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Abstract. In [GV04] the authors showed that, under some technical conditions, the local Ga-

lois representations attached to the members of a non-CM family of ordinary cusp forms are

indecomposable, for all except possibly finitely many members of the family. In this paper we

use deformation theoretic methods to give examples of non-CM families for which every classical

member of weight at least two has a locally indecomposable Galois representation.

1. Introduction

Let ρf be the global two dimensional p-adic Galois representation attached to a p-ordinary cuspidal

eigenform f of weight at least two. The local representation obtained by restricting ρf to the

decomposition subgroup at p is reducible. A natural question is whether this representation is semi-

simple. If f has complex multiplication this is known to be the case. The non-CM case is much

more mysterious. For weight two forms corresponding to rational elliptic curves without CM, the

local representation is not semi-simple or is indecomposable [Ser89]. In this paper we shall give the

first non-trivial explicit examples of non-CM forms of weight larger than two for which ρf is locally

indecomposable.

To achieve this it is convenient to work in a broader context. Recall that every classical p-

ordinary form f of weight at least two lives in a unique family of p-ordinary forms in the sense of

[Hid86]. Such an f is referred to as an arithmetic member of the family to distinguish it from the

non-classical p-adic members of the family, as well as from the classical members of weight one. It

is well known that the arithmetic members of a family either all have CM or are all of non-CM

type. In an earlier paper [GV04], the authors showed that in the non-CM case all but finitely many

of the arithmetic members have an indecomposable local representation. (This result was proved

under some technical conditions: p is odd, and the residual representation is p-distinguished and

absolutely irreducible when restricted to Q(
√
p∗) with p∗ = (−1)

p−1
2 · p). However, the possibility

that there might be a finite number of arithmetic members of the family, including possibly f , for

which the local representation is semi-simple remained. Indeed, it turns out that deciding if the

local representation is indecomposable for a particular form f can be a rather delicate matter.

In this paper we will show that for the first few cusp forms f of level one, every arithmetic member

of the corresponding p-adic family, including f , has an indecomposable local representation for all,

except possibly one or two, small ordinary primes p. More precisely, let ∆k be the unique normalized

2010 Mathematics Subject Classification. Primary: 11F80.

1



2 E. GHATE AND V. VATSAL

cusp form of level 1 and weight k ∈ {12, 16, 18, 20, 22, 26}. We shall say that an ordinary prime p is

a full companion prime for f if the image of the corresponding residual representation contains SL2,

and the associated local residual representation is semi-simple. Then we prove:

Theorem 1.0.1. Let f = ∆k be as above and let p be an ordinary prime for f . Assume that p is

not a full companion prime for f . Then every member of the p-adic family attached to f has an

indecomposable local Galois representation.

Each of the six cusp forms above has only at most one or two ordinary primes p < 10, 000

which are full companion primes. Thus the theorem gives rise to several explicit examples of locally

indecomposable modular Galois representations (for which see the main text). These examples

may be regarded as further evidence towards the general tendency of ordinary modular Galois

representations to be locally semi-simple exactly when the underlying form has CM. For illustrative

purposes we mention one example here. For the Ramanujan Delta function ∆ = ∆12, there are no

full companion primes in the above range and we obtain:

Corollary 1.0.2. The local Galois representation attached to ρ∆ is indecomposable for every ordi-

nary prime p < 10, 000.

1.1. Sketch of proof. The proof of theorem 1.0.1 is quite different from the methods used in

[GV04]. There we studied the “large” Λ-adic representation attached to a family and showed that

this representation is locally indecomposable exactly when the family is of non-CM type (under

technical conditions similar to those mentioned above, see [GV04, theorem 3]). The result for

individual arithmetic members of the family then followed by a descent argument, which naturally

introduced a finite error into the final result.

The present approach uses instead the deformation theoretic methods introduced by Mazur in his

foundational paper [Maz89]. Briefly the idea is as follows. Fix a cuspidal eigenform f of arbitrary

level and weight k ≥ 2. Let ρ̄ = ρ̄f be the mod p residual representation attached to f , and assume

it is absolutely irreducible. Let R = Rρ̄ be the universal deformation ring of ρ̄. If k > 2, then

Weston [Wes04] has shown that for all but finitely many primes p (in fact for all p ≥ k + 1 for the

six cusp forms above) the deformation problem attached to ρ̄ is unobstructed (see also Yamagami

[Yam04]), and so R is a power series ring in three variables over the Witt vectors of the residue field.

Now assume in addition that f is of level 1, and therefore not of CM type. Suppose also that

p is ordinary for f so that the residual representation ρ̄ is locally reducible. For most such p the

representation ρ̄ tends to be locally indecomposable. In such cases there is nothing to prove since if

f is p-distinguished (automatic in level 1 if p is odd), then all characteristic 0 deformations of ρ̄ are

also locally indecomposable [Gha05, proposition 6].

However there are primes p for which ρ̄ is locally semi-simple or split; the existence of such primes

p is closely related to the existence of a mod p companion form for f in the sense of Serre, Gross

[Gro90] and Coleman-Voloch. Assume then that ρ̄ is locally split (and p-distinguished). Since f is a

non-CM form one still expects ρf to be locally indecomposable. To show this we consider instead all
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deformations of ρ̄ that are ordinary and locally split. These are parametrized by a quotient of the

universal deformation ring R which we denote by Rsplit, and we are reduced to showing that this

ring is “small”. In particular if the reduced tangent space t(Rsplit) of Rsplit vanishes, then there is a

paucity of characteristic 0 points of Rsplit. A case by case inspection of these points sometimes allows

one to conclude that Rsplit has no arithmetic points (corresponding to classical cuspidal eigenforms

of weight 2 or more), thereby achieving our goal.

The computation of t(Rsplit) is in general a delicate matter. It is related to an explicit problem in

class field theory. Let S be the set consisting of the primes p and∞, and let GS be the Galois group

of the maximal extension of Q unramified outside S. If W0 is the representation of GS defined via

the usual conjugation action of ρ̄ on the two by two trace zero matrices over the residue field, then

the first cohomology group H1(GS ,W0) is known to have dimension 2 in the cases of interest. Let

K denote the inertia field in the finite Galois extension cut out by ρ̄. It turns out that t(Rsplit) = 0

if certain Z/p-extensions of K coming from certain classes in H1(GS ,W0) are linearly disjoint from

the usual cyclotomic Z/p-extension of K, after completion.

For the six cusp forms above, the primes for which ρ̄ is locally semi-simple can be classified into

three types depending on the image of the global residual representation ρ̄ in GL2(Fp). Either this

image is dihedral, or it is full (i.e., it contains SL2(Fp)) or it triangular (i.e., the global representation

is reducible).

In the (two) cases that the image of ρ̄ is dihedral, we solve the class field theory problem mentioned

above. In fact the argument simplifies somewhat since it turns out one has to show that the

cyclotomic Z/p-extension of K is disjoint from only one of the Z/p-extensions of K coming from

H1(GS ,W0), after completion. The cases where ρ̄ has full image are more difficult and are not treated

completely in this paper. Even in the smallest example the number field K has degree about 106,

making explicit arguments intractable. This explains the occasional primes in the range p < 10, 000

that we presently exclude in theorem 1.0.1. Finally, in the cases that the residual representation

is reducible, an application of a result of Ribet [Rib76] shows directly that the local representation

attached to ρf is indecomposable.

Acknowledgements: We thank Rob de Jeu and Ravi Ramakrishna for useful conversations. We also thank

Frank Calegari for providing us with the direct argument in the reducible case which avoids the tangent

space computations contained in an earlier version of this paper.

2. Galois representations

We start by recalling the basic objects we shall be studying. Let f be a primitive elliptic modular

cuspidal eigenform of level 1 and weight k ≥ 2. We remind the reader that such a form f is necessarily

not of CM type. Let p be a prime, and let ℘ be a prime of Q lying over p which is ordinary for

f . Let GQ = Gal(Q/Q) and let K be the number field generated by the Hecke eigenvalues of f .

Let ρ = ρf : GQ → GL2(K℘) be the ℘-adic representation attached to f by Eichler-Shimura and

Deligne.
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2.1. Ordinary representations. Let Gp be a decomposition subgroup at ℘. By a result of Mazur-

Wiles [MW86] and Wiles [Wil88], the ordinariness assumption implies that the restriction of ρ to

Gp is reducible. More concretely, it has the shape:

ρ|Gp ∼

(
δ v

0 ε

)
where δ, ε : Gp → K×℘ are characters, with ε unramified. More explicitly, if λ(α) : Gp → K×℘ denotes

the unramified character of Gp which maps the Frobenius at p to α ∈ K×℘ , then ε = λ(αp) where

αp is the unique p-adic unit root of x2 − apx+ pk−1, with ap the p-th Fourier coefficient of f . Thus

δ = λ(αp)
−1 · νk−1 where ν : GQ → Z×p is the p-adic cyclotomic character.

The function v : Gp → K℘ is a continuous map. The goal of this paper is to give examples of

forms f as above for which v cannot be made zero even after a change of basis. Put another way

we would like to show that the class of the cocycle c = ε−1 · v in H1(Gp,K℘(δε−1)) is non-zero. To

do this, we will frequently work over the inertia subgroup Ip ⊂ Gp at ℘. This is because the local

representation ρ|Gp splits if and only if the representation ρ|Ip splits. Indeed the restriction map

H1(Gp,K℘(δε−1))→ H1(Ip,K℘(δε−1))

is injective: its kernel is H1(Gp/Ip,K℘(δε−1)Ip) = 0, since δ 6= ε on Ip.

We need to recall some terminology. If the reductions δ̄ and ε̄ of δ and ε are distinct on Gp, one

says that f (or more precisely the residual representation attached to f) is p-distinguished. This

condition is automatic in our setting if p is an odd prime. Indeed let ω be the mod p cyclotomic

character. Then δ̄|Ip = ωk−1 6= 1 since k is even (f has level 1) and ε̄|Ip = 1.

2.2. Residual representation. Let F denote the residue field of the ring of integers of K℘, and

let ρ̄ : GQ → GL2(F) be the residual representation attached to ρ. Its isomorphism class is only

determined up to semi-simplification.

Even though ρ is expected not to be locally split, it is possible for the residual representation ρ̄

to be locally split or semi-simple. It is this phenomenon that makes the question studied in this

paper interesting. For the six cusp forms f above, the primes for which this happens are listed in

the following table, according to the image of the global residual representation ρ̄ in GL2(Fp).

f Non ordinary primes (< 106) Dihedral Full (< 104) Reducible

∆ 2,3,5,7,2411 23 2,3,5,7,691

∆16 2,3,5,7,11,13,59,15271,18744 31 397 2,3,5,7,11,3617

∆18 2,3,5,7,11,13 271 2,3,5,7,11,13,43867

∆20 2,3,5,7,11,13,17,3371,64709 139, 379 2,3,5,7,11,13,283,617

∆22 2,3,5,7,13,17,19 2,3,5,7,13,17,131,593

∆26 2,3,5,7,11,13,17,19,23 107 2,3,5,7,11,17,19,657931

Table 1. Primes for which ρ̄ is locally split
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The third column contains all such primes for which the image of ρ̄ is dihedral, and is taken from

Serre [Ser73]. There are only two cases, and for both the image is isomorphic to S3. The fourth

column contains such primes < 10, 000 for which the image of ρ̄ is full, i.e., contains SL2(Fp). That

these are the only primes up to 3, 500 is mentioned at the end of Gross’ paper [Gro90] on companion

forms and is due to Atkin and Elkies. C. Citro has recently checked that these are the only such

primes up to 10, 000. The last column contains such primes for which ρ̄ is reducible, and is again

taken from [Ser73]. Finally, the second column describes all the non-ordinary primes for f less than

a million, as compiled by Gouvêa in [Gou97]. Note that only one or two of the ‘reducible’ primes

are ordinary.

3. Deformation Theory

3.1. Universal locally split deformation ring. This ring will play a key role in what follows. We

establish its existence in this section using ideas introduced by Mazur in [Maz89]. See also [Oht06].

We work somewhat generally. Let p be a prime and let F be a finite field of characteristic p. Let

S = {p,∞}, and let GS be the Galois group of the maximal extension of Q unramified outside S.

Let ρ̄ : GS → GL2(F) be any Galois representation, such that

ρ̄|Ip ∼

(
δ̄ 0

0 1

)
(3.1.1)

where δ̄ : Ip → F× is a character with δ̄ 6= 1. In particular the representation ρ̄ is p-distinguished.

Let O = W (F). Let CLN (O) be the category whose objects are complete local noetherian O-

algebras with residue field F and morphisms are local homomorphisms which induce the identity

map on F. Let R be an object of this category and let ρ : GS → GL2(R) be a continuous ho-

momorphism whose composition with the residue map R → F induces the homomorphism ρ̄. Two

such homomorphisms ρ1 and ρ2 are said to be strictly equivalent if there is a matrix M ∈ GL2(R)

which reduces to the identity under the residue map R → F such that ρ2(g) = M · ρ1(g) ·M−1

for all g ∈ GS . A deformation of ρ̄ to GL2(R) is a strict equivalence class of such representations

ρ : GS → GL2(R).

Let SET S be the category of sets. Consider the functor

Dρ̄ : CLN (O)→ SET S

defined by Dρ̄(R) = {deformations of ρ̄ to GL2(R)}.
Assume that the scalar matrices are exactly the matrices in M2(F) which commute with the image

of ρ̄, i.e., End(ρ̄) = F. This happens for instance if ρ̄ is absolutely irreducible. This assumption

also holds in the case when ρ̄ is reducible and has the shape (6.0.2) below. In any case, under

this assumption it is known that the functor Dρ̄ is representable. That is, there is a ring Rρ̄ ∈
CLN (O) such that Dρ̄(R) = Hom(Rρ̄, R) for all R ∈ CLN (O). More concretely, there is a universal

deformation to GL2(Rρ̄) such that every deformation to GL2(R) is obtained by composing with a

map Rρ̄ → R.
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Now consider deformations ρ : GS → GL2(R) of ρ̄ which in addition are p-split, namely,

ρ|Ip ∼

(
δ 0

0 1

)
where δ : Ip → R× is a character whose reduction is δ̄. In particular δ 6= 1. More precisely, let

Mρ = R2 be a model for ρ. Then ρ is said to be p-split, if the sub-module M Ip ⊂Mρ is free of rank

1 over R, and has a free of rank 1 over R complement M ′ which is Ip-stable with Ip-action given by

δ. Notice that if ρ is p-split, then all the members of the strict equivalence class of ρ are also p-split.

Now consider the finer deformation functor

Dsplit
ρ̄ : CLN (O)→ SET S

defined by Dsplit
ρ̄ (R) = {p-split deformations of ρ̄ to GL2(R)}. Thus Dsplit

ρ̄ ⊂ Dρ̄ is a sub-functor of

the usual deformation functor.

Proposition 3.1.2. The functor Dsplit
ρ̄ is also representable.

Proof. Consider the full sub-category LA(O) of CLN (O) whose objects are local artinian O-algebras

with residue field F. Recall that a local artinian algebra is automatically complete and noetherian.

Let Fρ̄ and F split
ρ̄ respectively be the deformation functors corresponding to the two deformation

problems above restricted to this smaller sub-category. It is a fact that Dsplit
ρ̄ is representable if and

only if F split
ρ̄ is pro-representable, that is, there is a ring Rsplit

ρ̄ ∈ CLN (O) such that F split
ρ̄ (R) =

Hom(Rsplit
ρ̄ , R) for all R ∈ LA(O). So it suffices to show that F split

ρ̄ is pro-representable. Now a

similar statement applies to the representable functor Dρ̄ so the functor Fρ̄ is known to be pro-

representable. In particular Fρ̄ satisfies Schlessinger’s conditions (H1) through (H4). We must show

that F split
ρ̄ also satisfies these conditions.

Since F split
ρ̄ ⊂ Fρ̄ is a sub-functor it suffices to show that F split

ρ̄ satisfies condition (H1). The other

conditions then follow. Let us recall this condition. Let R3 = R1 ×R0
R2 be a fiber product in the

category LA(O) and let

(∗) : F split
ρ̄ (R3) −→ F split

ρ̄ (R1)×F split
ρ̄ (R0) F

split
ρ̄ (R2)

be the induced map on the level of sets. Then (H1) says that

if R2 → R0 is small (i.e., surjective with kernel a principal ideal annihilated by the maximal

ideal of R2), then the map (∗) is surjective.

We shall show that (∗) is surjective where R2 → R0 is any (not necessarily small) surjective map.

We first prove the following lemma.

Lemma 3.1.3. Assume R2 → R0 is surjective. Let ρi : GS → GL2(Ri) for i = 1, 2 be homomor-

phisms whose compositions with the maps Ri → R0 for i = 1, 2 induce the same homomorphism to

GL2(R0). Let ρ3 : GS → GL2(R3) be the induced homomorphism to the fiber product. Then, if ρi is

p-split for i = 0, 1, 2, then so is ρ3.
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Proof. Let vi, v
′
i be a basis for Mρi for i = 0, 1, 2, with Ip-acting trivially on vi and by δi on v′i. Since

the map R2 → R0 is surjective we may in fact assume that both v1 and v2 map to v0 under the

maps R1 → R0 and R2 → R0 respectively. Indeed choose v0 to be the image of v1 under R1 → R0.

Then the image of an arbitrary Ip-invariant basis vector in Mρ2
under R2 → R0 must differ from

v0 by a unit in R0. Modifying v2 by an appropriate scalar (using the surjectivity of R2 → R0) we

may assume that v2 does indeed map to v0. A similar argument applies to the complementary basis

vectors, v′1, v′2 and v′0. Let v3 and v′3 be the vectors in Mρ3
= R2

3 whose components in the fiber

product R3 = R1 ×R0
R2 are constructed out of the components of the pairs of vectors (v1, v2) and

(v′1, v
′
2) respectively. Clearly v3, v′3 is a basis of R2

3 with the desired properties. �

To finish the proof of the proposition, let ρ1 and ρ2 be deformations to GL2(R1) and GL2(R2)

respectively which yield strictly equivalent homomorphisms to GL2(R0), say differing by an element

M̄ ∈ GL2(R0). Since R2 → R0 is surjective, we may conjugate ρ2 by a pre-image M of M̄ in

GL2(R2), and then ρ1 and Mρ2M
−1 induce the same homomorphism to GL2(R0). Since ρ2 is

p-split, so is Mρ2M
−1. Hence their fiber product ρ1 × Mρ2M

−1 is also p-split, by the above

lemma. Clearly this homomorphism maps to (ρ1, ρ2) under the map (∗). This proves that (∗) is

surjective. �

For ease of notation write R = Rρ̄ for the universal deformation ring attached to ρ̄. We also

let Rord = Rord
ρ̄ denote the universal deformation ring which parametrizes deformations of ρ̄ which

are ordinary at p. The existence of this ring was shown by Mazur. Finally we let Rsplit = Rsplit
ρ̄

denote the universal deformation ring which parametrizes deformation which are ordinary at p,

and split on Ip, i.e., the ring which represents the sub-functor Dsplit
ρ̄ above. We have surjections

R� Rord � Rsplit.

3.2. Locally split tangent space. Keep the notation of the last sub-section. In particular ρ̄ :

GS → GL2(F) is a fixed residual representation which is locally split.

For any algebra A ∈ CLN (O) with residue field F, let t(A) = Hom(mA/(p,m
2
A),F) denote the

(reduced) tangent space of A.

Let W = Ad(ρ̄) be M2(F) with the conjugation action of GS via ρ̄. For the universal deformation

ring R, we identify the F-vector space t(R) with deformations of ρ̄ to the dual numbers F[ε]/(ε2). All

such deformations are in bijection with H1(GS ,W ). More explicitly we have a linear isomorphism

H1(GS ,W )
∼−→ t(R)(3.2.1)

given by assigning to the class of the cocycle U : GS → W the strict equivalence class of the

homomorphism ρU : GS → GL2(F[ε]/(ε2)) defined by ρU (g) = ρ̄(g) · 1 + U(g)ρ̄(g) · ε.
Recall that ρ̄ is locally split. Let t(Rsplit) ⊂ t(R) denote the tangent space of the universal locally

split ring Rsplit. This vector space can be identified with a certain Selmer group. Fix a basis in

which ρ̄ has the shape (3.1.1). An easy computation shows that under the identification (3.2.1), the

class of the cocycle U(g) =
(
ag bg
cg dg

)
corresponds to an ordinary locally split deformation if and only
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if the classes of the cocycles bg in H1(Ip,F(δ̄)), cg in H1(Ip,F(δ̄−1)), and dg in H1(Ip,F), obtained

by restricting g to Ip, all vanish. In other words:

t(Rsplit) = ker
(
H1(GS ,W )→ H1(Ip,W/W1)

)
,(3.2.2)

where W1 ⊂W is defined, in this basis, by W1 = {( a 0
0 0 )}.

We now proceed to compute the ‘locally split’ Selmer group in (3.2.2) in various cases.

4. Dihedral Case

Let p be an odd prime and assume that p ≡ 3 mod 4. Let K0 = Q(
√
−p) be an imaginary

quadratic field and let GK0 = Gal(Q/K0). Let CK0 denote the class group of K0 and let hK0

be the class number of K0. Note that p 6
∣∣ hK0 . Let F be a finite field of characteristic p and let

χ̄ : CK0 → F× be a character of order hK0 . If H is the Hilbert class field of K0, then χ̄ may also be

thought of as a character of Gal(H/K0). Let τ be a generator of Gal(K0/Q) and write τ also for a

fixed lift to GQ. Let χ̄τ denote the conjugate character.

The basic object of study in this section is the residual representation

ρ̄ = Ind
GQ
GK0

(χ̄).

We fix a basis e1, e2 (which we shall refer to as ‘the global basis’ of ρ̄) for which we have

ρ̄ ∼


(
χ̄ 0
0 χ̄τ

)
on GK0

,(
0 1
1 0

)
for τ ∈ GQ \GK0 .

(4.0.1)

Let W (F) denote the Witt vectors of F and let χ : CK0
→ W (F)× denote the Techimüller lift of

χ̄. Set ρ = Ind
GQ
GK0

(χ). If χ is non-trivial, then the theta series

f1 =
∑
a

χ(a)qN(a)

where the sum is over all integral ideals a of K0, is well known to be a cuspidal eigenform of weight

1, level p and character χ−p where χ−p is the quadratic character of K0. Further if ρf1
is the

Deligne-Serre Galois representation attached to f1, then ρf1
∼ ρ.

Now let f be one of the ‘first six’ cusp forms of level 1 and assume p is ordinary for f . It sometimes

happens that the weight 1 member of the corresponding p-adic family is the form f1. This happens

in particular for the two pairs f = ∆ and p = 23, and f = ∆16 and p = 31. Since the residual

representation is an invariant of the family, in these cases we have ρ̄f ∼ ρ̄f1
∼ ρ̄. As we shall

see below this representation is locally split. We wish to show that the locally split tangent space

t(Rsplit) vanishes in these two cases.

The field H cut out by ρ̄ has Galois group isomorphic to S3 in these cases. (Such S3-cases were

studied in considerable detail in [BM89].) In fact H is the Galois closure of the cubic field K = Q(α),
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with α a root of q(x) = x3 ∓ x + 1, of discriminant −23 and −31 respectively. The lattice of fields

cut out by ρ̄ is given in the diagram on the left below:

H

3

2

K

3 K0

2

Q

P2
1P

2
2P

2
3

q1q
2
2

p2

p

If β and γ denote the other roots of q(x), then τ fixes α and switches β and γ, so Gal(H/K) = 〈τ〉.
All the number fields above have class number 1 except for K0, and hK0 = 3.

The diagram on the right describes the prime decomposition of p in the various number fields

above. It turns out that the residue degree f(Pi/p) = 1 for all Pi|p. The discriminant of K is

−p = (β − γ)2(γ − α)2(α− β)2, and this factorization corresponds exactly to the three primes of H

lying over p. If P1 = (β − γ), then the decomposition subgroup G(P1/p) and the inertia subgroup

I(P1/p) are both equal to Gal(H/K). In particular K is the fixed field of inertia. The arithmetic

of this field plays a vital role in what follows.

Now ρ̄|Gp
is trivial, since Gp = GP1 ⊂ GH . So ρ̄|Gp factors through the decomposition subgroup

G(p/p) of K0. Since G(p/p) = Gal(K0/Q), and τ has eigenvalues 1 and −1, evidently

ρ̄|Gp ∼ χ−p ⊕ 1.

Thus ρ̄ is ordinary and locally split. (A similar argument shows that ρ|Gp ∼ χ−p⊕1 is also ordinary

and locally split). Fix a basis f1, f2 for which ρ̄ has the following shape:

ρ̄|Gp ∼
(
χ−p

0

0

1

)
.(4.0.2)

We refer to this basis as ‘the local basis’ of ρ̄. We wish to compute the Selmer group (3.2.2) in this

basis.

4.1. Selmer group computations. To proceed further we note that the group H1(GS ,W ) decom-

poses. Indeed since ρ̄ is dihedral we have

W = 1⊕ χ−p ⊕ ρ̄(4.1.1)

as a GS-module (the two-dimensional term above is Ind
GQ
GK0

(χ̄τ/χ̄) = ρ̄, since χ̄τ/χ̄ = χ̄). Using the

global basis in which ρ̄ has the shape (4.0.1) the decomposition (4.1.1) of W is given explicitly by:

W =

{(
a

0

0

a

)}
⊕
{(

d

0

0

−d

)}
⊕
{(

0

c

b

0

)}
.
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This yields the decomposition:

H1(GS ,W ) = H1(GS ,F)⊕H1(GS ,F(χ−p))⊕H1(GS , ρ̄).

Thus a class σ ∈ H1(GS ,W ) may be thought of as a tuple σ = (σ1, σ2, σ3) with respect to the

decomposition above.

Now, in the local basis f1, f2 we have W1 = {
(
a
0

0
0

)
}. Since τ flips e1 and e2, up to a scalar we

have f1 = e1 − e2 and f2 = e1 + e2. It follows that

W1 =

{(
a

−a
−a
a

)}
in the global basis e1, e2. Comparing this with (4.1.1), we see W1 ⊂ 1⊕ ρ̄.

Let σ = (σ1, σ2, σ3) be a Selmer class. Since W1 does not meet the line F(χ−p) in (4.1.1), we see

that σ2 lies in the kernel of the map

H1(GS , χ−p)→ H1(Ip, χ−p).

The inflation-restriction sequence allows one to work over K0, and one sees immediately that this

map is injective since hK0
is prime to p. One concludes that σ is a Selmer class if and only if (σ1, σ3)

lies in the kernel of the map

H1(GS ,F)⊕H1(GS , ρ̄) −→ H1(Ip, (1⊕ ρ̄)/W1).(4.1.2)

Since W1 is transverse to the global subspaces 1 and ρ̄ of W , computing the kernel of this map is

somewhat subtle. To simplify things, define the auxiliary maps induced by restriction and projection:

r : H1(GS ,F)→ H1(Ip,F)

s : H1(GS , ρ̄)→ H1(Ip, ρ̄)→ H1(Ip,F)

t : H1(GS , ρ̄)→ H1(Ip, ρ̄)→ H1(Ip,F(χ−p)).

Then we have:

Lemma 4.1.3. (σ1, σ3) lies in the kernel of the map (4.1.2) if and only if

r(σ1) + s(σ3) = 0 and t(σ3) = 0.

Proof. Note (σ1, σ3) is in the kernel if there is an element X̄ ∈ (1⊕ ρ̄)/W1 such that σ1(i) + σ3(i) =

i·X̄−X̄ for all i ∈ Ip. (We’re abusing notation slightly and letting σ1 and σ3 also stand for cocycles in

the classes they denote.) Say X = ( a bc a ) ∈ 1⊕ρ̄. We may write X as a·( 1 0
0 1 )+ b+c

2 ·( 0 1
1 0 )+ b−c

2 ·
(

0 1
−1 0

)
.

Now i ∈ Ip fixes the last three matrices, whereas τ ∈ Ip \Ip preserves the first two and acts as −1 on

the last. Hence we see that i ·X −X vanishes for i ∈ Ip, and equals
(

0 c−b
b−c 0

)
for i ∈ Ip \ Ip. Thus,

thinking of the cocycles as taking values in W , we get σ1(i) + σ3(i) =
(
ai −ai
−ai ai

)
∈ W1, if i ∈ Ip,

plus possibly
(

0 c−b
b−c 0

)
if i ∈ Ip \ Ip.

Now r(σ1)(i) = ai, for all i ∈ Ip, since it is given by the entry that occurs on the diagonal of

σ1(i). Also s(σ3)(i) = −ai, for all i ∈ Ip, since it is the average of the off diagonal entries of σ3(i).

Thus r(σ1) + s(σ3) = 0. Similarly t(σ3)(i) = 0, for i ∈ Ip, and equals c− b for i ∈ Ip \ Ip, since it is
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given by half the difference of the off diagonal entries of σ3(i). In particular t(σ3) is the coboundary

i 7→ i · (b− c)/2− (b− c)/2, and so vanishes in cohomology. �

In view of the lemma above we see that

(σ1, σ3) does not lie in the kernel of (4.1.2) if r(σ1) 6= −s(σ3).

We show that the last condition always holds unless (σ1, σ3) is trivial. First note the following fact.

Lemma 4.1.4. The maps r and s are injective.

Proof. The injectivity of r is standard. The injectivity of s was proved by Greenberg [Gre91] in the

case f = ∆ and p = 23, which he studied in great detail in the context of the Iwasawa theory of

motives. We recall his argument briefly, and explain how it can be adapted to the case f = ∆16 and

p = 31 as well. A short computation shows that the Galois group of the maximal abelian extension of

H unramified outside S is Z4
p×T , where T = Z/11 in the first case and T = Z/15×Z/3 in the second

case. So the maximal p-quotient of this field has Galois group (Z/p)4 in both cases. One checks that

under the natural action of Gal(H/Q) on this space each of the irreducible representations 1, χ−p

and ρ̄ occur with multiplicity one. It particular dim H1(GS , ρ̄) = 1. So, in both cases, to show s is

injective it suffices to show s is non-zero. Let P be any prime of H lying over p. Let UP be the local

units at P and ŨP = UP/U
p
P. Set U =

∏
P|p UP and Ũ =

∏
P|p ŨP. Let E denote the global units

of H and let Ẽ denote the image of E in Ũ . The decomposition subgroup G(P/p) = Z/2 acts on

each ŨP and the trivial and non-trivial isotypic components each have dimension 1. Let Ũ0 be the

product over P of the trivial components and likewise Ũ1 the product of the non-trivial components.

Both of these are modules for Gal(H/Q). In [Gre91] it is shown that

s = 0 ⇐⇒ Ũ ρ̄0 = Ẽ(4.1.5)

where the super-script ρ̄ denotes the ρ̄-isotypic component. The argument is general and also applies

to the case f = ∆16 and p = 31. An explicit computation with the units of H shows that (4.1.5) does

not happen in either case. Indeed assuming the contrary we get for each P, the map Ẽ ↪→ Ũ � ŨP

followed by projection to the non-trivial eigenspace of ŨP under the action of G(P/p), is the zero

map. But with notation as before, u := β/γ ∈ E satisfies τ(u) = u−1, so u gives rise to an element

in the non-trivial eigenspace of ŨP1 . Writing u as 1 + π1/γ with π1 := β − γ a uniformizer of P1,

we see u ∈ U1
P1

, the principal units in UP1 . But clearly u 6∈ (U1
P1

)p = U3
P1

. The lemma follows in

both cases. �

By the lemma we see that r(σ1) 6= −s(σ3) if exactly one of σ1 or σ3 is trivial. Since H1(GS ,F)

and H1(GS , ρ̄) are both one dimensional we may as well assume that σ1 and σ3 are (non-zero) basis

elements of these spaces.

Now any basis element of H1(GS ,F) cuts out the cyclotomic Z/p-extension of Q, and the image

of this element under r cuts out the cyclotomic Z/p-extension of Qp. A basis element of H1(GS , ρ̄)

cuts out a (p, p)-extension M of H. Let M1 and M2 denote the sub Z/p-extensions of M on which

I(P1/p) acts non-trivially and trivially respectively. Thus M2 descends to a Z/p-extension of the
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fixed field K of I(P1/p). On completion of M2 one gets another Z/p-extension of Qp = Kq1
, and

this corresponds to the image of the basis element under the map s.

Thus to show that the Selmer group vanishes it is enough to show that these two Z/p-extensions

of Qp coming from r and s are linearly disjoint. This is proved in [Gre91] in the case f = ∆ and

p = 23, where it is left to the reader as an interesting exercise in class field theory. Since we found

the hints there somewhat difficult to reproduce we provide an alternative argument here, which also

works in the case of f = ∆16 and p = 31.

Proposition 4.1.6. The two Z/p-extensions of Qp coming from r and s are disjoint.

Proof. Let us rephrase the proposition. For simplicity, we sometimes write P for P1 and q for q1.

Recall K is the fixed field of the inertia subgroup I(P/p). If L1 is the cyclotomic Z/p-extension of

K and L2 is the Z/p-extension of K obtained from M2 by descent, we must show that L1 and L2

have distinct completions. To this end let L = L1L2 be the compositum. It is enough to show that

[LP : Kq] = p2.

Write K
(p)
q for the maximal abelian extension of Kq = Qp of exponent p. By local class field

theory one has Gal(K
(p)
q /Kq) = K×q /(K

×
q )p

∼−→ (Z/p)2.

Now Gal(L/K) = (Z/p)2. We have the natural maps:

Gal(K
(p)
q /Kq) � Gal(LP/Kq) ↪→ Gal(L/K).

Thus it suffices to show that the composite map is surjective.

To do this we need to make things explicit. On the local side, let π ∈ K be a uniformizer for

Kq = Qp. Then Gal(K
(p)
q /Kq) has basis given by (the Artin symbols of) π, 1 + π. Since we are

working modulo p-th powers, it is legitimate and more convenient to work with the basis π1−p, 1+π.

On the global side, one can check that L is the maximal p-quotient of the ray class field of K of

modulus p2. Write O for the ring of integers of K. Then by global class field theory Gal(L/K) =

(O/p2O)× modulo units and p-th powers. Since p = q1q
2
2 in K, we have (O/p2O)× = 1+q1

1+q2
1
× 1+q2

1+q4
2

modulo p-th powers. Further, since (1 + q2)p = 1 + q3
2, we may identify Gal(L/K) with

X =
1 + q1

1 + q2
1

× 1 + q2

1 + q3
2

modulo units and p-th powers.

Working adèlically, π1−p is to be thought of as the element (1, 1, · · · , 1, π1−p, 1, 1, · · · , 1) ∈
K×\A×K , which is equivalent to the element (πp−1, πp−1, · · · , πp−1, 1, πp−1, πp−1, · · · , πp−1). So un-

der the above map π1−p maps to the class of (1, πp−1) in X. Similarly the second basis element 1+π

maps to the class of (1 + π, 1) in X. We need to show that these two elements generate X. Clearly

the second element generates the first factor, so we are reduced to showing that πp−1 generates 1+q2

1+q3
2

modulo units and p-th powers. We note that this is quite possible, since 1+q2

1+q3
2

∼−→ (Z/p)2 and the

unit rank of K is 1. In fact the root α of x3 ∓ x + 1 is a fundamental unit of K. We show 1+q2

1+q3
2

is
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generated by πp−1 and αp−1. Indeed we have the following exact sequences:

0 // ker //

��

〈πp−1, αp−1〉 //

��

1+q2

1+q2
2

// 0

0 // 1+q2
2

1+q3
2

// 1+q2

1+q3
2

// 1+q2

1+q2
2

// 0

where the vertical arrows are inclusions. By the snake lemma, the middle inclusion is a surjection

if the first inclusion is a surjection. This in turn follows if the kernel in the first exact sequence is

non-zero (because the dimension of
1+q2

2

1+q3
2

is 1). But now a brief check using Pari-gp shows that there

exist a, b such that (πp−1)a(αp−1)b ≡ 1 mod q2
2, but 6≡ 1 mod q3

2. For the reader’s convenience,

we list these values explicitly, when π is taken to be −3α2 ± 4. They are a = 13, b = 1 in the −23

case, and a = 19, b = 23 in the −31 case. �

In view of the proposition, the kernel of (4.1.2) is trivial. Hence the Selmer group in (3.2.2)

vanishes, i.e., t(Rsplit) = 0. We can now prove:

Theorem 4.1.7. Let f = ∆ and p = 23, or f = ∆16 and p = 31. Then no arithmetic member of

the ℘-ordinary Hida family passing through f has locally split Galois representation.

Proof. We claim that Rsplit ∼= Zp in both cases. Recall ρ = Ind
GQ
GK0

(χ), the representation arising

from the form of weight 1 in the corresponding family, is locally split, and so gives rise to a charac-

teristic 0 point of Rsplit. Since χ is cubic in both cases, ρ actually has a model over Zp (even over

Z) since the traces of ρ take values in Z. So there is a natural map Rsplit � Zp. We show this map

is injective. Since t(Rsplit) = 0, by Nakayama’s lemma, the maximal ideal m of Rsplit must be the

principal ideal m = pRsplit. Now say x lies in the kernel. Then x ∈ m, and so x = px1 for some

x1 ∈ Rsplit. If x1 were a unit, then p would be in the kernel, which is not the case. So x1 ∈ m,

and x1 = px2 for some x2 ∈ Rsplit. Continuing this way we see that, for each n ≥ 1 we can write

x = pnxn for some xn ∈ Rsplit, i.e., x ∈ ∩∞n=1m
n. But Rsplit is a noetherian local ring, so this

intersection vanishes by the Krull intersection theorem, and x = 0. Thus the above map is injective,

proving the claim. Since Rsplit = Zp, we see that in particular there are no additional characteristic

0 points of Rsplit other than the weight one point mentioned above, and we are done. �

Remark 4.1.8. After the above arguments were written down the authors realized that there is an

alternative and simpler method to show that the split Selmer group vanishes. This uses the map t

instead of the maps r and s. We have chosen to preserve the argument concerning the maps r and

s since similar arguments are likely to be necessary to treat the ‘full case’ which we turn to next.

This argument goes as follows. By (4.1.5) we have s = 0 ⇐⇒ Ũ ρ̄0 = Ẽ. Reasoning identical to

that used in [Gre91] to show that (4.1.5) holds can be similarly used to show that

t = 0 ⇐⇒ Ũ ρ̄1 = Ẽ.(4.1.9)
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Now Ẽ ⊂ Ũ ρ̄ and Ũ = Ũ0 ⊕ Ũ1 = (Ũ ρ̄0 ⊕ 1) ⊕ (Ũ ρ̄1 ⊕ χ−p). It would therefore appear that the

equivalences (4.1.5) and (4.1.9) are mutually exclusive, so that s 6= 0 forces t = 0, rendering any use

of the map t towards the vanishing of split Selmer useless. However this is not the case since Ẽ can

be transverse to the two spaces Ũ ρ̄0 and Ũ ρ̄1 . In fact we claim t 6= 0. To see this note that otherwise

by (4.1.9) we would get for each prime P of H, the map Ẽ ↪→ Ũ � ŨP followed by projection to

the trivial eigenspace of ŨP under the action of the decomposition subgroup G(P/p), is the zero

map. But this is not true. Let u′ = α22 where α is the root of x3 − x + 1 = 0 fixed by τ . Then

by definition α lies in the trivial eigenspace for the action of G(P1/p) = 〈τ〉 with P1 = (β − γ).

On the other hand a computation shows that u′ ∈ (1 + P2
1) \ (1 + P3

1). Indeed using Pari-gp one

checks that in the cubic field K the q1-adic valuation of α22 − 1 is equal to 1, and so it has P1-adic

valuation equal to 2 (since q1 = P2
1 in H). Here q1 is the prime of the cubic field K lying under

P1. Thus u′ does not lie in (1 + P1)p which via the logarithm map is 1 + P3
1, and so is non-zero

modulo p-th powers. This u′ is a global unit that projects non-trivially to the trivial eigenspace of

ŨP1
. Thus t 6= 0.

The non-vanishing of t implies that t is injective. This can be used to show that the split Selmer

group vanishes (without using proposition 4.1.6). Indeed by lemma 4.1.3 if (σ1, σ3) is in the kernel

of (4.1.2), then t(σ3) = 0. By the injectivity of t we see that σ3 = 0. But then the condition

r(σ1) + s(σ3) = 0 forces σ1 = 0 by the injectivity of r, and (σ1, σ3) is the trivial class. It is not clear

that the analogues of the map t in the ‘full case’ continue to be injective, in which case one would

be forced to study the analogues of the maps r and s in this setting regardless.

5. Full case

We now turn to the case where the image of ρ̄ : GS → GL2(Fp) contains SL2(Fp).
We choose notation in close analogy with the dihedral case above. Let Q(ζp) denote the p-th

cyclotomic field and let K0 ⊂ Q(ζp) be the field cut out by det ρ̄ = ωk−1. Thus if r is the gcd

of k − 1 and p − 1, then K0/Q has degree (p − 1)/r. Let H be the field cut out by ρ̄. It turns

out that H/K0 is an unramified extension with Gal(H/K0)
∼−→ SL2(Fp). Thus H is a non-abelian

replacement for the Hilbert class field of K0 which appeared in the dihedral setting.

Assume that ρ̄ is locally split. The explicit description of the characters δ and ε in section 2.1

shows that

ρ̄|Gp ∼

(
λ(āp)

−1ωk−1 0

0 λ(āp)

)
and ρ̄|Ip ∼

(
ωk−1 0

0 1

)

where āp ∈ Fp is the mod p reduction of the p-th Fourier coefficient ap of f . Let K denote the fixed

field of the inertia subgroup I(P1/p) where P1 is the prime of H induced by the prime ℘ of Q̄. Note
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H/K also has degree (p− 1)/r. The information above is summarized in the following diagram:

H

SL2(Fp)

p−1
r

K

p(p−1)(p+1) K0

p−1
r

Q

The way in which p decomposes in the fields above is more involved. We have p = p
p−1
r in K0.

If P is any prime of H lying over p, then the ramification index e(P/p) = (p− 1)/r and the residue

degree f(P/p) is equal to the order of āp in F×p , given by the following table:

f p āp f(P/p)

∆16 397 367 33

∆18 271 168 270

∆20 139 132 138

∆20 379 42 378

∆26 107 106 2

Thus p decomposes as p = P
p−1
r

1 · · ·P
p−1
r

g in H, where g = p(p−1)(p+1)/f(P/p). Of key importance

is the prime decomposition of p in K. The number of primes of K lying over p is in bijection with the

double coset space I(P1/p)\G/G(P1/p) where G = Gal(H/Q), and G(P1/p) and I(P1/p) are the

decomposition and inertia subgroup of the prime P1 of H lying over p. A lengthy but elementary

computation of this double coset space in the ‘smallest’ case f = ∆26 and p = 107 shows that

p = q1q2 · · · q(p−1)/2 · qp−1
(p+1)/2 q

p−1
(p+3)/2 · · · q

p−1
(p2+2p−3)/2 · q

p−1
(p2+2p−1)/2

in K, with f(qi/p) = 2 for each qi|p except for the last prime which has f(q(p2+2p−1)/2/p) = 1.

We wish to compute the Selmer group in (3.2.2). While we have not been able to carry out

the computation for any example, we now sketch how the computation might proceed under some

assumptions. Recall that W = Ad(ρ̄) = 1 ⊕W0 where W0 denotes the trace zero matrices. Thus,

we wish to compute the kernel of the map

H1(GS ,F)⊕H1(GS ,W0) −→ H1(Ip,W/W1).
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As an Ip-module W0 = F ⊕ F(ωk−1) ⊕ F(ω1−k). In analogy with the dihedral case, consider the

maps, induced by restriction and projection:

r : H1(GS ,F)→ H1(Ip,F)

s : H1(GS ,W0)→ H1(Ip,W0)→ H1(Ip,F)

t : H1(GS ,W0)→ H1(Ip,W0)→ H1(Ip,F(ωk−1))

u : H1(GS ,W0)→ H1(Ip,W0)→ H1(Ip,F(ω1−k)).

Again an explicit computation shows that the class σ = (σ1, σ3) is Selmer iff r(σ1) = −s(σ3) and

t(σ3) = 0 = u(σ3).

The map r is the same as before and is injective. Thus if either t or u is injective (cf. remark 4.1.8),

or more generally if ker(t) ∩ ker(u) = 0, then the split tangent space vanishes. So we may assume

that ker(t)∩ ker(u) 6= 0. If s is not injective on this space, the corresponding elements (0, σ3) would

be in the split tangent space, and our method would fail. So we might hope that the following holds:

(?) The map s is injective on ker(t) ∩ ker(u).

Assuming this we proceed to compute the locally split tangent space.

Lemma 5.0.1. dim H1(GS ,W0) = 2 and H2(GS ,W0) = 0, for all p ≥ k + 1.

Proof. By Weston [Wes04], the (full) deformation problem for ρ̄ is unobstructed, that is H2(GS ,W ) =

0, for all primes p ≥ k+ 1, for the six cusp forms above (if ρ̄ is absolutely irreducible). In particular

the summand H2(GS ,W0) also vanishes for these primes. The global Euler characteristic formula

then shows dim H1(GS ,W0) = 2. �

Let d = dim(ker(t) ∩ ker(u)). As mentioned above we may assume d > 0. It follows from the

lemma that d = 1 or 2. Assuming (?) the image of s gives rise to a d-dimensional space of Z/p-
extensions of Kq, the completion of the inertia field K at q = q1, the prime of K lying under P1.

Note that Kq is the unique unramified extension of Qp of degree f(q/p). We hope:

(??) The cyclotomic Z/p-extension of Kq (coming from r) does not lie

in the d-dimensional span of Z/p-extensions of Kq coming from s.

This seems out of reach, but here are some further comments.

Lemma 5.0.2. H1(GL2(Fp),W0) = 0, if p ≥ 5.

Proof. This is well known (see for instance lemma 1.2 in [Fla92] or lemma 2.10 in [Böc99]), but for

completeness we sketch the proof here. Let B denote the upper triangular matrices, U the upper

triangular unipotent matrices, and T the diagonal matrices in GL2(Fp). We have

Hi(GL2(Fp),W0) ↪→ Hi(B,W0)
∼−→ Hi(U,W0)T .

The injectivity of the first restriction map follows since the index of B in GL2(Fp) is prime to p. The

fact that the second restriction map is an isomorphism follows from the Hochschild-Serre spectral
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sequence since the index of U in B is prime to p. One checks directly that if i = 1 the last group

vanishes if p ≥ 5. �

By the lemma, the restriction map

H1(GS ,W0) ↪→ H1(GH,S ,W0)G = HomG(GH,S ,W0)

is injective if p ≥ 5, at least if G = Gal(H/Q) = GL2(Fp). This was automatic in the tame dihedral

case, but continues to hold in the present non-tame setting.

Assume now that d = 2 (the worst case scenario). Write M and N for the (p, p, p)-extensions of

H cut out by a basis of H1(GS ,W0). Write M1, M2, M3 for the Z/p-extensions of H in M on which

I(P1/p) acts by ωk−1, 1, ω1−k respectively. Define N1, N2, N3 similarly. Let L2 and L3 be the

corresponding extensions of K obtained from M2 and N2 by descent. Write L1 for the cyclotomic

Z/p-extension of K. Finally, let L be the compositum of L1, L2 and L3. We need to show that after

completion, the index [LP : Kq] = p3.

The proof of this seems out of reach presently. Even in the ‘smallest’ case of f = ∆26 and

p = 107, we would need to carry out a class field theoretic computation in the field K which has

degree roughly 106 over Q. Remarkably, there is room for the above index to be p3 since in this case

Kq = Qp2 has exactly three independent Z/p-extensions!

6. Reducible Case

We now turn to the case where the residual representation ρ̄ is reducible. In this case it is possible

to deduce that the characteristic zero local representation is indecomposable if a certain Bernoulli

number is indivisble by p, using a result of Ribet. We thank F. Calegari for pointing this out to us;

this direct argument allows us to avoid the tangent space computations that were contained in an

earlier version of this paper. For a study of R = T theorems for reducible residual representations

we refer the reader to [Cal06].

We first recall some well-known facts from the theory of cyclotomic fields (see [Was96]). Let p

be an odd prime and let ζp be a primitive p-th root of 1. Let ω be the mod p cyclotomic character.

Let A be the p-part of the class group of Q(ζp). Let i be an integer with 0 ≤ i ≤ p− 2. Then

dim
(
ker
(
H1(GS ,F(ωi))→ H1(Ip,F(ωi))

))
= p-rank of Ai

where Ai is the ωi-th eigenspace of A under the action of Gal(Q(ζp)/Q), and the p-rank of Ai =

dim(Ai/A
p
i ). It is known that A0 = A1 = 0. The Herbrand-Ribet theorem says that if i is odd and

3 ≤ i ≤ p− 2 then

Ai 6= 0 ⇐⇒ p |Bp−i

where Bj is the j-th Bernoulli number. To get a better feel for the p-rank of Ai we recall a conjecture

of Iwasawa which says that for an odd integer i with 3 ≤ i ≤ p − 2, Ai is isomorphic to the group
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Zp/B1,ω−iZp where

B1,ω−i =
1

p

p−2∑
α=1

a ω−1(a) ∈ Zp

is a twisted Bernoulli number. In particular for such i, the group Ai is conjecturally cyclic, so the

p-rank of Ai is 0 or 1 depending on whether Ai is trivial or not. If p is an odd prime for which

Vandiver’s conjecture holds, i.e., Ai = 0 for all even i, then Iwasawa’s conjecture is known to hold.

A weaker unconditional result due to Mazur and Wiles is that both Ai and Zp/B1,ω−iZp have the

same cardinality.

Let now f be a normalized cuspidal eigenform of level 1 and weight k ≥ 2 (in this section we

do not restrict to the six weights considered in the introduction). Let ℘|p be a prime which is

ordinary for f , and let ρf : GQ → GL2(K℘) be the Galois representation attached to f . Assume

that the residual representations ρ̄ : GS → GL2(F) attached to f are reducible. It is known that

this happens exactly when p|Bk. We note that the reductions ρ̄ depend on a choice of lattice (only

their semi-simplifications are independent of the choice of lattice). We then have:

Theorem 6.0.1. Say p ≥ k + 3 and p|Bk, so that the residual representations attached to f are

reducible. If p 6
∣∣Bp−k+1, then the local representation attached to ρf is indecomposable. More

generally, every arithmetic member of the Hida family passing through f has a locally indecomposable

Galois representation.

Proof. Choose a lattice and a representation ρ : GQ → GL2(O) such that the reduction ρ̄ has the

following shape (cf. [Rib76, theorem 1.3]):

ρ̄ =

(
1

0

u

ωk−1

)
(6.0.2)

where u : GS → F is a map satisfying the following property: if [cunr] is the cohomology class in

H1(GS ,F(ω1−k)) defined by cunr = ω1−k · u, then [cunr] is a non-zero element in the kernel of the

restriction map:

H1(GS ,F(ω1−k)) −→ H1(Gp,F(ω1−k)).

That such a non-zero class exists is consistent with the aforementioned facts about cyclotomic fields.

Indeed ω1−k = ωp−k, so letting i = p−k we see that i is odd and 3 ≤ i ≤ p−2 since p ≥ k+ 3. Now

ker
(
H1(GS ,F(ωp−k))→ H1(Ip,F(ωp−k))

)
6= 0 iff Ap−k 6= 0, which holds by the Herbrand-Ribet

theorem since p|Bk.

By an important but simple result of Ribet [Rib76, proposition 2.1] we may also choose a lattice

such that the reduction of ρf has the ‘opposite shape’, i.e., ρ̄ looks like:

ρ̄ =

(
ωk−1

0

u′

1

)
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with u′ 6= 0 (more precisely, ρ̄ is not semi-simple). The map H1(Gp,O(ωk−1))→ H1(Gp,K℘(ωk−1))

is injective since its kernel is H0(Gp,K℘/O(ωk−1)) = 0, so ρf is locally split if and only if the O-

valued representation corresponding to this lattice is locally split. Hence, if ρf is locally split then

so is the above residual representation. Thus ρ̄ cuts out an unramified ωk−1-extension of Q(ζp), so

Ak−1 6= 0 and p
∣∣Bp−k+1, a contradiction.

A similar argument applies to any arithmetic member of the Hida family passing through f . �

7. Explicit examples

7.1. The ∆ function. We now apply the various results proved in this paper to the Ramanujan

Delta function f = ∆. We obtain:

Corollary 7.1.1. The p-adic Galois representation ρ∆ attached to ∆ has locally non-split Galois

representation for all ordinary primes p < 10, 000.

Proof. The only interesting primes are p = 23 and p = 691, since for all other ordinary primes p less

than 10, 000 one knows that the residual representation is absolutely irreducible, p-distinguished, and

not locally split, so the characteristic zero representation cannot be locally split [Gha05, proposition

6]. For p = 23, we have seen that the mod p representation is locally split (∆ is its own mod 23

companion form). However, by theorem 4.1.7 the 23-adic representation attached to ∆ is not locally

split. For p = 691, we have 691|B12 and the residual representations ρ̄ are reducible. Since the

conditions of theorem 6.0.1 are well known to be satisfied, the 691-adic representation is also not

locally split. �

The same proof shows the stronger result:

Corollary 7.1.2. No arithmetic member of the ℘-ordinary family passing through ∆ has locally

split Galois representation, for all ordinary primes p < 10, 000.

7.2. The next few cusp forms. As for the other five cusp forms of level 1, we have the following

result.

Corollary 7.2.1. Let f = ∆16, ∆18, ∆20, ∆22 or ∆26 and let p < 10, 000 be an ordinary prime

for f . Then every arithmetic member of the ℘-adic family passing through f has an indecomposable

local Galois representation, except possibly for p = 397, 271, 139 or 379, · , and 107, respectively.

Proof. For ∆16 the only interesting primes are the dihedral prime 31 for which we again conclude

by theorem 4.1.7 and the full prime 397 which we cannot yet treat. The reducible prime p = 3617

can also be treated by checking the conditions of 6.0.1. A similar analysis applies to the other four

cusp forms (note that some of the reducible primes are larger than 10,000, but of course can still be

treated by theorem 6.0.1). �
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(1971/1972), Exp. No. 416, Lecture Notes in Mathematics, 317:319–338, 1973.

[Ser89] J-P. Serre. Abelian l-adic representations and elliptic curves. Second edition. Advanced Book Classics.

Addison-Wesley Publishing Company, Redwood City, CA, 1989.

[Was96] L. Washington. Introduction to cyclotomic fields, Second edition. Springer-Verlag, Berlin-New York, 1996.

[Wes04] T. Weston. Unobstructed modular deformation problems. Amer. J. Math., 126(6):1237–1252, 2004.

[Wil88] A. Wiles. On ordinary λ-adic representations associated to modular forms. Inv. Math., 94(3):529–573, 1988.

[Yam04] A. Yamagami. On the unobstructedness of the deformation problems of residual modular representations.

Tokyo J. Math., 27(2):443–455, 2004.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005,

India.

E-mail address: eghate@math.tifr.res.in

Department of Mathematics, University of British Columbia, Vancouver, Canada.

E-mail address: vatsal@math.ubc.ca


