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Abstract. We show that, on average, the number of octahedral newforms of prime level

is bounded by a constant.

1. Introduction

This paper is concerned with counting holomorphic cuspidal newforms of weight 1. To

each such form f , Deligne and Serre associate an odd irreducible Galois representation

ρf : GQ → GL2(C), whose image in PGL2(C) is, by a standard classification, either

• a dihedral group, or,

• A4, S4 or A5.

In the last three cases the form f is said to be of tetrahedral, octahedral, or icosahedral

type, respectively. Extensive numerical computations [Fre94] suggest that these forms occur

extremely rarely, and they have been traditionally labelled as exotic. Forms of prime level

have in particular long held a special place in the literature [Ser77], [Duk95]. It is a standard

conjecture that

Conjecture 1.1. For any ε > 0, the number of exotic newforms of prime level N is O(N ε),

where the implied constant depends only on ε.

It appears that this conjecture has its origins in a remark of Serre [Ser77, p. 259], where it

was observed that the number of exotic forms of prime level N ≡ 3 mod 4 is O(Nα), with

α = 1. Serre asks whether this assertion continues to hold with α < 1, or even α < 1/2.

Subsequent articles have made considerable progress towards Conjecture 1.1. For instance

in the octahedral case, Duke [Duk95], Wong [Won99], Michel-Venkatesh [MV02], Ganguly

[Gan06], Ellenberg [Ell03], and Klüners [Klu06] have established bounds of O(N7/8+ε),

O(N5/6+ε), O(N4/5+ε), O(N3/4+ε), O(N2/3+ε) on average, and O(N1/2+ε), respectively.

Many of these papers obtain bounds in the tetrahedral and icosahedral cases, and some of

these papers consider certain non-prime levels as well.
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It is known that any exotic weight one form of prime level must be either octahedral or

icosahedral. The goal of this paper is to prove Conjecture 1.1 on average for octahedral

newforms of prime level. In fact we prove something much stronger, namely, that the

number of such forms is on average bounded by an absolute constant. Indeed, we prove:

Theorem 1.2. Let

Nprime
oct (X) =

∣∣{octahedral cuspidal newforms f having prime level < X}
∣∣.

Then Nprime
oct (X) = O(X/ log X).

Since, by the prime number theorem, the number of primes up to X is asymptotic to

X/ log X, it follows that on average the number of octahedral cuspidal newforms of prime

level N is O(1) = O(N ε), for any ε > 0.

Our methods also allow us to prove Conjecture 1.1, on average, for a much larger class

of conductors. Say that a number is good if it is either prime or if it is a product of odd

primes which are congruent to 2 mod 3. Then we have:

Theorem 1.3. Let

Ngood
oct (X) =

∣∣{octahedral cuspidal newforms f having good level < X}
∣∣.

Then Ngood
oct (X) = O(X1+ε).

Thus on average the number of octahedral forms of good level N is again O(N ε).

The proofs of Theorems 1.2 and 1.3 involve relating octahedral newforms to the 2-torsion

in class groups of cubic fields, keeping track of the somewhat subtle relationship between

the discriminant of the cubic field and the level of the form. A suitable adaptation of the

result in [Bha05], which computes the average number of 2-torsion elements in class groups

of cubic fields, together with an appropriate sieve in the case of prime levels, is then utilized

to prove Theorems 1.2 and 1.3.

Here is a more detailed overview of the paper. In Section 2 we recall the standard

dictionary between exotic forms, their associated two-dimensional complex Galois repre-

sentations, and certain quartic or quintic number fields. In Section 3 we recall some facts

about projective Galois representations. In Section 4 we provide tables which compare the

exponents of primes occurring in the support of the conductor of a minimal exotic form

and the discriminant of the corresponding quartic or quintic number field. These tables

contain the key raw data one needs in going back and forth between minimal exotic forms

and number fields. In Section 5 we establish a bound on the number of twists that preserve

the level of a minimal form. In Section 6 we begin counting minimal octahedral forms,
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using the tables in Section 4, and the results of [Bha05]. We prove Theorem 6.2, which

is a stronger form of Theorem 1.3. In Section 7 we refine the main result of [Bha05] on

the asymptotic enumeration of quartic fields from all discriminants to prime discriminants.

This involves proving certain equidistribution results for pairs of ternary quadratic forms

mod p, and then using a prime sieve. This allows us to obtain Theorem 1.2 in Section 8.

2. Artin conjecture

For brevity we use the term newform to refer to a normalized newform which is a common

eigenform for all the Hecke operators. For counting purposes the following result will be

useful.

Theorem 2.1. The following sets are naturally in bijection:

(1) { octahedral cuspidal newforms of weight 1, up to twist }
(2) { isomorphism classes of odd representations ρ : GQ → GL2(C) with projective

image S4, up to twist }
(3) { isomorphism classes of projective representations ρ̃ : GQ → PGL2(C) with image

S4, such that ρ̃(c) 6= 1 }
(4) { isomorphism classes of non-real quartic number fields K, with Galois closure E

having Galois group Gal(E/Q) = S4 }.

Proof. This is well known so we only make some brief remarks here (see, for example, Serre’s

informative article [Ser77] for more details). That (1) is in bijection with (2) holds even

without the qualification up to twist (by a Dirichlet character). The theorem of Deligne and

Serre referred to in the introduction induces an injective map from the set (1) to the set (2).

The Artin conjecture, which in the octahedral case is a theorem of Langlands and Tunnell,

says that this map is a bijection. Moreover, the level of a newform f matches with the

conductor of the corresponding representation ρf . That (2) is in bijection with (3) follows

from the fact that obstructions to lifting projective representations lie in H2(GQ,C×), which

vanishes by a theorem of Tate. The oddness of ρ is equivalent to the condition ρ̃(c) 6= 1,

where c is complex conjugation. Finally the sets (3) and (4) above are in bijection via an

embedding of S4 in PGL2(C), noting that in the octahedral case any two such embeddings

are conjugate. The condition on complex conjugation is equivalent to the fact that K

(equivalently E) is not a totally real number field. �

Similar theorems hold in the tetrahedral and icosahedral cases. The Artin conjecture

in the tetrahedral case was established earlier by Langlands. Several cases of the Artin

conjecture in the icosahedral case were established by Buzzard, Dickinson, Shepherd-Barron
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and Taylor. Recently Khare and Wintenberger, and Kisin, have announced a proof of Serre’s

modularity conjecture. Since Khare had earlier shown that Serre’s conjecture implies (all

cases of) the Artin conjecture for odd representations, this would establish the remaining

open icosahedral cases of the Artin conjecture as well.

3. Projective Galois representations

We now recall some results of Tate concerning two-dimensional projective Galois repre-

sentations which were written down by Serre [Ser77].

Theorem 3.1 (Tate, cf. [Ser77, Thm. 5]). Let ρ̃ : GQ → PGL2(C) be a projective represen-

tation. For each prime p, let ρ′p be a lift of ρ̃|Dp. Suppose that ρ′p|Ip = 1 for almost all p.

Then there exists a unique lift ρ : GQ → GL2(C) of ρ̃ such that ρ|Ip = ρ′p|Ip for all p.

Definition 3.2. Let ρ̃ : GQ → PGL2(C) be a projective representation. The conductor of

ρ̃ is defined to be the positive integer

N =
∏
p

pm(p)

where m(p) is the least integer such that ρ̃|Dp has a lifting of conductor pm(p).

Since the conductor of a (linear) representation is determined by its restriction to (all)

inertia subgroups, it follows from the theorem of Tate above that if the conductor of ρ̃ is N ,

then there is a lifting ρ of ρ̃ of conductor N . Moreover every lift ρ has conductor a multiple

of N .

A lifting of ρ̃ (respectively ρ̃|Dp) is reducible if and only if ρ̃(GQ) (respectively ρ̃(Dp))

is a cyclic group. The following proposition gives information about the exponents m(p)

appearing in the conductor of ρ̃, in various cases.

Proposition 3.3 (cf. [Ser77, §6.3, §8.1]). Let ρ̃ : GQ → PGL2(C) be a projective represen-

tation.

(1) If ρ̃ is unramified at p, then ρ̃(Dp) is a cyclic group, and m(p) = 0.

(2) If ρ̃ is ramified at p, but only tamely ramified at p (that is, ρ̃(Iwild) = 1), then ρ̃(Dp)

is cyclic or dihedral. In the former case m(p) = 1, and in the latter case m(p) = 2.

(3) Moreover, if ip = |ρ̃(Ip)| is still prime to p, and ip ≥ 3, then m(p) = 1 if and only

if ip | (p− 1).

(4) If ρ̃(Iwild) 6= 1 and p > 2, then ρ̃(Dp) is still cyclic or dihedral, but if p = 2, then

ρ̃(Dp) can also be A4 or S4.
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The exponents m(p) in the wildly ramified cases have been tabulated by Buhler and Zink

(cf. pages 10–26 of Kiming’s article in [Fre94]). In any case, these exponents are bounded,

which is all we need below.

4. Conductor vs Discriminant

In this section we compare the conductor of a projective Galois representation with

the discriminant of the associated quartic or quintic number field. While these quantities

have the same primes p in their supports, the exact power of p dividing each may vary

considerably. This leads to complications when one counts forms by conductor by appealing

to counting results for number fields (which usually count by discriminant).

Let ρ̃ : GQ → PGL2(C) be an irreducible projective representation such that the image

of ρ̃ is either A4, S4, or A5. Let E be the field cut out by ρ̃, and assume that K ⊂ E is

either a quartic field or a quintic field whose Galois closure is E. So Gal(E/Q) = A4, S4,

or A5. Recall that these cases are called the tetrahedral, octahedral and icosahedral cases

respectively.

For a number field F , if p factors as P e11 P e22 · · ·P err in the ring of integers OF of F , then

we say that p has ramification type fe11 f
e2
2 · · · ferr in F , where fi denotes the cardinality of

the residue field OF /Pi of Pi. As is customary, we drop the exponent ei when ei = 1. If

p ≥ 5 (p ≥ 7 in the icosahedral case), then p is (at most) tamely ramified in E and K,

and the image of Ip under ρ̃ is cyclic. Also, by part (2) of Proposition 3.3, the image of

Dp under ρ̃ is either cyclic or dihedral. In the tables below we list all possible non-trivial

ramification types for such p in E and K, corresponding to all possible choices of the inertia

and decomposition subgroups in Gal(E/Q). We write V4 ⊂ S4 for the Klein 4-group and

Dihn ⊂ Sn for a dihedral group with 2n elements. For each ramification type we list the

power of p appearing in Disc(K), the discriminant of K, and the power of p appearing in the

conductor of ρ̃ using part (2) of Proposition 3.3. In the last column we list any congruence

conditions on p which are forced by part (3) of Proposition 3.3.

Table 1: Tetrahedral Case

Ip Dp Ram in E Ram in K Disc(K) Cond(ρ̃) p ≡

〈(12)(34)〉 Ip 1212 · · · 12︸ ︷︷ ︸
6

1212 p2 p

〈(12)(34)〉 V4 222222 22 p2 p2

〈(123)〉 Ip 131313 131 p2 p 1 mod 3
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Table 2: Octahedral Case

Ip Dp Ram in E Ram in K Disc(K) Cond(ρ̃) p ≡

〈(12)〉 Ip 1212 · · · 12︸ ︷︷ ︸
12

1211 p p

〈(12)〉 〈(12), (34)〉 2222 · · · 22︸ ︷︷ ︸
6

122 p p2

〈(12)(34)〉 Ip 1212 · · · 12︸ ︷︷ ︸
12

1212 p2 p

〈(13)(24)〉 〈(1234)〉 2222 · · · 22︸ ︷︷ ︸
6

22 p2 p

〈(12)(34)〉 V4 2222 · · · 22︸ ︷︷ ︸
6

22 p2 p2

〈(12)(34)〉 〈(12), (34)〉 2222 · · · 22︸ ︷︷ ︸
6

1212 p2 p2

〈(123)〉 Ip 1313 · · · 13︸ ︷︷ ︸
8

131 p2 p 1 mod 3

〈(123)〉 S3 23232323 131 p2 p2 2 mod 3

〈(1234)〉 Ip 1414 · · · 14︸ ︷︷ ︸
6

14 p3 p 1 mod 4

〈(1234)〉 Dih4 242424 14 p3 p2 3 mod 4

Table 3: Icosahedral Case

Ip Dp Ram in E Ram in K Disc(K) Cond(ρ̃) p ≡

〈(12)(34)〉 Ip 1212 · · · 12︸ ︷︷ ︸
30

12121 p2 p

〈(12)(34)〉 V4 2222 · · · 22︸ ︷︷ ︸
15

221 p2 p2

〈(123)〉 Ip 1313 · · · 13︸ ︷︷ ︸
20

1311 p2 p 1 mod 3

〈(12345)〉 Ip 1515 · · · 15︸ ︷︷ ︸
12

15 p4 p 1 mod 5

〈(12345)〉 Dih5 2525 · · · 25︸ ︷︷ ︸
6

15 p4 p2 2, 3, 4 mod 5
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5. Minimal Level

Eventually, we will restrict to counting minimal cuspidal newforms. This class of forms

includes forms of prime level. Recall that a cuspidal newform is said to be minimal if its

level is minimal amongst all its twists by Dirichlet characters of arbitrary conductor. That

is, f is minimal if (the newform attached to) f ⊗χ does not have strictly smaller conductor

for any χ. Since two forms give the same projective representation if and only if they

are twists of each other, it follows from the remarks made in Section 3 that the level of a

minimal form is the conductor of the associated projective representation.

Twisting a minimal form generally tends to raise its level. However, it is possible for

the twist of a minimal form to be minimal, i.e., of the same level. For instance, if S1(N, ε)

denotes the space of cusp forms of level N and nebentypus ε, and ε is real, then the newform

attached to f ⊗ ε is just f̄ , the form obtained by taking the complex conjugates of the

Fourier coefficients of f , and this form clearly lies in the same space. Since we will count

(minimal) forms by counting their projective Galois representations, this phenomenon of

‘level stabilization under twist’ has potential to cause problems; a priori there may be

many minimal forms giving rise to the same projective Galois representation.

However, in this section we show that only finitely many twists of a form of minimal level

can be minimal of the same level; moreover, the number of such twists is bounded by a

constant that depends only on the number of primes dividing the minimal level. We begin

by proving the following proposition (see also [Ell03, Lemma 1]):1

Proposition 5.1. Let f ∈ S1(N, ε) be an exotic cuspidal newform of minimal level N .

Assume that ρf is tamely ramified at each prime p|N . Then there exists a positive integer

M0, independent of N , such that εM0 = 1. In fact M0 = 6, 12 and 30 in the tetrahedral,

octahedral and icosahedral cases, respectively.

Proof. Note that ε has conductor dividing N . Decompose ε =
∏
p|N εp where εp is the p-part

of ε. It is enough to show that εM0
p = 1, for each p. To do this, note that since ρf is tamely

ramified at p, the restriction of ρf to Ip, ρf |Ip , has cyclic image in GL2(C). So ρf |Ip is

reducible, and therefore semi-simple since we are working over the complex numbers. Say

that

ρf |Ip ∼

(
ψ1 0

0 ψ2

)
where ψ1, and ψ2 are characters of Ip. Since f has minimal level, we have ψ1 6= ψ2;

otherwise, thinking of ψ1 as a character of GQ, the Galois representation attached to the

1Proposition 5.1 and Corollary 5.2 may not hold when N is not square-free: see Errata
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twisted form f ⊗ψ−11 would be trivial on inertia and so would have strictly smaller level (at

p). If follows that the image of ρf |Ip injects into PGL2(C). Since f is exotic, the image is a

(cyclic) subgroup of A4, S4, or A5. All such subgroups have order ≤ 5, the possible orders

being 1, 2, 3 for A4, 1, 2, 3, 4 for S4, and 1, 2, 3, 5 for A5. It follows that the characters ψ1

and ψ2 are killed by M0 = 6, 12, and 30 respectively. On the other hand since det(ρf ) = ε,

we have det(ρf |Ip) = εp = ψ1ψ2. Thus εM0
p = 1. �

We are now able to conclude what we want. As is usual, we use ω(N) to denote the

number of distinct prime divisors of N .

Corollary 5.2. Let f ∈ S1(N, ε) be an exotic newform of minimal level N . Then there are

only finitely many Dirichlet characters χ such that f ⊗ χ is minimal of level N , and the

number of such χ is bounded by Mω(N), for some absolute constant M ≥ 1.

Proof. Assume momentarily that N is prime to 6 (prime to 30 in the icosahedral case).

Suppose f ⊗ χ also has level N . Then both ρf and ρf ⊗ χ are tamely ramified. Now f ⊗ χ
has nebentypus εχ2. By the proposition, both ε and εχ2 are killed by M0, so χ2M0 = 1.

Now the support of the conductor of χ is a finite set, contained in the support of N , since

otherwise the level of the twisted form would contain new primes. It follows that there are

only finitely many possibilities for χ, and that this number is bounded by (2M0)
ω(N). Even

if N is not relatively prime to 6 (or 30 in the icosahedral case), the number of χ preserving a

given minimal level N is still bounded. For the tame part of N we argue as above. For the

wild part of N we note that the exponents of 2 and 3 (and 5 in the icosahedral case) in N ,

equivalently the exponents m(2) and m(3) (and m(5) in the icosahedral case) appearing in

the conductor of the underlying projective representation are bounded. Thus the number of

permissible 2 and 3-parts of χ (and 5-part of χ in the icosahedral case) which will preserve

these bounds, must be bounded as well, say by M2, M3 (and M5 in the icosahedral case)

respectively. Taking M = max(M2,M3, 2M0) (or max(M2,M3,M5, 2M0) in the icosahedral

case) we obtain the corollary. �

The arguments above extend some of the arguments used in the proof of [Ser77, Theo-

rem 7] for prime levels. In fact, it is proved in [Ser77] that the nebentypus ε of an octahedral

form of prime level must satisfy ε4 = 1 (this is slightly stronger than what we have obtained

above, as it uses the fact that only one prime divides the level so that ε = εp is an odd

character!). It follows that if χ is a Dirichlet character which preserves the level of this

form after twisting, then χ8 = 1. It is also shown in [Ser77] that prime levels congruent

to 1 mod 8 do not occur (cf. part (a) of Theorem 8.1 below). It follows that χ4 = 1. In

fact (see Theorem 8.2 below), there are exactly two twists of prime level; this is obvious
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if the level is 3 mod 4, while it follows from studying the number of invariant lines in the

representation ρf |Ip when the level is 5 mod 8.

6. Octahedral Case

In this section we consider only octahedral forms. We wish to count such forms of minimal

level.

In fact, we will need to avoid a certain class of minimal octahedral forms. To define this

class, note that each octahedral form cuts out a non-cyclic cubic field K3 which is the fixed

field of some chosen dihedral subgroup Dih4 ⊂ S4; we may take this Dih4 to be

{(1), (14), (23), (14)(23), (12)(34), (13)(24), (1243), (1342)}.

Let K6 be the fixed field of the group {(1), (14), (23), (14)(23)}. By Table 2 in Section 4, if

p ≥ 5 is totally ramified in K3 (that is, has ramification type 13 in K3, or equivalently 131

in K4), then the projective image of Dp is either

a dihedral group of order 6, or, a cyclic group of order 3.

Definition 6.1. Say a minimal octahedral newform is good if whenever a prime p ≥ 5 is

totally ramified in K3, the corresponding projective image of Dp is a dihedral group of order

6 (and not a cyclic group or order 3).

An octahedral newform of prime level is both minimal and good in the above sense

(cf. Section 8 below); by definition, such a form also has good level, in the sense of the

introduction. In fact, any octahedral newform of good level is a good minimal form by

Table 2 in Section 4, though there are presumably many more good minimal newforms

than those of good level. The aim of this section is to prove the following stronger version

of Theorem 1.3:

Theorem 6.2. Let

Moct(X) =
∣∣{good minimal octahedral cuspidal newforms f with level < X}

∣∣.
Then Moct(X) = O(X1+ε).

Before we begin the proof we remark that we often consider only the prime-to-6 parts

of many of the quantities involved in the argument. This is because including complete

information at 2 and 3 would only change the implied constant in the result above.
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Proof. To estimate Moct(X), we first decompose the set we wish to count according to the

fields K3:

Moct(X) =
∑
K3

Moct(X,K3)

where Moct(X,K3) =
∣∣{f ∈ Moct(X) | f cuts out K3}

∣∣. We now estimate Moct(X,K3).

Since, by Corollary 5.2, not more than Mω(Level(f)) different minimal forms give the same

projective representation as f , we obtain:

Moct(X,K3) =
∑

f cuts out K3
Level(f)<X

1 ≤
∑

ρ̃f cuts out K3
Level(f)<X

Mω(Level(f)).

The projective representation ρ̃f determines and is determined by the quadratic extension

K6/K3 (since the Galois closure of K6/K3 is an S4-extension). We obtain

Moct(X,K3) ≤
∑
K6/K3

Level(f)<X

Mω(Level(f)).

It is a fact due to Baily [Bai80] that an arbitrary quadratic extension K6/K3 has Ga-

lois closure an S4-extension if and only if K3/Q has Galois closure an S3-extension and

NormK3
Q (Disc(K6/K3)) = n2 is the square of some positive square-free integer n. Let n be

determined by our particular quadratic extension K6/K3. To proceed further we need the

following lemma.

Lemma 6.3. Let f be a good minimal octahedral newform, and let Disc(K3) denote the dis-

criminant of K3. Then lcm(Disc(K3), n) divides Level(f) (recall our convention of treating

only the prime-to-6 parts).

Proof. Let K4 be a quartic field cut out by f . The following facts are easily checked:

• p = 14 in K4 ⇐⇒ p = 121 in K3 and K6/K3 ramifies

• p = 1212 or 22 in K4 ⇐⇒ p is unramified in K3 and K6/K3 ramifies

• All other ramification types for p in K4 ⇐⇒ K6/K3 is unramified.

Let Disc(K4) denote the discriminant of K4. Then it turns out that Disc(K4) = Disc(K3) ·
n2. The following table (compare with Table 2 in Section 4) lists, for each p(≥ 5), the exact

power of p dividing the quantities in the statement of the lemma, in various cases:

Ram in K4 Level(f) Disc(K3) n lcm(Disc(K3), n)

14 p or p2 p p p

1212 or 22 p or p2 1 p p

Others except 131 p or p2 p 1 p

131 p2 p2 1 p2
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The lemma follows, since it holds in each case. �

Remark 6.4. The only case not covered by the table is the one in which p has ramification

type 131 in K4, p||Level(f), p2||Disc(K3), n = 1, and so p2||lcm(Disc(K3), n)) and the

lemma fails for such p. This occurs precisely when the image of Dp is Z/3Z (instead of S3),

and explains why we have restricted to good forms.

Lemma 6.3 allows us to count octahedral forms by counting number fields. Noting that

Level(f) and lcm(Disc(K3), n) have the same primes in their support (except possibly for

primes dividing 6), we have:

Moct(X,K3) ≤
∑
K6/K3

Level(f)<X

Mω(Level(f))

≤
∑
K6/K3

lcm(Disc(K3),n)<X

Mω(lcm(Disc(K3),n)) by Lemma 6.3

=
∑

n square-free
lcm(Disc(K3),n)<X

(no. of K6 ↔ n) ·Mω(lcm(Disc(K3),n)).

Write n = n′n′′ where n′′ = gcd(Disc(K3), n) and let h∗2(K3) denote the 2-part of the class

group of K3. Then the number of K6 corresponding to n is bounded above by h∗2(K3) ·
2ω(Disc(K3)) · 3ω(n′). Also Mω(lcm(Disc(K3),n)) = Mω(Disc(K3)) ·Mω(n′). So

Moct(X,K3) ≤ h∗2(K3) · (2M)ω(Disc(K3)) ·
∑

n′ square-free
n′<X/|Disc(K3)|

(3M)ω(n
′).

To proceed further we need the following lemma.

Lemma 6.5. Let m ≥ 1 be a fixed positive integer and let ω(n) denote the number of

distinct prime divisors of n. Then∑
n≤X

n square-free

mω(n) = O(X logm−1X).

Proof. This follows easily by applying Perron’s formula to the Dirichlet series:

A(s) =
∞∑
n=1

n square-free

mω(n)

ns
=
∏
p

(
1 +

m

ps

)
= ζ(s)mG(s),

where G(s) is a Dirichlet series with a degree m + 1 Euler product and is holomorphic at

s = 1. �
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Applying Lemma 6.5 with m = 3M to our estimate for Moct(X,K3) we obtain:

Moct(X,K3) ≤ h∗2(K3) · (2M)ω(Disc(K3)) · c · X

|Disc(K3)|
logm−1X

for some constant c. Since both logm−1(X) = O(Xε/4) and (2M)ω(d) = O(dε/4), for any

integer d, we see that:

Moct(X,K3) ≤ h∗2(K3) · c ·Xε/2 · X

|Disc(K3)|

for some (new) constant c. We now wish to sum over K3. We need one more lemma.

Lemma 6.6. We have: ∑
K3

|Disc(K3)|<X

h∗2(K3)

|Disc(K3)|
= O(logX).

Proof. First write∑
K3

|Disc(K3)|<X

h∗2(K3)

|Disc(K3)|
=

∑
K3

|Disc(K3)|<X

h∗2(K3)− 1

|Disc(K3)|
+

∑
K3

|Disc(K3)|<X

1

|Disc(K3)|
.(6.7)

We first show that the first sum on the right in (6.7) is O(logX). Since each K3 gives rise

to h∗2(K3)− 1 quartic fields K4 having cubic resolvent field K3 with Disc(K4) = Disc(K3),

it suffices to prove that ∑
K4

|Disc(K4)|<X

1

|Disc(K4)|
= O(logX).(6.8)

Consider the Dirichlet series ∑
K4

1

|Disc(K4)|s
.

By the main result of [Bha05] (the asymptotic enumeration of quartic fields by discriminant)

one has ∑
K4

|Disc(K4)|<X

1 ∼ C4 ·X +O(X1−δ)

for some constant C4 and some δ > 0. For the error term see forthcoming work of Belabas-

Bhargava-Pomerance [BBP, Theorem 1.3]. It now follows in a standard way that the

Dirichlet series above has a simple pole at s = 1 (see for instance [Lang, p. 158, Theorem 4]).

An application of Perron’s formula shows that (6.8) holds.
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To deal with the second sum in the right hand side of (6.7) we note that by the well

known theorem of Davenport-Heilbronn and [BBP, Theorem 1.1] for the error term, we

have ∑
K3

|Disc(K3)|<X

1 ∼ C3 ·X +O(X1−δ′)

for some constant C3 and some δ′ > 0. A similar argument then shows that the second sum

is also O(logX). �

Let us now sum over K3. Using the lemma above, we obtain:

Moct(X) =
∑
K3

Moct(X,K3) ≤
∑
K3

|Disc(K3)|<X

h∗2(K3)

|Disc(K3)|
· c ·Xε/2· = O(X1+ε/2 logX)

= O(X1+ε),

for every ε > 0. This proves Theorem 6.2, and Theorem 1.3 also then immediately follows

as a corollary. �

7. Prime sieve

In this section, we prove a bound for the number of quartic fields of bounded prime ab-

solute discriminant. It turns out that a quartic field with prime absolute discriminant must

be an S4-quartic field, i.e., a quartic number field whose Galois closure has automorphism

group S4.

Indeed, if the Galois group of the Galois closure of a quartic field K4 is V4, Z/4, or

Dih4, then K4 must contain a quadratic subfield K2, and so Disc(K2)
2 divides Disc(K4).

Meanwhile, if the Galois group of the Galois closure of K4 is A4, then Disc(K4) must be a

square. Thus Disc(K4) can be prime only if it is an S4-quartic field. Therefore, to obtain

a bound on the number of quartic fields having bounded prime absolute discriminant, it

suffices to restrict our attention to S4-quartic fields.

We accomplish this by using a parametrization of S4-quartic orders, i.e., orders in S4-

quartic fields. To state the result, let VZ denote the space of pairs (A,B) of integer-coefficient

ternary quadratic forms. Then, excluding degenerate cases, any element of VZ yields two

conics in P2(Q̄) which intersect in four distinct points. We say that an element (A,B) ∈ VZ
is totally irreducible if the field of definition of one (equivalently, any) of these intersection

points is an S4-quartic field. We say that two elements of VZ are in the same class if one can

be transformed into the other via an element of GZ = GL(2,Z)×SL(3,Z). Finally, one finds

that the action of GZ on VZ has a unique polynomial invariant, called the discriminant; it

is defined by Disc(A,B) = Disc(det(Ax−By)).
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Recall that the content of an order R is the maximal integer n such that R = Z + nR′

for some order R′. We then have the following theorem parametrizing S4-quartic orders.

Theorem 7.1 ([Bha04]). There is a canonical map from the set of classes of totally irre-

ducible pairs of integer-coefficient ternary quadratic forms (A,B) to the set of isomorphism

classes of S4-quartic orders. This map preserves discriminant. Moreover, the number of

pre-images of a given (isomorphism class of) S4-quartic order Q is given by σ(n), where n

denotes the content of Q and σ is the usual sum-of-divisors function.

In particular, if the absolute value of the discriminant of an S4-quartic order is prime,

then it is automatically maximal and of content 1, and will thus correspond to a unique

GZ-class (A,B) ∈ VZ. Note that the quotient field of such an order is then an S4-quartic

field of the same prime absolute discriminant. In this section, we count S4-quartic fields

of prime absolute discriminant by counting the corresponding maximal orders, which then

each correspond to a unique class in VZ.

We recall that an element (g2, g3) ∈ GL(2,R) × GL(3,R) acts on the vector space V =

VZ ⊗ R of pairs (A,B) of ternary quadratic forms over R via

(g2, g3) · (A,B) = (g3Ag
t
3, g3Bg

t
3) · gt2.

The action of G = GL(2,R) × GL(3,R) on V has three orbits of nonzero discriminant,

namely, V (0), V (1), and V (2), where V (i) consists of those elements of V that yield a pair of

conics in P2(C) intersecting in 4−2i real points and 2i complex points. If v ∈ V (i)
Z = VZ∩V (i),

then the fraction field of the quartic order corresponding to v via Theorem 7.1 will then

have 4− 2i real embeddings and 2i complex embeddings.

In order to count classes of (A,B) ∈ VZ, we count (A,B) ∈ VZ lying in certain fundamen-

tal domains for the action ofGZ on V . We construct such fundamental domains as in [Bha05,

§2.1]. Namely, first let F be any fixed fundamental domain in GR = GL(2,R) × SL(3,R)

for GZ\GR that lies in a Siegel set. Then for any vector v ∈ V (i), it is clear that the

multiset Fv ⊂ V is the union of ni fundamental domains for the action of GZ on V (i);

here n0 = |StabGR(v)| = 24 for v ∈ V (0), n1 = |StabGR(v)| = 4 for v ∈ V (1), and

n2 = |StabGR(v)| = 8 for v ∈ V (2).

Note that V is a 12-dimensional real vector space. Let H = {w = (a1, a2, . . . , a12) ∈
V : a21 + a22 + · · · + a212 ≤ 10, |Disc(w)| ≥ 1}. Given a subset S of VZ, by “the expected

number of elements of S in a fundamental domain for GZ\V (i)”, we mean the expected

number of points of S lying in Fv divided by ni, as v ranges over H ∩ V (i) with respect to

the measure |Disc(v)|−1dv. (For more details on the reasons for this choice of set H and

measure |Disc(v)|−1dv, see [Bha05].)
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Now to count the number of totally irreducible classes of (A,B) ∈ VZ having prime ab-

solute discriminant, we first count all classes of (A,B) ∈ VZ having discriminant a multiple

of any given square-free number q. To state this result, we require some terminology and

some auxiliary lemmas. First, for a pair of ternary quadratic forms (A,B) ∈ V , where

A(x1, x2, x3) =
∑

i≤j aijxixj and B(x1, x2, x3) =
∑

i≤j bijxixj , we say that the first coordi-

nate of (A,B) is a11, while the first four coordinates of (A,B) are given by a11, a12, a13,

and a22.

The following lemma ([Bha05, Lemma 11]) indicates how often the first coordinate a11

vanishes in a fundamental domain for GZ\VZ:

Lemma 7.2. The expected number of (A,B) ∈ Fv (v ∈ H) with a11 = 0 that are totally

irreducible and have absolute discriminant less than X is O(X11/12).

The next lemma similarly bounds the expected number of points in a fundamental domain

Fv (v ∈ H) that are not totally irreducible but for which the first coordinate a11 is nonzero:

Lemma 7.3. The number of (A,B) ∈ Fv (v ∈ H) with a11 6= 0 that are not totally

irreducible and have absolute discriminant less than X is O(X11/12+ε).

Proof. This follows from [Bha05, Lemmas 12 and 13] and [Won99]. �

Thus, up to an error of O(X11/12+ε), we see that to count the expected number of totally

irreducible elements in Fv (v ∈ H) having bounded discriminant, it suffices to count all

elements in Fv having nonzero first coordinate. To this end, we may state the following

counting result (see [BBP, Theorem 4.10]):

Theorem 7.4. For a positive integer m, let L be any translate v + m · VZ (v ∈ VZ) of the

sublattice m ·VZ of VZ, and let (a, b, c, d) denote the smallest positive first four coordinates of

any element in L. For i = 0, 1, 2, let N (i)(L;X) denote the expected number of lattice points

in L, with first coordinate nonzero and discriminant less than X, lying in a fundamental

domain for GZ\V (i). Then

N (i)(L;X) = m−12N (i)(1, X)

+O
( ∑
S⊂{aij ,bij}

m−|S|a−αSb−βSc−γSd−δSX(|S|+αS+βS+γS+δS)/12 + log X
)
,(7.5)

where S ranges over the nonempty proper subsets of the set of 12 coordinates {aij , bij}
on VZ, and αS , βS , γS , δS ∈ [0, 1] are real constants that depend only on S and satisfy

|S| + αS + βS + γS + δS ≤ 11. Moreover, it is possible to choose αS , βS , γS , δS ∈ [0, 1) for

all S except for the following three sets:
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(1) {b11, b12, b13, b22, b23, b33}, for which αS, βS, γS, δS = 1;

(2) {a13, a23, a33, b13, b23, b33}, for which γS = 0 and αS, βS, δS = 1;

(3) {a22, a23, a33, b22, b23, b33}, for which δS = 0 and αS, βS, γS = 1.

Let Z(q) denote the set of all elements in VZ whose discriminant is a multiple of q. Since

the discriminant is an integer polynomial on the coordinates of VZ, the set Z(q) may be

expressed as the union of some number k of translates L1, . . . , Lk of the lattice q · VZ. The

following result gives us the number k as a function of q.

Lemma 7.6. Let g(q) be the multiplicative function defined on square-free numbers q, where

for a prime p,

g(p) = (p11 + 2p10 − p9 − 2p8 − p7 + 2p6 + p5 − p4)/p12.

Then the number k of translates of the lattice q · VZ that comprise Z(q) is g(q)q12.

Proof. By the Chinese Remainder Theorem, it suffices to consider the case where q = p is a

prime. With notation as in [Bha04], we have that an element (A,B) ∈ VZ has discriminant

coprime to p if and only if (A,B) ∈ Tp(1111), Tp(112), Tp(13), Tp(4), or Tp(22). Lemma 23

in [Bha04] gives the number of translates of p·VZ lying in each of these five sets. Subtracting

the total number of these translates from p12 yields

p12 − p4(p− 1)4(p+ 1)2(p2 + p+ 1),

implying the lemma. �

Now in each translate L of q · VZ, we consider its standard member as the one with each

entry in the interval [1, q]. (Indeed, the space of pairs of ternary quadratic forms VZ may

be thought of as the lattice Z12, and so L, as a coset of q · VZ, has each of its twelve

entries running independently over particular residue classes modulo q.) For each of the

k translates L1, . . . , Lk of q · VZ which comprise Z(q), let (a1, b1, c1, d1), . . . , (ak, bk, ck, dk)

denote the respective quadruples consisting of the first four coordinates of their standard

members. Thus, (a1, b1, c1, d1), . . . , (ak, bk, ck, dk) are all quadruples of integers in [1, q]4 =

[1, q]× [1, q]× [1, q]× [1, q], and from Lemma 7.6, there are k = g(q)q12 of them.

We now describe the distribution of these k quadruples. We begin with the following

lemma.

Lemma 7.7. Suppose A is a ternary quadratic form over Z, and let p be any prime. Let

rk(A) denote the rank of A over Z/pZ. Then the number of values (mod p) for the quadratic
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form B, such that Disc(A,B) ≡ 0 (mod p), is

p5 + O(p4), if rk(A) = 3;

≤ 3p5 + O(p4), if rk(A) = 2;

p6, if rk(A) ≤ 1.

Proof. Suppose rk(A) = 3. We view A and B as conics in P2(F̄p). For Disc(A,B) ≡ 0

(mod p) to hold, A and B must have a multiple point of intersection in P2(F̄p). The

number of B (mod p) with this property is p5 + O(p4). Indeed, A has p + 1 points in

P2(Fp), and the number of B that have at least a double intersection at a given Fp-rational

point of A is p4 +O(p3) (as this amounts to two linear conditions on B mod p). Thus the

total number of B having a multiple point of intersection at an Fp-rational point of A is

p5 + O(p4). Finally, it is easy to see that the number of B having more than one multiple

point of intersection with A in P2(F̄p) is negligible in comparison, i.e., O(p4), yielding the

desired result in this case.

If rk(A) = 2, then in P2(F̄p), the degenerate conic A is the union of two distinct lines.

The number of B (mod p) having a multiple intersection point with A is then at most

2p5 + p5 +O(p4) = 3p5 +O(p4), giving the lemma in this case.

If rk(A) = 1, then in P2(Fp), the (degenerate) conic A is a double line. Any B will have

a multiple intersection with A, when viewed as conics in P2(Fp). Thus we obtain p6 values

of B in this case. Lastly, if rk(A) = 0, then again B can be any ternary quadratic form, as

all p6 values of B will give an (A,B) whose discriminant is a multiple of p. This completes

the proof. �

We now prove the following proposition which gives information on the distribution of

the quadruple (a11, a12, a13, a22) = (a, b, c, d) in Z(p).

Proposition 7.8. Fix a, b, c, d ∈ Z/pZ. Then modulo p, the number of (A,B) ∈ Z(p) with

given values of a, b, c, d is

p7 + O(p6), if b2 − 4ad 6≡ 0 (mod p);

≤ 3p7 + O(p6), if b2 − 4ad ≡ 0 (mod p) but gcd(a, c) 6≡ 0 (mod p);

≤ 2p7 + O(p6), otherwise.

Proof. If b2 − 4ad 6≡ 0 (mod p), then Det(A), as a polynomial function of u = a23 and

v = a33, does not identically vanish (mod p). Hence the number of possible values of u, v

(mod p) for which Det(A) is nonzero (mod p) is p2 +O(p). By Lemma 7.7, the number of

values of (A,B) with rk(A) = 3, Disc(A,B) ≡ 0 (mod p), and the given values of a, b, c, d,

is (p2 +O(p))(p5 +O(p4)) = p7 +O(p6).
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We now consider those O(p) choices of u, v (mod p) for which A has vanishing determinant

(mod p). The rank of A (mod p) will then be 2. By Lemma 7.7, the number of values of

(A,B) (mod p) with rk(A) = 2, (A,B) ∈ Z(p), and the given values of a, b, c, d, is at most

(O(p))(3p5 +O(p4)) = O(p6). This takes care of the first case.

Suppose we are now in the second case, i.e., b2 − 4ad ≡ 0 (mod p) but at least one of

a, c 6≡ 0 (mod p). In this case, by the same argument as in the first case, we have at most

3p7+O(p6) possible values for (A,B) (mod p) with rk(A) ≥ 2, (A,B) ∈ Z(p), and the given

values of a, b, c, d. However, in this second case, we also have the possibility rk(A) = 1. Note

that A (mod p) will be of rank 1 only if c2−4av ≡ bc−2au ≡ 0. If a is nonzero (mod p), then

(assuming p > 2) v and u are determined (mod p) by the given information, so there are is

at most one choice possible for the pair (u, v) (mod p) for which the condition rk(A) = 1

holds. If a is zero (mod p), then for rk(A) = 1 to hold, we also then need c ≡ 0 (mod p), a

contradiction. Thus, regardless of the value of a, there is at most one value of u, v (mod p)

yielding rk(A) = 1. By Lemma 7.7, we conclude that the number of values of (A,B) with

rk(A) = 1, (A,B) ∈ Z(p), and our given values of a, b, c, d is at most 1(p6 + O(p5)), which

takes care of this case.

Finally, we consider the last case where b2−4ad ≡ a ≡ c ≡ 0 (mod p), which also implies

b ≡ 0 (mod p). The condition on a, b, c, d implies that Det(A) vanishes (mod p). Thus the

rank of A is at most 2, regardless of u and v. The number of values of u and v (mod p) with

rk(A) = 2 is thus less than p2; by Lemma 7.7, the number of (A,B) ∈ Z(p), with rk(A) = 2

and the given values of a, b, c, d, is at most p7 +O(p6).

For A (mod p) to be rank ≤ 1 for some values of u and v, we must have u2 ≡ 4dv (mod p),

so if d is not zero (mod p), then v (mod p) is determined by u (assuming p > 2), while if

d ≡ 0 (mod p), then u ≡ 0 (mod p) and v may be any value (mod p). Thus, regardless

of the value of d, the number of values of u and v (mod p) with rk(A) = 1 in this case is

p+O(1). By Lemma 7.7, the number of (A,B) with discriminant a multiple of p, rk(A) = 1,

and the given values of a, b, c, d, is (p+O(1))(p6 +O(p5)) = p7 +O(p6). This completes the

proof of the proposition. �

Corollary 7.9. Let q be square-free and let (a, b, c, d) be a quadruple of integers in [1, q]4.

The number of translates Lj of q · VZ that comprise Z(q) and have (a, b, c, d) as the first

four coordinates of some member is

3f
(
q7 +O(q6)

)
,

where

0 ≤ f ≤
∑

p|gcd(q,b2−4ad)

1.
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For i = 0, 1, 2, and for any subset S ⊂ VZ, let N
(i)
irr (S;X) denote the expected number

of totally irreducible lattice points in S lying in a fundamental domain for GZ\V (i) having

absolute discriminant less than X. The following proposition then follows from Lemma 7.2,

Lemma 7.3, Theorem 7.4, Lemma 7.6, and Corollary 7.9. The proof is essentially identical

to [BBP, Cor. 4.11].

Proposition 7.10. Let q be a square-free integer. Then

N
(i)
irr (Z(q);X) = g(q)N (i)(VZ, X) +O

((
q

ϕ(q)

)θ (
X11/12 + q11 log X

)
+X11/12+ε

)
.

The constant θ in this result depends on the the O-constant in Corollary 7.9, the function

f(a, b, c, d) there, and also on the fact that g(q)q = O
(
(q/ϕ(q))2

)
. The exact determination

of θ is unimportant to our results.

Let Nprime
4 (X) denote the number of S4-quartic fields having absolute discriminant a

prime less than X. It is well-known from sieve-theory that a result of the nature of Propo-

sition 7.10, which gives an asymptotic (with sufficiently strong error term) for the number

of fields of discriminant a multiple of q for any square-free q, implies that the number

Nprime
4 (X) of S4-quartic fields of prime absolute discriminant less than X is O(X/ log X).

We have proven:

Theorem 7.11. There exists a constant C such that

lim sup
X→∞

Nprime
4 (X)

(X/ log X)
< C.

In fact, naively inserting the result of Proposition 7.10 into Iwaniec’s refinement of

Rosser’s sieve [Iwa80, Theorem 1], we find that we may take, e.g., C = 5 in Theorem 7.11,

although this value of C could certainly be lowered with additional work. Indeed, to obtain a

rough estimate for C, let N
prime,(i)
4 (X) be the number of quartic fields of prime discriminant

(in absolute value) less than X, with 4 − 2i real embeddings and 2i complex embeddings,

so that Nprime
4 (X) =

∑2
i=0N

prime,(i)
4 (X). A short computation shows that∏

p<z

(1− g(p)) =
1

ζ(2)2ζ(3)

e−γ

log z
(1 + error term)

where γ is Euler’s constant. Hence, by Proposition 7.10, [Iwa80, Theorem 1] and [Bha05,

Theorem 7] we see that N
prime,(i)
4 (X) < CiX/ log X + error term, where Ci can be taken to

be the smallest value that the expression 1
ζ(2)2ζ(3)

e−γ(2eγ/αs)(ζ(2)2ζ(3)/2ni) takes subject

to αs < 1/12, that is, we may take Ci to be 12/ni. Thus C may be taken to be
∑2

i=0Ci = 5.
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Theorem 7.11 thus states that there are fewer than C quartic fields of absolute discrim-

inant |D| on average, for prime values of |D|. By the duality between quartic fields and

2-torsion elements in the class groups of cubic fields, we thus also obtain:

Corollary 7.12. With C as in Theorem 7.11, we have∑
|Disc(K3)| prime <X

h∗2(K3) < CX/ log X

for sufficiently large values of X.

8. Prime Conductor

Finally, let us count forms of prime conductor. Such forms are necessarily minimal (that

is have minimal level amongst their twists). Moreover octahedral forms of prime level are

good in the sense of definition 6.1, as follows from the following results of Tate written down

by Serre [Ser77].

Theorem 8.1 ([Ser77, Thm. 7]). Let ρ : GQ → GL2(C) be an irreducible odd representation

of prime conductor p. Assume that ρ is not dihedral.

(a) Then p 6≡ 1 mod 8

(b) If p ≡ 5 mod 8, then ρ is of octahedral type

(c) If p ≡ 3 mod 4, then ρ is of octahedral type or of icosahedral type.

Conversely, suppose we start with a Galois extension E/Q and a prime p. Consider the

three cases:

(b) Gal(E/Q)∼= S4 and p ≡ 5 mod 8

(c1) Gal(E/Q)∼= S4 and p ≡ 3 mod 4

(c2) Gal(E/Q)∼=A5 and p ≡ 3 mod 4.

Fix an embedding of Gal(E/Q) in PGL2(C). In the octahedral case (respectively, icosa-

hedral case) there is only one (respectively, two) such embedding(s) up to conjugacy. Let

ρ̃E denote the induced projective representation of GQ.

Theorem 8.2 ([Ser77, Thm. 8]). ρ̃E has a lift with conductor p and odd determinant if

and only if E is the normal closure of a non-real

(b) quartic field K/Q with discriminant p3

(c1) quartic field K/Q with discriminant −p
(c2) quintic field K/Q with discriminant p2.

When these conditions are satisfied, in each case ρ̃E has precisely two non-isomorphic liftings

with odd determinant and conductor p.
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We now prove Theorem 1.2, i.e., that Nprime
oct (X) = O(X/ log X).

Proof. As usual letK3 denote the fixed field of the dihedral group Dih4⊂S4 fixed in Section 6

and let K6/K3 be the corresponding quadratic extension. Recall NormK3
Q (Disc(K6/K3)) =

n2. By Theorem 8.2, we see that there are only two possibilities for the ramification of p.

These are summarized in the following table:

Ram in K4 Level(f) Ram in K3 |Disc(K3)| n

14 p 112 p p

1112 p 112 p 1

Moreover, the first possibility can occur only when K4 is totally complex, and the second

only when K4 is of mixed signature.

Let Nprime
oct (X,K3) =

∣∣{f such that Level(f) is a prime < X and f cuts out K3}
∣∣. Then

Nprime
oct (X) =

∑
K3
Nprime

oct (X,K3). Since each S4 extension gives rise to two f ’s (by Theo-

rem 8.2 above), we have:

Nprime
oct (X,K3) =

∑
K6/K3

Level(f)<X

2

=
∑
K6/K3

lcm(Disc(K3),n)<X

2

= 2
∑
K6/K3

lcm(Disc(K3),n)<X

(no. of K6 ↔ n)

≤ 4 h∗2(K3),

since in the last sum n is uniquely determined to be Disc(K3) or 1 in accordance with

whetherK3 is totally real or of mixed signature. Note that the number ofK6’s corresponding

to n when n = Disc(K3) (i.e., when K3 is totally real) is 2ω(Disc(K3))h∗2(K3) = 2h∗2(K3), and

is h∗2(K3) otherwise.

Hence

Nprime
oct (X) =

∑
|Disc(K3)| prime <X

Nprime
oct (X,K3) ≤

∑
|Disc(K3)| prime <X

4h∗2(K3) < 4CX/ log X

for sufficiently large X, by Corollary 7.12. This concludes the proof. �
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