωc
1, then F−HDR(N) is spanned by ω1, ω

c
1, and so

H+
DR(N) is spanned by ω2, ω

c
2. Now say

x 7→ a11ω1 + a12ω2 xc 7→ b11ω
c
1 + b12ω

c
2

y 7→ a21ω1 + a22ω2 yc 7→ b21ω
c
1 + b22ω

c
2.

We see immediately that

c+(N) =
1

4

∣∣∣∣∣
a12 a22

b12 b22

∣∣∣∣∣ and δ(N) =

∣∣∣∣∣
a11 a21

a12 a22

∣∣∣∣∣

∣∣∣∣∣
b11 b21
b12 b22

∣∣∣∣∣.

On the other hand, for (M ⊗M c)+, a basis of H+
B is x ⊗ xc, y ⊗ yc, (x ⊗

yc + y⊗ xc)/2. To write a basis for H+
DR, we note first that HDR(M ⊗M c) has
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basis ω1 ⊗ ωc
1, ω1 ⊗ ωc

2, ω2 ⊗ ωc
1, ω2 ⊗ ωc

2. Further the action of c ∈ Gal(K/Q)
on this space is given by

a⊗ b 7→ ac ⊗ bc
i+7→ bc ⊗ ac.

Since HDR((M ⊗ M c)+) is identified, with the Galois invariants under this
action, it is spanned by ω1⊗ωc

1, (ω1⊗ωc
2+ω2⊗ωc

1)/2,
√
−D(ω1⊗ωc

2−ω2⊗ωc
1)/2,

ω2 ⊗ ωc
2. Further F−HDR((M ⊗ M c)+) is one dimensional and spanned by

ω1 ⊗ωc
1. Thus H+

DR((M ⊗M c)+) is spanned by the last three vectors. In these
bases we compute that c+((M ⊗M c)+)

=

∣∣∣∣∣∣

a11b12 + a12b11 a21b22 + a22b21
a11b22+a21b12+a12b21+a22b11

2

a11b12 − a12b11 a21b22 − a22b21
a11b22+a21b12−a12b21−a22b11

2
√
−D

a12b12 a22b22
a12b22+a22b12

2

∣∣∣∣∣∣

=
−1√
−D

∣∣∣∣
a12 a22

b12 b22

∣∣∣∣
∣∣∣∣
a11 a21

a12 a22

∣∣∣∣ =
−4√
−D

c+(N)δ(N).

A similar argument works for δ((M⊗M c)+). Indeed in the above mentioned
bases we get δ((M ⊗M c)+)

=

∣∣∣∣∣∣∣∣

a11b11 a11b21 a21b11 a21b21
a11b12 + a12b11 a11b22 + a12b21 a21b12 + a22b11 a21b22 + a22b21

a11b12−a12b11√
−D

a11b22−a12b21√
−D

a21b12−a22b11√
−D

a21b22−a22b21√
−D

a12b12 a12b22 a22b12 a22b22

∣∣∣∣∣∣∣∣

=
−2√
−D

∣∣∣∣
a11 a21

a12 a22

∣∣∣∣
2 ∣∣∣∣
b11 b21
b12 b22

∣∣∣∣
2

=
−2√
−D

δ(N)2.

Finally note that H−
B ((M ⊗M c)+) is spanned by (x ⊗ yc − y ⊗ xc)/2, and

H−
DR((M ⊗M c)+) is spanned by ω ⊗ ωc. So

c−((M ⊗M c)+) =
1

2

∣∣∣∣
a12 a22

b12 b22

∣∣∣∣ =
1

2
c+(N). 2

By including discriminant factors, one should be able to obtain the exact
period relations up to multiplication by an element in E, but we do not pursue
this point here.

5 The Connection with Differential Forms

In this section we explain how to realize cusp forms over K as harmonic differ-
ential forms on quotients of hyperbolic three space. The calculation is based on
identifying de Rham cohomology with relative Lie algebra cohomology (see [7],
Section 3). Here we only provide an explicit procedure for constructing these
differential forms as outlined in Section 2.5 of [10].

19



5.1 The Eichler-Shimura-Harder isomorphism

Let L(n, A) denote the space of homogeneous polynomials of degree n in x =(
X
Y

)
and degree n in x =

(
X
Y

)
, with coefficients in some K(χN)-algebra A. We

will make L(n, A) into a Γai
-module via

γ · P ( x, x) = χ−1
N

(dγ) P (γι x, γι x). (12)

We give L(n, A) the discrete topology, and denote L̃(n, A) to be the sheaf of
locally constant sections of the projection

Γai
\H × L(n, A) → Γai

\H.

Over K, there are two isomorphisms, which generalize the Eichler-Shimura
isomorphism in the elliptic modular case, and which in turn are special cases of
the isomorphisms for GL2 over general number fields relating cusp forms to C∞

harmonic differential forms (described in Section 3 of [7]). We denote these by

δq : Sn(Γai
, χ−1

N
)

∼−→ Hq
cusp(Γai

\H, L̃(n,C)),

with q = 1, 2. There is an action of the Hecke algebra on both sides, and the
δq are Hecke equivariant. In this paper we will only be concerned with the first
isomorphism, that is we realize cusp forms over K as differential 1-forms. For
simplicity we will write δ for δ1.

Now let f be as in Definition 1. Let fi ∈ Sn(Γai
, χ−1

N
) (resp. Fi), for

i = 1, 2, . . . , h, be the cusp forms defined on H (resp. GL2(C)) as in Section 2.3.
Let us describe how to construct δ(fi) explicitly. Let F = Fi|SL2(C) (note we

are dropping the subscript i from the notation). By the Clebsch-Gordan formula
there is an SU2(C)-injection

Φ : W (n∗,C) −→ L(n,C) ⊗ L(2,C),

and δ(fi) is given by

δ(fi)(g) = g · (Φ ◦ F (g)). (13)

Here the action of g on L(n,C) is as in (12) above, whereas the action of g on
L(2,C) is given by (6) of Section 2.2. Here (see the discussion in Section 2.2)
we have replaced Ω1(H) with L(2,C), the space of homogeneous polynomials
of degree two in a =

(
A
B

)
, and we have replaced the pull back action on

Ω1(H), by the induced action (6) on L(2,C). Thus ultimately, we must replace
(A2, AB,B2) by (dx,−dy,−dx̄). Note that, since Φ is SU2(C)-equivariant, we
have

δ(fi)(gu) = gu · (Φ ◦ F (gu,
(

S
T

)
))

= gu · (Φ ◦ F (g, u
(

S
T

)
)) = gu · (Φ ◦ u−1 · F (g,

(
S
T

)
)) = δ(fi)(g) (14)
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for all u ∈ SU2(C). Thus δ(fi) can be thought of as a differential 1-form on H.
Moreover, a similar computation shows that for γ ∈ Γai

γ∗ δ(fi) = γ · δ(fi).

Thus δ(fi) takes values in the sheaf L̃(n,C).
It is possible to make Φ ◦ F completely explicit. To this end introduce the

auxiliary variables u =
(

U
V

)
. Set

Q =

((
n∗

α

)
(−1)n∗−α UαV n∗−α

)

α=0,1,... ,n∗

.

Let ψ = ψ (x, x, a) = (ψ0, ψ1, . . . , ψn∗)t where the ψi = ψi(x, x, a) are

homogeneous polynomial of degree n in x =
(

X
Y

)
, degree n in x =

(
X
Y

)
and

degree 2 in a =
(

A
B

)
defined by

(XV − Y U) n (XU + Y V ) n (AV −BU) 2 = Q · ψ . (15)

These polynomials have the special property (cf. [10], (2.8b)) :

ψ (u x, u x, u a) = ρn∗(u) · ψ (x, x, a) (16)

for all u ∈ SU2(C).
Recall F takes values in W (n∗,C), and so we let Fα be the ‘components’ of

F , namely F (g, s) =
∑n∗

α=0 F
α(g)Sn∗−αTα. Since W (n∗,C) is a model for the

dual of ρn∗ (= the symmetric n∗th power representation of GL2(C) on C2) we
get

F (gu, s) = F (g, u s) = F (g, s) · ρn∗(u) (17)

for all u in SU2(C).
Now define Φ ◦ F = F ′ : SL2(C) → L(n,C) ⊗ L(2,C) by

F ′(g, x, x, a) = (F 0(g), F 1(g), . . . , Fn∗

(g)) · ψ (x, x, a).

Then, as predicted by the SU2(C)-equivariance of Φ,

F ′(gu, x, x, a) = (F 0(gu), F 1(gu), . . . , Fn∗

(gu)) · ψ (x, x, a)

(17)
= (F 0(g), F 1(g), . . . , Fn∗

(g)) · ρn∗(u) · ψ (x, x, a)

(16)
= (F 0(g), F 1(g), . . . , Fn∗

(g)) · ψ (u x, u x, u a)

= F ′(g, u x, u x, u a). (18)

That is, for u ∈ SU2(C)

(Φ ◦ F )(gu) = u−1 · (Φ ◦ F )(g). (19)
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Finally define F ′′ : SL2(C) → L(n,C) ⊗ L(2,C) by

F ′′(g, x, x, a) = F ′(g, gι x, gι x, tj(g−1, ε)−1 a).

Then, noting j(u, ε)t = u−1 if u ∈ SU2(C), we have

F ′′(gu, x, x, a) = F ′(gu, u−1gι x, u−1gι x, u−1 tj(g−1, ε)−1 a)

(18)
= F ′(g, gι x, gι x, tj(g−1, ε)−1 a)

= F ′′(g, x, x, a).

So, in confirmation of (14), F ′′ is invariant on the right by SU2(C), and so is
really defined on H. Thus, in summary we have

Definition 6 δ(fi) is the L(n,C)-valued differential form on H obtained from
F ′′ by replacing (A2, AB,B2) by (dx,−dy,−dx̄). More specifically, if gε = z,
then

δ(fi)(z) = (F 0(g), F 1(g), . . . , Fn∗

(g)) · ψ (gι x, gι x, tj(g−1, ε)−1 a)

where (A2, AB,B2) is replaced by (dx,−dy,−dx̄).

5.2 Computing δ̃(f)
∣∣∣
H

As usual fix f be as in Definition 1, and let f1 and F1 be the first components
of f as in Section 2.3. To simplify notation, we call these f and F respectively,
but we emphasize these are now functions on H, respectively GL2(C). In this
section we compute δ(f)(= δ(f1)) explicitly using the method sketched in the
previous section. Note that since we are assuming i = 1 and a1 = 1, we have
a1 = O and Γa1

= Γ0(N) =
{(

a
c

b
d

) ∣∣ a, b, d ∈ O, c ∈ N, ad − bc = 1
}
. Hence

Γa1
∩GL+

2 (Q) = Γ0(N).
We will simplify our computation of δ(f) in two ways. Note that the Poincaré

upper half plane H embeds in a natural way into H via z = x + iy ↪→
(

x
y
−y
x

)
.

Since we are really interested in computing δ(f)
∣∣
H

, we will assume from the
outset that dx = dx̄.

Secondly, we really want to compute
(

1 −x
0 1

)
· δ(f)

∣∣
H

. Since this amounts to

setting x = 0 in δ(f)
∣∣
H

, we assume this is true from the beginning, and actually

compute this ‘modified’ differential form, which we call δ̃(f)
∣∣
H

.
Let us begin the computation. Using the definition of ψ in (15), we see

that for α = 0, 1, . . . , n∗ = 2n+ 2,

ψα(x, x, a) = (−1)αA
2cα − 2ABcα−1 +B2cα−2(

2n+2
α

)

22



where

cα(X,Y,X, Y ) =
n∑

j,k=0
n−(j−k)=α

(−1)k

(
n

k

)(
n

j

)
Xn−k X

n−j
Y k Y

j
(20)

Now let g = 1√
y

( y x
0 1

)
∈ SL2(C), with x, y ∈ R. Then gε = z, gι =

gι = 1√
y

(
1 −x
0 y

)
, and j(g−1, ε)−1 = j(g, ε) = 1√

y

(
1 0
0 1

)
. Let fα (resp. Fα) be

the components of f (resp. F ) as a W (n∗,C)-valued function on H (resp.
GL2(C)). Since f(z,

(
S
T

)
) = F (g, j(g, ε)t

(
S
T

)
) we get fα(z) = ( 1√

y )2n+2Fα(g).

By Definition 6, we have

δ(f)
∣∣
H

=

2n+2∑

α=0

Fα(g) ψα

( 1√
y

(
1 −x
0 y

)(
X
Y

)
,

1√
y

(
1 −x
0 y

)(
X
Y

)
,

1√
y

(
1 0
0 1

)(
A
B

))

=

2n+2∑

α=0

√
y
2n+2

fα(z) ψα

( 1√
y
X,

√
y Y,

1√
y
X,

√
y Y ,

1√
y
A,

1√
y
B
)

where we have already set x = 0. Simplifying this we get

δ̃(f)
∣∣
H

=
2n+2∑

α=0

fα(z) ψα(X, yY,X, yY ,A,B)

with (A2, AB,B2) replaced by (dx,−dy,−dx). Thus,

δ̃(f)
∣∣
H

=

[ 2n+2∑

α=0

(−1)αfα(z)(
2n+2

α

)
(
cα(X, yY,X, yY ) − cα−2(X, yY,X, yY )

)]
dx

+2

[ 2n+2∑

α=0

(−1)αfα(z)(
2n+2

α

) cα−1(X, yY,X, yY )

]
dy.

It follows from (20) that

c2n−α(X,Y,X, Y ) = (−1)n−αcα(X,Y ,X, Y ). (21)

Using (21) we may rewrite

δ̃(f)
∣∣
H

=
[( n∑

α=0

(−1)αfα(z)(
2n+2

α

)
(
cα(X, yY,X, yY ) − cα−2(X, yY,X, yY )

)

+
(−1)n+1f2n+2−α(z)(

2n+2
α

)
(
cα(X, yY ,X, yY ) − cα−2(X, yY ,X, yY )

))

+
(−1)n+1fn+1(z)(

2n+2
n+1

)
(
cn+1(X, yY,X, yY ) − cn−1(X, yY,X, yY )

)]
dx
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+2

[ n∑

α=0

(
(−1)αfα(z)(

2n+2
α

) cα−1(X, yY,X, yY )

+
(−1)n+1f2n+2−α(z)(

2n+2
α

) cα−1(X, yY ,X, yY )

)

+
(−1)n+1fn+1(z)(

2n+2
n+1

) cn(X, yY,X, yY )

]
dy.

This gives us an explicit expression for δ̃(f)
∣∣
H

∈ H1
cusp(Γ0(N)\H, L̃(n,C)).

Since we have restricted to H , L(n,C) is no longer an irreducible Γ0(N)-
module and in general we have

Lemma 2 As SL2(Z)-modules we have the decomposition

L(n, A)
∼
=

n⊕

m=0

L(2n− 2m,A)

P (x, x) 7→
n⊕

m=0

1

m!2

(
∂2

∂X∂Y
− ∂2

∂X∂Y

)m

P (x, x)

∣∣∣∣
X=X

Y =Y

.

Proof See [10], Section 11. 2

Lemma 2 induces the decomposition

H1
cusp(Γ0(N)\H, L̃(n,C))

∼
=

n⊕

m=0

H1
cusp(Γ0(N)\H, ˜L(2n− 2m,C))

δ̃(f)
∣∣
H

=

n⊕

m=0

˜δ2n−2m(f).

Let us now compute ˜δ2n−2m(f). Set

∇ =

(
∂2

∂X∂Y
− ∂2

∂X∂Y

)
.

Then using the relation

∇mcα(X,Y,X, Y )

∣∣∣∣
X=X

Y =Y

= (−1)m∇mcα(X,Y ,X, Y )

∣∣∣∣
X=X

Y =Y

(22)

we see that

˜δ2n−2m(f)(x+ iy) =
n+1∑

α=0

(−1)α gα(z)
1

m!2
∇m

(
cα(X, yY,X, yY ) − cα−2(X, yY,X, yY )

)

X=X

Y =Y

dx

+2

n+1∑

α=0

(−1)α gα(z)
1

m!2
∇m

(
cα−1(X, yY,X, yY )

)

X=X

Y =Y

dy,
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where

gα(z) =





fα(z)+ (−1)n+1−α+m f2n+2−α(z)

(2n+2
α )

if α = 0, 1, . . . , n;

fn+1(z)

(2n+2
n+1 )

if α = n+ 1.
(23)

The following Lemma is useful:

Lemma 3

1

m!2
∇mcα(X,Y,X, Y )

∣∣
X=X

Y =Y

=

(
n

m

)2 m∑

p=0

(−1)p

(
m

p

) n∑

j,k=0
n−(j−k)=α

(−1)k

(
n−m

k − p

)(
n−m

j − (m− p)

)

X2n−(j+k)−mY j+k−m.

Proof

1

m!2
∇mcα(X,Y,X, Y )

∣∣
X=X

Y =Y

=
1

m!2

m∑

p=0

(−1)p

(
m

p

)(
∂2m

∂Xm−p∂X
p
∂Y p∂Y

m−p

)
· cα(X,Y,X, Y )

∣∣
X=X

Y =Y

=
1

m!2

m∑

p=0

(−1)p

(
m

p

) n∑

j,k=0
n−(j−k)=α

(−1)k

(
n

k

) (
n

j

)

(n− k)!

(n− k − (m− p))!

(n− j)!

(n− j − p)!

k!

(k − p)!

j!

(j − (m− p))!

Xn−k−(m−p)X
n−j−p

Y k−pY
j−(m−p) ∣∣

X=X

Y =Y

=

(
n

m

)2 m∑

p=0

(−1)p

(
m

p

) n∑

j,k=0
n−(j−k)=α

(−1)k

(
n−m

k − p

) (
n−m

j − (m− p)

)

X2n−(j+k)−mY j+k−m. 2

By Lemma 3 we may finally write

˜δ2n−2m(f) (x + iy) =

2n−2m∑

l=0

(Al dx+ 2Bl dy) y
2n−m−lX lY 2n−2m−l (24)

where

Al =

n+1∑

α=0

(−1)α gα(z) a (m, l, α) (25)

Bl =

n+1∑

α=0

(−1)α gα(z) b (m, l, α), (26)
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and where a (m, l, α) and b (m, l, α) are constants given by

a (m, l, α) =

(
n

m

)2

(−1)
n+α−l−m

2

m∑

p=0

(−1)p

(
m

p

)

[(
n−m

n−m−l+α
2 − p

)(
n−m

3n−3m−l−α
2 + p

)
+

(
n−m

n−m−l+α−2
2 − p

)(
n−m

3n−3m−l−α+2
2 + p

)]
,

b (m, l, α) =

(
n

m

)2

(−1)
n+α−1−l−m

2

m∑

p=0

(−1)p

(
m

p

)

[(
n−m

n−m−l+α−1
2 − p

)(
n−m

3n−3m−l−α+1
2 + p

)]
.

6 An Integral Expression for G(s, f)

In this section we will derive an integral expression for G(s, f). The essential
idea will be to integrate δ2n−2m(f) ∧ E2n−2m+2, for a suitable elliptic modular
Eisenstein series E2n−2m+2, over D = Γ0(N)\H . This integral expression will
be used in the next section to establish the rationality result. Though we do not
touch upon this here, we may also use the integral expression to establish the
meromorphic continuation and functional equation of G(s, f) (cf. [6], Section
7.2).

6.1 Poincaré duality

Since the 1-forms δ2n−2m(f) and E2n−2m+2 are both L(2n− 2m,C)-valued, to
evaluate the integral we introduce a pairing by means of which we may regard
their wedge product as a scalar-valued 2-form on Γ0(N)\H .

Lemma 4 Let A be a Q-algebra, and let L(n,A) denote the space of homoge-
neous polynomials of degree n in (X,Y ) with coefficients in A. Then

L(n,A) ⊗ L(n,A)
< , >→ A

<

n∑

l=0

alX
n−lY l ,

n∑

l=0

blX
n−lY l > =

n∑

l=0

(−1)l al bn−l

(
n

l

)−1

is an SL2(Z)-invariant pairing, i.e. < γ · P, γ · Q >= < P,Q > for all P,Q ∈
L(n,A) and all γ ∈ SL2(Z). If A = C, then we may replace SL2(Z) by SL2(C)
in the statement of the Lemma.

Proof See [10], Equation 3.1b. 2
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The above pairing induces a pairing (Poincaré duality) on cohomology. We
have

Lemma 5

H1
c(Γ0(N)\H, L̃(n,A)) ⊗ H1(Γ0(N)\H, L̃(n,A))

∪−→
H2

c(Γ0(N)\H, L̃(n,A) ⊗ L̃(n,A))
< , >−→ H2

c (Γ0(N)\H, Ã)

is a perfect duality, where the first map is cup product (wedge product).

Proof See [10], Equation 5.3. 2

We continue to denote this pairing by < , >.

6.2 Eisenstein series

Let Γ∞ denote the stabilizer of ∞ in Γ0(N). Set ω = (X − zY )2n−2mdz ∈
H1(Γ∞\H, ˜L(2n− 2m,Z)). We define the Eisenstein differential form E2n−2m+2

by

E2n−2m+2(s, z) =
∑

Γ∞\Γ0(N)

ψ−1
N (γ) γ−1 · γ∗(ω ys).

One may check that

E2n−2m+2(s, z) =
∑

γ =
(

a
c

b
d

)
∈Γ∞\Γ0(N)

ψ−1
N (d)

(cz + d)2n−2m+2|cz + d|2s
· ys ω.

The following proposition establishes the rationality of E2n−2m+2(s, z) at
s = 0.

Proposition 4 Say m 6= n or ψ−1
N is not trivial. Then

E2n−2m+2(0, z) ∈ H1(Γ0(N)\H, ˜L(2n− 2m,Q(ψN )).

If m = n and ψ−1
N is trivial, then we still have

E2(0, z)− pE2(0, pz) ∈ H1(Γ0(N)\H, ˜L(2n− 2m,Q(ψN )).

Proof See [10], Section 10. 2

It is also convenient to introduce the ‘completed’ Eisenstein differential form
E∗

2n−2m+2(s, z), especially for the purposes of establishing the functional equa-
tion of G(s, f) (for which see [6], Section 7.2)

E∗
2n−2m+2(s, z) = π−(s+2n−2m+2) Γ(s+ 2n− 2m+ 2)×

2LN(2s+ 2n− 2m+ 2, ψ−1
N )E2n−2m+2(s, z) (27)
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A simple computation allows us to rewrite (cf. [13], Equation 7.2.62)

E∗
2n−2m+2(s, z) = π−(s+2n−2m+2) Γ(s+ 2n− 2m+ 2)×

∑

(0,0) 6=(c,d)∈Z2

ψ−1
N (d)

(cNz + d)2n−2m+2|cNz + d|2s
· ys ω.

6.3 Integral expression

We are now ready to begin integrating. First note
∫ ∫

D

< δ2n−2m(f), E2n−2m+2 >

=

∫ ∫

D

<
(

1 −x
0 1

)
· δ2n−2m(f),

(
1 −x
0 1

)
·E2n−2m+2 >

=

∫ ∫

D

< ˜δ2n−2m(f), ˜E2n−2m+2 >

and a standard unwinding argument shows this last integral

=

∫ ∞

0

∫ 1

0

< ˜δ2n−2m(f), ω̃ ys > .

Here ω̃ = (X − iyY )2n−2m dz since the tilde amounts to setting x = 0. Using

the expression (24) for ˜δ2n−2m(f) and the pairing of Lemma 5 we get

∫ ∞

0

∫ 1

0

< ˜δ2n−2m(f), ω̃ ys >

=

∫ ∞

0

∫ 1

0

2n−2m∑

l=0

(Aldx+ 2Bldy) y
2n−m−l ∧ (iy)l ys (dx + idy)

=

∫ ∞

0

∫ 1

0

2n−2m∑

l=0

il+1Al y
2n−m+s dxdy

−2

∫ ∞

0

∫ 1

0

2n−2m∑

l=0

ilBl y
2n−m+s dxdy

Let us call the first integral in the right hand side of the last equation above I1
and the second I2. We evaluate I1 now. By (25) we have

I1 =

∫ ∞

0

∫ 1

0

2n−2m∑

l=0

il+1Al y
2n−m+s dxdy

=
2n−2m∑

l=0

il+1
n+1∑

α=0

(−1)α a (m, l, α)

∫ ∞

0

∫ 1

0

gα(z) y2n−m+s dxdy.
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Using (7) with i = 1 and a1 = 1, the Fourier expansion of the αth component
of f = f1 is given by fα(x+ iy) =

y

(
2n+ 2

α

) [ ∑

ξ∈K×

c (ξd)

(
ξ

i|ξ|

)n+1−α
1

ξvi ξ̄vc
Kα−n−1(4πy|ξ|) eK(ξx)

]
. (28)

Then, using (23) and (28) above we get

I1 =

2n−2m∑

l=0

il+1
n∑

α=0

(−1)α a (m, l, α)

∫ ∞

0

∑

ξ∈K×

c (ξd)
1

ξvi ξ̄vc
y2n+1−m+s

((
ξ

i|ξ|

)n+1−α

Kα−n−1(4πy|ξ|) +

(−1)n+m+1−α

(
i|ξ|
ξ

)n+1−α

Kn+1−α(4πy|ξ|)
)
dy

∫ 1

0

eK(ξx) dx

+

2n−2m∑

l=0

il+1 (−1)n+1 a (m, l, n+ 1)

∫ ∞

0

∑

ξ∈K×

c (ξd)
1

ξvi ξ̄vc
y2n+1−m+sK0(4πy|ξ|) dy

∫ 1

0

eK(ξx) dx.

Lemma 6 Let ξ be such that c (ξd) 6= 0. Then

∫ 1

0

eK(ξx) dx =

{
1, if ξ = k√

−D
for some k 6= 0 ∈ Z;

0, otherwise.

Proof This is easily checked noting that c ( ) vanishes outside integral ideals
and that the different of K is ϑ = dO = (

√
−D) (or see [6], Lemma 9). 2

By Lemma 6 we see that as regards the integral in x, we may restrict our
summation to ξ = k√

−D
as k varies through all non-negative integers. Hence

I1 =

2n−2m∑

l=0

il+1
n∑

α=0

(−1)αa (m, l, α)ivi−vc

√
D

vi+vc
∑

k 6=0

c (k)
1

kvi+vc

(−k
|k|

)n+1−α

∫ ∞

0

y2n+1−m+s

[
Kα−n−1

(
4πy|k|√

D

)
+ (−1)n+m+1−αKn+1−α

(
4πy|k|√

D

)]
dy

+
2n−2m∑

l=0

il+1 (−1)n+1 a (m, l, n+ 1) ivi−vc

√
D

vi+vc
∑

k 6=0

c (k)
1

kvi+vc

∫ ∞

0

y2n+1−m+s K0

(
4πy|k|√

D

)
dy.
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Lemma 7

∫ ∞

0

Kν(ay) yµ−1 dy = 2µ−2 a−µ Γ
(µ+ ν

2

)
Γ
(µ− ν

2

)

Proof See, for instance, [16], Chapter 13.21, Equation 8. 2

Because of the ± sign in the first y integral, Lemma 7 shows that the integrals
of the two Bessel functions cancel each other unless α ≡ n+m+1. Hence setting
s′ = 2n+ 2 −m+ vi + vc + s, we have

I1 =
(−1)n+1 ivi−vc

√
D

s′

2 (2π)2n+2−m+s

2n−2m∑

l=0

il+1
n∑

α=0
α≡n+1+m (2)

(−1)m a (m, l, α)

∑

06=k ∈Z

c (k)
1

kvi+vc

(−k
|k|

)n+1−α
1

|k|2n+2−m+s

Γ

(
n+ 1 −m+ α+ s

2

)
Γ

(
3n+ 3 −m− α+ s

2

)

+
(−1)n+1 ivi−vc

√
D

s′

4 (2π)2n+2−m+s

2n−2m∑

l=0

il+1 a (m, l, n+ 1)

∑

06=k ∈Z

c (k)
1

kvi+vc

1

|k|2n+2−m+s
Γ

(
2n+ 2 −m+ s

2

)2

Note that the first sum in k vanishes unless m ≡ vi + vc (mod 2), whereas the
second vanishes unless vi + vc ≡ 0 (mod 2). Thus, incorporating the α = n+ 1
summand into the sum on α, we get

I1 =
(−1)n+1 ivi−vc

√
D

s′

(2π)2n+2−m+s

∞∑

k=1

c (k)

ks′

2n−2m∑

l=0

il+1
n+1∑

α=0
α≡n+1+m (2)

a (m, l, α)

Γ

(
n+ 1 −m+ α+ s

2

)
Γ

(
3n+ 3 −m− α+ s

2

)
.

There is really an extra factor of 1/2 in the α = n+1 term which we will adjust
for in due course.

Lastly, note that since the definition of a (m, l, α) involved a (−1)
n+α−m−l

2

term we get another parity condition, namely l ≡ n+α−m (mod 2). Combining
this with the first parity condition on α yields l ≡ 1 (mod 2). Thus we finally
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get

I1 =
(−1)n+1

√
D

s′

ivi−vc

(2π)2n+2−m+s

∞∑

k=1

c (k)

ks′

2n−2m∑

l=0
odd

il+1
n+1∑

α=0
α≡n+1+m (2)

a (m, l, α)

Γ

(
n+ 1 −m+ α+ s

2

)
Γ

(
3n+ 3 −m− α+ s

2

)

A similar analysis for I2 (which we do not write down!) yields

I2 = −2

∫ ∞

0

∫ 1

0

2n−2m∑

l=0

ilBl y
2n−m+s dxdy

=
−2 (−1)n+1

√
D

s′

ivi−vc

(2π)2n+2−m+s

∞∑

k=1

c (k)

ks′

2n−2m∑

l=0
even

il
n+1∑

α=0
α≡n+1+m (2)

b (m, l, α)

Γ

(
n+ 1 −m+ α+ s

2

)
Γ

(
3n+ 3 −m− α+ s

2

)

where again we assume that m ≡ vi + vc (mod 2), and there is an extra factor
of 1/2 in the α = n+ 1 summand.

Combining these two expressions yields

∫ ∞

0

∫ 1

0

< ˜δ2n−2m(f), ω̃ ys > =

√
D

s′

ivi−vc

(2π)2n+2−m+s

∞∑

k=1

c (k)

ks′
G′

∞(s, f)

where G′
∞(s, f) is a sum of Gamma factors given by G′

∞(s, f) =

2n+2∑

α=0
α≡n+1+m (2)

c (m,α) Γ

(
n+ 1 −m+ α+ s

2

)
Γ

(
3n+ 3 −m− α+ s

2

)
.

We have changed the upper index of sum on α from n + 1 to 2n + 2. This
seems more natural since it takes into account the missing factor of 1/2 in the
α = n+ 1 summand. Thus c (m,α) is the constant

c (m,α) =
(−1)n+1

2

2n−2m∑

l=0
odd

il+1 a (m, l, α) − 2

2n−2m∑

l=0
even

il b (m, l, α)

=
(−1)n+1

2

2n−2m∑

l=0
even

il (a (m, l − 1, α) − 2b (m, l, α)).

Now note (see Definition 3) that

LN (2s+ 2n− 2m+ 2, ψ−1
N ) ·

∞∑

k=1

c (k)

ks′
= G(s′, f).
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Hence multiplying the integral expression above by

2 π−(s+2n−2m+2) LN(2s+ 2n− 2m+ 2, ψ−1
N ) Γ (s+ 2n− 2m+ 2),

and using (27), we get an integral expression for the twisted tensor L-function
of f , namely

∫ ∫

D

< δ2n−2m(f), E∗
2n−2m+2(s) >=

2
√
D

s′

ivi−vc

πs+2n−2m+2 (2π)2n+2−m+s
G(s′, f)G∞(s, f) (29)

where s′ = 2n+ 2 −m+ vi + vc + s, and

G∞(s, f) = Γ (s+ 2n− 2m+ 2)G′
∞(s, f). (30)

We emphasize (29) is valid only if m ≡ vi + vc (mod 2).

6.4 Simplifying G
∞

(s, f)

Since G∞(s, f) is a ‘sum’ of a product of Γ-functions, and since we are interested
in the non-vanishing of G∞(s, f) at certain values of s, it behooves us to simplify
G∞(s, f), writing it as a ‘simple product’ of Γ-functions. This is unfortunately
a daunting task. Nonetheless, we offer the following

Conjecture 1

G∞(s, f) = cn,m · Pn,m(s) · Γ(s+ 2n−m+ 2) · Γ
(
s+ n+ 1 −m+ ε

2

)2

where

ε =

{
0 if n+m+ 1 is even

1 if n+m+ 1 is odd,

Pn,m(s) = (s+ 1)(s+ 3)(s+ 5) · · · (s+ n−m− ε) ×
( s
2

+ n−m
)(s

2
+ n−m− 1

)
· · ·
( s
2

+ n−m− n−m− 1 − ε

2

)

is a polynomial in s, and cn,m is the constant

(−1)m · n!2

m!2 · Pn,m(0) · (n−m−1+ε
2 )!2

.

(When n = m we take cn,m = (−1)n and Pn,m(s) = 1).
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We can prove this conjecture for a variety of cases: for instance for ‘small’
n and m, say for 0 ≤ m ≤ n ≤ 6, and for some special general cases such as
m = n−1 and m = n (see [6], Chapter 6.4). This is why we are convinced about
the truth of this conjecture and expect a general proof to be just a matter of
being competent in dealing with identities involving the Γ-function.

Fortunately, for our current purposes, we do not need the full strength of
this conjecture. We are interested only in the non-vanishing of G∞(0, f). While
this follows immediately from the Conjecture, noting that Pn,m(0) 6= 0 and that
the Gamma function does not vanish, we provide instead an ingenious alternate
method for showing this non-vanishing, indicated to us by Prof. Hida.

Proposition 5 If ψ−1
N 6= 1 or m 6= n, then G∞(0, f) 6= 0.

Proof We will construct another integral expression for G(s, f) that is much
simpler than (and actually nothing but just a special case of) the expression
(29). Since we can show that the Gamma factors in this new integral expression
do not vanish at s = 0, the Proposition will follow once we show that the two
integral expressions coincide at s = 0.

Let us denote E2n−2m+2, the Eisenstein series of Section 6.2, by E(ω, s).

More generally, for a differential form η ∈ Hk(Γ∞\H, ˜L(2n− 2m,Z)), we set

E(η, s) =
∑

Γ∞\Γ0(N)

ψ−1
N (γ) γ−1 · γ∗(η ys).

For φ ∈ H0(Γ∞\H, ˜L(2n− 2m,Z)), note that

d(φys) = ysdφ+ sφys−1dy

implies that

dE(φ, s) = E(dφ, s) + sE(φy−1dy, s).

This is valid for all s with Re(s) sufficiently large, and thus also for the mero-
morphic continuations of the three Eisenstein series above. In particular, if
E(φy−1dy, s) is finite at s = 0 then we get

dE(φ, 0) = E(dφ, 0). (31)

Now say φ is given by

φ =
(X − zY )2n−2m+1 − (X − xY )2n−2m+1

Y
.

Then since

1

2n− 2m+ 1
dφ = (X − xY )2n−2mdx− (X − zY )2n−2mdz,
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(31) above, together with the Claim below, implies that

E((X − zY )2n−2mdz, 0) is cohomologous to E((X − xY )2n−2mdx, 0). (32)

Claim If ψ−1
N 6= 1 or m 6= n then E(φy−1dy, s) is finite at s = 0.

Proof of Claim Let S = X − zY and T = X − z̄Y . Then

φ = 2iy
(S2n−2m+1 − (S+T

2 )2n−2m+1

T − S

)

= −2−2n−2miy
((2S)2n−2m+1 − (S + T )2n−2m+1

2S − (S + T )

)

= −2−2n−2miy

2n−2m∑

j=0

(2S)2n−2m−j(S + T )j

= −iy
2n−2m∑

j=0

j∑

k=0

2−j

(
j

k

)
S2n−2m−kT k

Hence

φy−1dy = −i
2n−2m∑

j=0

cj(X − zY )j(X − z̄Y )2n−2m−jd(z − z̄)

for some non-zero constants cj . In particular

E(φy−1dy, s) =

2n−2m∑

j=0

cjE((X − zY )j(X − z̄Y )2n−2m−jd(z − z̄), s).

This shows that the finiteness of E(φy−1dy, s) at s = 0 will follow from the finite-
ness of E(ω1, s) and E(ω2, s) at s = 0, where ω1 = (X−zY )j(X−z̄Y )2n−2m−jdz
and ω2 = (X − zY )j(X − z̄Y )2n−2m−jdz̄. One may check that

2LN(2s+ 2n− 2m+ 2, ψ−1
N ) · E(ω1, s) =

∑

(0,0) 6=(c,d)∈Z2

ψ−1
N (d)

(cNz + d)−2n+2m+2j+2 |cNz + d|2(s+2n−2m−j)
· ysω1,

and that

2LN(2s+ 2n− 2m+ 2, ψ−1
N ) ·E(ω2, s) =

∑

(0,0) 6=(c,d)∈Z2

ψ−1
N (d)

(cNz + d)−2n+2m+2j−2 |cNz + d|2(s+2n−2m−j+2)
· ysω2.

Note that LN(2n − 2m + 2, ψ−1
N ) is finite and non-zero. Moreover when ψ−1

N

is non-trivial, then both the last Eisenstein series are entire (cf. [13], Corollary
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7.2.10 (1)). Thus we need only check the finiteness of these sums when ψ−1
N =

1. In this case note that, the first series has a pole only when the weight
−2n + 2m + 2j + 2 = 0 and the evaluation point 2n − 2m − j = 1 (cf. [13],
Corollary 7.2.11). This is only possible if m = n. A similar analysis shows that
the second series is again finite if ψ−1

N is non-trivial or m 6= n. This ends the
proof of the Claim.

If s = 0, then (32) implies

∫ ∫

D

< δ2n−2m(f), E(ω, s) >

=

∫ ∫

D

< δ2n−2m(f), E((X − xY )2n−2mdx, s) >

=

∫ ∫

D

< ˜δ2n−2m(f), E(X2n−2mdx, s) >

=

∫ ∞

0

∫ 1

0

< ˜δ2n−2m(f), X2n−2m ysdx > .

This last integral we have already computed, for it is just the l = 0 summand
of I2. We get

∫ ∫

D

< δ2n−2m(f), E(ω, s) > = −2

∫ ∞

0

∫ 1

0

B0 y
2n−m+s dxdy

=

√
D

s′

ivi−vc

(2π)2n+2−m+s

∞∑

k=1

c (k)

ks′
G′′

∞(s, f) (33)

where

G′′
∞(s, f) =

(−1)n+1

2

2n+2∑

α=0
α≡n+1+m (2)

−2b (m, 0, α)

Γ

(
n+ 1 −m+ α+ s

2

)
Γ

(
3n+ 3 −m− α+ s

2

)

= (−1)n+1

(
n

m

)2 2n+2∑

α=0
α≡n+1+m (2)

(−1)
n+α−m+1

2

m∑

p=0

(−1)p

(
m

p

)

(
n−m

n−m+α−1
2 − p

)(
n−m

3n−3m−α+1
2 + p

)

Γ

(
n+ 1 −m+ α+ s

2

)
Γ

(
3n+ 3 −m− α+ s

2

)
.
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Making the change of variables k = n+α−m−1
2 − p we see that

G′′
∞(s, f) = (−1)n

(
n

m

)2 2n+2∑

α=0
α≡n+1+m (2)

m∑

p=0

(−1)k

(
m

p

)(
n−m

k

)(
n−m

2n− 2m− k

)

Γ

(
n+ 1 −m+ α+ s

2

)
Γ

(
3n+ 3 −m− α+ s

2

)
.

Since the only term that survives is the k = n − m term, we see that p =
−n+m−1+α

2 . Hence G′′
∞(s, f) =

(−1)m

(
n

m

)2 m∑

p=0

(
m

p

)
Γ

(
s

2
+ n−m+ 1 + p

)
Γ

(
s

2
− p+ n+ 1

)
.

Now we make the change of variables s 7→ s + 2m and use the well known
identity (see, for instance, [10], page 505)

Γ(x)Γ(y)

Γ(x + y)
=

m∑

p=0

(
m

p

)
Γ(x+m− p)Γ(y + p)

Γ(x+ y +m)
,

to get

G′′
∞(s, f) = (−1)m

(
n

m

)2 Γ
(

s
2 + n−m+ 1

)2
Γ(s+ 2n−m+ 2)

Γ(s+ 2n− 2m+ 2)
.

Clearly G′′
∞(0, f) 6= 0 and so, by (33), G′

∞(0, f) 6= 0 also. But then by (30)
G∞(0, f) 6= 0 as well. 2

7 Rationality result

Let λ be the Hecke algebra character corresponding to f . Thus T (m)f =
λ(T (m))f = c (m, f)f , for all the Hecke operators T (m). Let E = Q(f, χN).
Then, since the following modules are free of rank 1 over E (see [10], Section
8), we may write

Sn(Γ0(N), χ−1
N

)[λ] = E · f1
H1

cusp(Γ0(N)\H, L̃(n, E))[λ] = E · η(f1)

where η(f1) is a rational Hecke eigen-differential form.
Following Hida, we define a period Ωj(f) as follows. Using the isomorphism

δ we define Ω(f) via δ(f1) = Ω(f) · η(f1). Note that the value of Ω(f) depends
on the choice of basis η(f1), but up to multiplication by an element of E, is
independent of this choice.

36



We now restrict to H . By Lemma 2 we may write η(f1) = ⊕n
m=0η2n−2m(f1),

where η2n−2m(f1) is a rational form ∈ H1
cusp(Γ0(N)\H, ˜L(2n− 2m,E)). Thus

δ2n−2m(f1) = Ω(f) · η2n−2m(f1).

Set

Ωj(f)
def
=

Ω(f) ·G(ψ−1
N ) · (2πi)3j−2w

(2πi)vi+vc
.

Theorem 1 Say ψ−1
N is primitive, and non-trivial. Then for all even integers

j ∈ (n+ 1 + vi + vc, 2n+ 2 + vi + vc],

that is, for all critical integers j in the right half of the critical strip,

G(j, f)

Ωj(f)
∈ E.

Proof The proof follows by analyzing the integral expressions (29) for G(s, f)
for m = 0, 1, 2, . . . , n, evaluated at s = 0. First note

∫ ∫

D

< δ2n−2m(f), E∗
2n−2m+2(0) >

= 2 π−(2n−2m+2) LN (2n− 2m+ 2, ψ−1
N ) Γ(2n− 2m+ 2)Ω(f) ·∫ ∫

D

< η2n−2m, E2n−2m+2(0) > . (34)

Since ψ−1
N is even, it is well known (see for instance [8], Section 4.2, Theorem 1)

LN(2n− 2m+ 2, ψ−1
N ) = G(ψ−1

N ) (2π)2n−2m+2

up to multiplication by an element of Q(ψ−1
N ) ⊂ E.

Also, Proposition 4 ⇒ E2n−2m+2(0) is E-rational. We would like to use the
pairing of Lemma 5 to claim that the last integral in (34) is an element of E.

However η2n−2m(f1) ∈ H1
cusp(Γ0(N)\H, ˜L(2n− 2m,E)), so is not compactly

supported. We get around this as follows.
We replace Γ0(N)\H by its (homotopically equivalent) Borel-Serre com-

pactification. This is a manifold with boundary, with the boundary consisting
of finitely many copies of the circle S1, indexed by (equivalence classes of) cusps.
For each cusp t we define a function (locally, on an open set Ut)

φt(z) =

∫ z

t

η2n−2m(f1),
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noting that dφt = η2n−2m(f1) on Ut. We may assume that the Ut are mutually
disjoint and that the complement of ∪tUt is compact. Now pick any C∞ bump
function εt satisfying

εt(z) =

{
1 for z ∈ Ut,

0 for z outside another open set Vt containing Ut.

Set φ =
∑

t εtφt, and let ω(f1) = η2n−2m(f1) − dφ. Then ω(f1) is a com-
pactly supported closed 1-form. Further the class of ω(f1) as an element

of H1
c(Γ0(N)\H, ˜L(2n− 2m,E)) is well defined since it is independent of the

choice of the εt. Indeed, if ω(f1)
′ = η2n−2m(f1) − dφ′ for some other φ′, then

ω(f1)
′−ω(f1) = d(φ−φ′). And since φ−φ′ = 0 on each Ut, φ−φ′ is compactly

supported.
Now note
∫ ∫

D

< η2n−2m(f1), E2n−2m+2(0) >=

∫ ∫

D

< ω(f1), E2n−2m+2(0) > +

∫ ∫

D

< dφ, E2n−2m+2(0) > .

The first integral ∈ E by Lemma 5. The second integral vanishes. Indeed, since
E2n−2m+2(0) is a closed form, the second integral

=

∫ ∫

D

d(φ ∧ E2n−2m+2(0)) =

∫

∂D

φ ∧ E2n−2m+2(0)

by Stoke’s Theorem. The last integral vanishes since φ is ‘exponentially decreas-
ing’ near the cusps.

In sum, we obtain,
∫ ∫

D

< δ2n−2m(f), E∗
2n−2m+2(0) >

.
= Ω(f)G(ψ−1

N ) (2π)2n−2m+2 π−(2n−2m+2),

where the
.
= means up to multiplication by an element of E.

On the other hand, when s = 0, s′ = 2n−m+2+vi +vc = j say. Moreover,
since (29) is only valid when m ≡ vi + vc (mod 2), we see that j is even, and so
is a critical integer of G(s, f) in the right half of the critical strip. In fact, as m
varies between 0 and n, j varies through all critical integers in the right half of
the critical strip. By Proposition 5, G∞(0, f) 6= 0. Thus, since j is even

G(j, f)
.
=

Ω(f)G(ψ−1
N ) (2π)2n−2m+2 π−(2n+2m+2) · (2π)2n−m+2 π2n+2m+2

ivi−vc

√
D

j

.
=

Ω(f)G(ψ−1
N ) (2πi)3j−2w

(2πi)vi+vc

= Ωj(f) 2
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Remark 2 The hypothesis of non-trivialness on ψ−1
N could probably be re-

moved. By Proposition 4, at m = n we could use instead an integral expression
with E2(s, z) replaced by E2(s, z) − pE2(s, pz) for a suitable prime p.

Remark 3 The period we obtain is compatible with the period relations of
Section 4.3. First note that

Ωj(f) = Ω0(f) · (2πi)3j

for all even critical integers j. This was predicted by (11). In fact, in this case,
we may ‘identify’

c+((M ⊗M c)+) = Ω0(f) =
Ω(f)G(ψ−1

N )

(2πi)vi+vc (2πi)2w
.

Moreover, by the results of [10], we see that we can identify

c+(N) = c+(ResK/QM) =
Ω(f)

(2πi)vi+vc
,

δ(N) = δ(ResK/QM) =
√
−DG(ψ−1

N ) (2πi)−2w.

Thus we ‘recover’ the first period relation of Proposition 3.

Remark 4 To prove an algebraicity result for the odd critical integers (in the
left half of the critical strip), one could possibly evaluate the integral expressions
at s = 1 − (2n − 2m + 2) (where the Eisenstein series is again rational) and
then proceed as above. We have not worked out the complete details of this
calculation. Alternatively, one may use the functional equation (derived in [6],
Section 7.2, in the case when w = n+1+vi +vc is odd, N = NO is an extended
ideal, and ψ−1

N is invertible, following methods of [17]) to get information about
these remaining critical values. For instance, in the level one case with n+ 1 +
vi + vc odd one may compute that

G(j, f) =
Ω(f) (2πi)j

(2πi)vi+vc

√
−D

for all odd critical integers j. This is again compatible with (11), and as above
we may ‘identify’

c−((M ⊗M c)+) =
Ω(f)

(2πi)vi+vc

√
−D

.

Thus we ‘recover’ the last period relation of Proposition 3.
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