Local Galois Representations and Applications

Eknath Ghate
School of Mathematics, TIFR

November 4, 2016

Fields Medal Symposium
Fields Institute, Toronto

Overview

Goal: To study Galois representations attached to cusp forms

Overview

Goal: To study Galois representations attached to cusp forms

1. of weight at least 2

- with possible applications to a generalization of Serre's uniform boundedness conjecture,

Overview

Goal: To study Galois representations attached to cusp forms

1. of weight at least 2

- with possible applications to a generalization of Serre's uniform boundedness conjecture,

2. of weight 1

- with possible applications to counting exotic weight 1 forms.

Cusp forms and Galois representations

Let $f=\sum_{n=1}^{\infty} a_{n} q^{n}$ be a (primitive) cusp form of weight $k \geq 2$,
level $N \geq 1$, and character $\epsilon:(\mathbb{Z} / N)^{\times} \rightarrow \mathbb{C}^{\times}$.

Cusp forms and Galois representations

Let $f=\sum_{n=1}^{\infty} a_{n} q^{n}$ be a (primitive) cusp form of weight $k \geq 2$,
level $N \geq 1$, and character $\epsilon:(\mathbb{Z} / N)^{\times} \rightarrow \mathbb{C}^{\times}$.
Let p be a prime.

Cusp forms and Galois representations

Let $f=\sum_{n=1}^{\infty} a_{n} q^{n}$ be a (primitive) cusp form of weight $k \geq 2$,
level $N \geq 1$, and character $\epsilon:(\mathbb{Z} / N)^{\times} \rightarrow \mathbb{C}^{\times}$.
Let p be a prime.
Let

$$
\rho_{f}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{p}\right)
$$

be the Galois representation attached to f and p, satisfying

$$
\operatorname{trace} \rho_{f}\left(\mathrm{Frob}_{\ell}\right)=a_{\ell} \quad \text { and } \quad \operatorname{det} \rho_{f}\left(\mathrm{Frob}_{\ell}\right)=\epsilon(\ell) \ell^{k-1}
$$ for all primes $\ell \nmid N p$.

Residual representation for $k \geq 2$

Let $k \geq 2$ and let

$$
\bar{\rho}_{f}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

be the associated residual Galois representation.

Residual representation for $k \geq 2$

Let $k \geq 2$ and let

$$
\bar{\rho}_{f}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

be the associated residual Galois representation.
The image of the reduction $\bar{\rho}_{f}$ is reasonably well understood.

Residual representation for $k \geq 2$

Let $k \geq 2$ and let

$$
\bar{\rho}_{f}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

be the associated residual Galois representation.
The image of the reduction $\bar{\rho}_{f}$ is reasonably well understood.
The projective image of $\bar{\rho}_{f}$ is (roughly speaking) of four types:
reducible, exceptional, dihedral or full.

Residual representation for $k \geq 2$

Let $k \geq 2$ and let

$$
\bar{\rho}_{f}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

be the associated residual Galois representation.
The image of the reduction $\bar{\rho}_{f}$ is reasonably well understood.
The projective image of $\bar{\rho}_{f}$ is (roughly speaking) of four types:
reducible, exceptional, dihedral or full.

One expects the full case to be the generic case.

Serre's uniform boundedness conjecture

For instance, if f varies through all cusp forms

$$
f \leftrightarrow E
$$

of weight $k=2$ corresponding to non-CM elliptic curves $E_{/ \mathbb{Q}}$, then

Serre's uniform boundedness conjecture

For instance, if f varies through all cusp forms

$$
f \leftrightarrow E
$$

of weight $k=2$ corresponding to non-CM elliptic curves $E_{/ \mathbb{Q}}$, then

Conjecture (Serre)
There exists an absolute constant C such that for all primes $p>C$, the image of

$$
\bar{\rho}_{E}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

is full.

Serre's uniform boundedness conjecture

For instance, if f varies through all cusp forms

$$
f \leftrightarrow E
$$

of weight $k=2$ corresponding to non-CM elliptic curves $E_{/ \mathbb{Q}}$, then

Conjecture (Serre)
There exists an absolute constant C such that for all primes $p>C$, the image of

$$
\bar{\rho}_{E}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

is full.
This is now proven in all but one case, by Serre, Mazur and Bilu-Parent.

Generalization

If f varies through all non-CM cusp forms of weight $k=2$

Generalization

If f varies through all non-CM cusp forms of weight $k=2$

$$
f \leftrightarrow A
$$

corresponding to all (modular) non-CM abelian varieties $A_{/ \mathbb{Q}}$ of GL2-type, of dimension at most $d \geq 1$, then

Generalization

If f varies through all non-CM cusp forms of weight $k=2$

$$
f \leftrightarrow A
$$

corresponding to all (modular) non-CM abelian varieties $A_{\mathbb{Q}}$ of GL2-type, of dimension at most $d \geq 1$, then

Conjecture

There exists an absolute constant C_{d} such that for all primes $p>C_{d}$, the image of $\bar{\rho}_{A}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)$ is full.

Generalization

If f varies through all non-CM cusp forms of weight $k=2$

$$
f \leftrightarrow A
$$

corresponding to all (modular) non-CM abelian varieties $A_{/ \mathbb{Q}}$ of GL2-type, of dimension at most $d \geq 1$, then

Conjecture

There exists an absolute constant C_{d} such that for all primes $p>C_{d}$, the image of $\bar{\rho}_{A}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)$ is full.

As a start, it was shown in

- E. Ghate, P. Parent, Bull. Lond. Math. Soc. (2012)
that the exceptional image case does not happen for large p, that is, $C_{d}^{\text {ex }}$ exists.

Generalization

If f varies through all non-CM cusp forms of weight $k=2$

$$
f \leftrightarrow A
$$

corresponding to all (modular) non-CM abelian varieties $A_{/ \mathbb{Q}}$ of GL2-type, of dimension at most $d \geq 1$, then

Conjecture

There exists an absolute constant C_{d} such that for all primes $p>C_{d}$, the image of $\bar{\rho}_{A}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)$ is full.

As a start, it was shown in

- E. Ghate, P. Parent, Bull. Lond. Math. Soc. (2012)
that the exceptional image case does not happen for large p, that is, $C_{d}^{\text {ex }}$ exists.

One way to prove this is to work locally: show that the image of the local residual Galois representation at p is big!

Local Galois representations

So we study (in the first part) the shape of the of $\bar{\rho}_{f}$ locally:

Local Galois representations

So we study (in the first part) the shape of the of $\bar{\rho}_{f}$ locally:
Let $G_{p} \subset G_{\mathbb{Q}}$ be the decomposition subgroup of $G_{\mathbb{Q}}$ at p.

Local Galois representations

So we study (in the first part) the shape of the of $\bar{\rho}_{f}$ locally:
Let $G_{p} \subset G_{\mathbb{Q}}$ be the decomposition subgroup of $G_{\mathbb{Q}}$ at p.
Let $I_{p} \subset G_{p}$ be the inertia subgroup at p.

Local Galois representations

So we study (in the first part) the shape of the of $\bar{\rho}_{f}$ locally:
Let $G_{p} \subset G_{\mathbb{Q}}$ be the decomposition subgroup of $G_{\mathbb{Q}}$ at p.
Let $I_{p} \subset G_{p}$ be the inertia subgroup at p.
We study the shape of

$$
\rho: G_{p} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right),
$$

the local residual Galois representation obtained by restricting $\bar{\rho}_{f}$ to G_{p} (or I_{p}), for $k \geq 2$.

Local Galois representations

So we study (in the first part) the shape of the of $\bar{\rho}_{f}$ locally:
Let $G_{p} \subset G_{\mathbb{Q}}$ be the decomposition subgroup of $G_{\mathbb{Q}}$ at p.
Let $I_{p} \subset G_{p}$ be the inertia subgroup at p.
We study the shape of

$$
\rho: G_{p} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right),
$$

the local residual Galois representation obtained by restricting $\bar{\rho}_{f}$ to G_{p} (or I_{p}), for $k \geq 2$.

We focus here on the case $p \nmid N$, and assume p is odd.

Local Galois representations

So we study (in the first part) the shape of the of $\bar{\rho}_{f}$ locally:
Let $G_{p} \subset G_{\mathbb{Q}}$ be the decomposition subgroup of $G_{\mathbb{Q}}$ at p.
Let $I_{p} \subset G_{p}$ be the inertia subgroup at p.
We study the shape of

$$
\rho: G_{p} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right),
$$

the local residual Galois representation obtained by restricting $\bar{\rho}_{f}$ to G_{p} (or I_{p}), for $k \geq 2$.

We focus here on the case $p \nmid N$, and assume p is odd.
We shall also assume that $\epsilon=1$ on G_{p}, for simplicity.

Some characters

Let $\mathbb{Q}_{p^{2}}$ be the unramified quadratic extension of \mathbb{Q}_{p}, with residue field $\mathbb{F}_{p^{2}}$.

Some characters

Let $\mathbb{Q}_{p^{2}}$ be the unramified quadratic extension of \mathbb{Q}_{p}, with residue field $\mathbb{F}_{p^{2}}$.

Let $G_{p^{2}}$ be the Galois group of $\mathbb{Q}_{p^{2}}$, an index 2 subgroup of G_{p}.

Some characters

Let $\mathbb{Q}_{p^{2}}$ be the unramified quadratic extension of \mathbb{Q}_{p}, with residue field $\mathbb{F}_{p^{2}}$.

Let $G_{p^{2}}$ be the Galois group of $\mathbb{Q}_{p^{2}}$, an index 2 subgroup of G_{p}.
Let

$$
\begin{aligned}
\omega=\omega_{1}: G_{p} & \rightarrow \mu_{p-1}=\mathbb{F}_{p}^{\times} \quad \text { and } \\
\omega_{2}: G_{p^{2}} & \rightarrow \mu_{p^{2}-1}=\mathbb{F}_{p^{2}}^{\times}
\end{aligned}
$$

be the fundamental characters of level 1 and 2 ,

Some characters

Let $\mathbb{Q}_{p^{2}}$ be the unramified quadratic extension of \mathbb{Q}_{p}, with residue field $\mathbb{F}_{p^{2}}$.

Let $G_{p^{2}}$ be the Galois group of $\mathbb{Q}_{p^{2}}$, an index 2 subgroup of G_{p}.
Let

$$
\begin{aligned}
\omega=\omega_{1}: G_{p} & \rightarrow \mu_{p-1}=\mathbb{F}_{p}^{\times} \quad \text { and } \\
\omega_{2}: G_{p^{2}} & \rightarrow \mu_{p^{2}-1}=\mathbb{F}_{p^{2}}^{\times}
\end{aligned}
$$

be the fundamental characters of level 1 and 2 , defined by

$$
\sigma\left(\pi_{1}\right)=\omega_{1}(\sigma) \pi_{1}, \quad \text { for } \pi_{1}={ }^{p-1} \sqrt{-p}, \sigma \in G_{p}
$$

Some characters

Let $\mathbb{Q}_{p^{2}}$ be the unramified quadratic extension of \mathbb{Q}_{p}, with residue field $\mathbb{F}_{p^{2}}$.

Let $G_{p^{2}}$ be the Galois group of $\mathbb{Q}_{p^{2}}$, an index 2 subgroup of G_{p}.
Let

$$
\begin{aligned}
\omega=\omega_{1}: G_{p} & \rightarrow \mu_{p-1}=\mathbb{F}_{p}^{\times} \quad \text { and } \\
\omega_{2}: G_{p^{2}} & \rightarrow \mu_{p^{2}-1}=\mathbb{F}_{p^{2}}^{\times}
\end{aligned}
$$

be the fundamental characters of level 1 and 2 , defined by

$$
\begin{array}{ll}
\sigma\left(\pi_{1}\right)=\omega_{1}(\sigma) \pi_{1}, & \text { for } \pi_{1}={ }^{p-1} \sqrt{-p}, \sigma \in G_{p} \\
\sigma\left(\pi_{2}\right)=\omega_{2}(\sigma) \pi_{2}, & \text { for } \pi_{2}=p^{2}-1 \sqrt{-p}, \sigma \in G_{p^{2}} .
\end{array}
$$

Some characters

Let $\mathbb{Q}_{p^{2}}$ be the unramified quadratic extension of \mathbb{Q}_{p}, with residue field $\mathbb{F}_{p^{2}}$.

Let $G_{p^{2}}$ be the Galois group of $\mathbb{Q}_{p^{2}}$, an index 2 subgroup of G_{p}. Let

$$
\begin{aligned}
\omega=\omega_{1}: G_{p} & \rightarrow \mu_{p-1}=\mathbb{F}_{p}^{\times} \quad \text { and } \\
\omega_{2}: G_{p^{2}} & \rightarrow \mu_{p^{2}-1}=\mathbb{F}_{p^{2}}^{\times}
\end{aligned}
$$

be the fundamental characters of level 1 and 2 , defined by

$$
\begin{array}{ll}
\sigma\left(\pi_{1}\right)=\omega_{1}(\sigma) \pi_{1}, & \text { for } \pi_{1}={ }^{p-1} \sqrt{-p}, \sigma \in G_{p} \\
\sigma\left(\pi_{2}\right)=\omega_{2}(\sigma) \pi_{2}, & \text { for } \pi_{2}=p^{p^{2}-1} \sqrt{-p}, \sigma \in G_{p^{2}} .
\end{array}
$$

Finally, let

$$
\mu_{\lambda}: G_{p} \rightarrow \overline{\mathbb{F}}_{p}^{\times}
$$

be the unramified character of G_{p} taking Frob $_{p}^{-1}$ to $\lambda \in \overline{\mathbb{F}}_{\boldsymbol{p}}^{\times}$.

Question

It turns out there are only two possibilities for $\rho=\bar{\rho}_{f} \mid G_{p}$:

Question

It turns out there are only two possibilities for $\rho=\bar{\rho}_{f} \mid G_{\rho}$:

1. ρ is reducible and

$$
\rho \simeq\left(\begin{array}{cc}
\mu_{\lambda} \cdot \omega^{a} & * \\
0 & \mu_{\lambda^{-1}} \cdot \omega^{b}
\end{array}\right)
$$

Question

It turns out there are only two possibilities for $\rho=\bar{\rho}_{f} \mid G_{p}$:

1. ρ is reducible and

$$
\rho \simeq\left(\begin{array}{cc}
\mu_{\lambda} \cdot \omega^{a} & * \\
0 & \mu_{\lambda^{-1}} \cdot \omega^{b}
\end{array}\right) \quad\left(\simeq\left(\begin{array}{cc}
\omega^{a} & * \\
0 & \omega^{b}
\end{array}\right) \quad \text { on } I_{p}\right)
$$

Question

It turns out there are only two possibilities for $\rho=\left.\bar{\rho}_{f}\right|_{G_{p}}$:

1. ρ is reducible and

$$
\rho \simeq\left(\begin{array}{cc}
\mu_{\lambda} \cdot \omega^{a} & * \\
0 & \mu_{\lambda^{-1}} \cdot \omega^{b}
\end{array}\right) \quad\left(\simeq\left(\begin{array}{cc}
\omega^{a} & * \\
0 & \omega^{b}
\end{array}\right) \text { on } I_{p}\right),
$$

for some $\lambda \in \overline{\mathbb{F}}_{p}^{\times}$and $0 \leq a, b \leq p-2$,

Question

It turns out there are only two possibilities for $\rho=\left.\bar{\rho}_{f}\right|_{G_{p}}$:

1. ρ is reducible and

$$
\rho \simeq\left(\begin{array}{cc}
\mu_{\lambda} \cdot \omega^{a} & * \\
0 & \mu_{\lambda-1} \cdot \omega^{b}
\end{array}\right) \quad\left(\simeq\left(\begin{array}{cc}
\omega^{a} & * \\
0 & \omega^{b}
\end{array}\right) \quad \text { on } I_{p}\right)
$$

for some $\lambda \in \overline{\mathbb{F}}_{p}^{\times}$and $0 \leq a, b \leq p-2$, or,
2. ρ is irreducible and

$$
\rho \simeq \operatorname{ind}_{G_{p^{2}}}^{G_{p}} \omega_{2}^{c}
$$

Question

It turns out there are only two possibilities for $\rho=\left.\bar{\rho}_{f}\right|_{G_{p}}$:

1. ρ is reducible and

$$
\rho \simeq\left(\begin{array}{cc}
\mu_{\lambda} \cdot \omega^{a} & * \\
0 & \mu_{\lambda-1} \cdot \omega^{b}
\end{array}\right) \quad\left(\simeq\left(\begin{array}{cc}
\omega^{a} & * \\
0 & \omega^{b}
\end{array}\right) \quad \text { on } I_{p}\right)
$$

for some $\lambda \in \overline{\mathbb{F}}_{p}^{\times}$and $0 \leq a, b \leq p-2$, or,
2. ρ is irreducible and

$$
\rho \simeq \operatorname{ind}_{G_{p^{2}}}^{G_{p}} \omega_{2}^{c} \quad\left(=: \text { ind } \omega_{2}^{c}\right)
$$

Question

It turns out there are only two possibilities for $\rho=\left.\bar{\rho}_{f}\right|_{G_{p}}$:

1. ρ is reducible and

$$
\rho \simeq\left(\begin{array}{cc}
\mu_{\lambda} \cdot \omega^{a} & * \\
0 & \mu_{\lambda-1} \cdot \omega^{b}
\end{array}\right) \quad\left(\simeq\left(\begin{array}{cc}
\omega^{a} & * \\
0 & \omega^{b}
\end{array}\right) \text { on } I_{p}\right),
$$

for some $\lambda \in \overline{\mathbb{F}}_{p}^{\times}$and $0 \leq a, b \leq p-2$, or,
2. ρ is irreducible and

$$
\rho \simeq \operatorname{ind}_{G_{p^{2}}}^{G_{p}} \omega_{2}^{c}\left(=: \operatorname{ind} \omega_{2}^{c}\right) \quad\left(\simeq\left(\begin{array}{cc}
\omega_{2}^{c} & 0 \\
0 & \omega_{2}^{c p}
\end{array}\right) \text { on } I_{p}\right),
$$

Question

It turns out there are only two possibilities for $\rho=\left.\bar{\rho}_{f}\right|_{G_{p}}$:

1. ρ is reducible and

$$
\rho \simeq\left(\begin{array}{cc}
\mu_{\lambda} \cdot \omega^{a} & * \\
0 & \mu_{\lambda-1} \cdot \omega^{b}
\end{array}\right) \quad\left(\simeq\left(\begin{array}{cc}
\omega^{a} & * \\
0 & \omega^{b}
\end{array}\right) \text { on } I_{p}\right),
$$

for some $\lambda \in \overline{\mathbb{F}}_{p}^{\times}$and $0 \leq a, b \leq p-2$, or,
2. ρ is irreducible and
$\rho \simeq \operatorname{ind}_{G_{p^{2}}}^{G_{p}} \omega_{2}^{c}\left(=: \operatorname{ind} \omega_{2}^{c}\right) \quad\left(\simeq\left(\begin{array}{cc}\omega_{2}^{c} & 0 \\ 0 & \omega_{2}^{c p}\end{array}\right)\right.$ on $\left.I_{p}\right)$,
for $0 \leq c \leq p^{2}-2$ with $p+1 \nmid c$.

Question

It turns out there are only two possibilities for $\rho=\left.\bar{\rho}_{f}\right|_{G_{p}}$:

1. ρ is reducible and

$$
\rho \simeq\left(\begin{array}{cc}
\mu_{\lambda} \cdot \omega^{a} & * \\
0 & \mu_{\lambda-1} \cdot \omega^{b}
\end{array}\right) \quad\left(\simeq\left(\begin{array}{cc}
\omega^{a} & * \\
0 & \omega^{b}
\end{array}\right) \quad \text { on } I_{p}\right)
$$

for some $\lambda \in \overline{\mathbb{F}}_{p}^{\times}$and $0 \leq a, b \leq p-2$, or,
2. ρ is irreducible and

$$
\rho \simeq \operatorname{ind}_{G_{p^{2}}}^{G_{p}} \omega_{2}^{c}\left(=: \operatorname{ind} \omega_{2}^{c}\right) \quad\left(\simeq\left(\begin{array}{cc}
\omega_{2}^{c} & 0 \\
0 & \omega_{2}^{c p}
\end{array}\right) \text { on } I_{p}\right),
$$

for $0 \leq c \leq p^{2}-2$ with $p+1 \nmid c$.
Question: Which case occurs \& for what values of λ, a, b, c ?

What is known?

The answer depends on the slope $v \in \mathbb{Q}_{\geq 0} \cup\{\infty\}$.

What is known?

The answer depends on the slope $v \in \mathbb{Q}_{\geq 0} \cup\{\infty\}$. Recall:
Definition
The slope $v=v\left(a_{p}\right)$ of f at p is the p-adic valuation of the p-th Fourier coefficient of f.

What is known?

The answer depends on the slope $v \in \mathbb{Q}_{\geq 0} \cup\{\infty\}$. Recall:
Definition
The slope $v=v\left(a_{p}\right)$ of f at p is the p-adic valuation of the p-th Fourier coefficient of f.

If the slope $v=0$ is zero (the ordinary case), the local reduction is well known to be reducible (Deligne):

$$
\rho \simeq\left(\begin{array}{cc}
\mu_{\overline{\mathrm{a}}_{\rho}} \cdot \omega^{k-1} & * \\
0 & \mu_{\overline{\mathrm{a}}^{-1}}
\end{array}\right) .
$$

What is known?

The answer depends on the slope $v \in \mathbb{Q}_{\geq 0} \cup\{\infty\}$. Recall:
Definition
The slope $v=v\left(a_{p}\right)$ of f at p is the p-adic valuation of the p-th Fourier coefficient of f.

If the slope $v=0$ is zero (the ordinary case), the local reduction is well known to be reducible (Deligne):

$$
\rho \simeq\left(\begin{array}{cc}
\mu_{\overline{\mathrm{a}}_{\rho}} \cdot \omega^{k-1} & * \\
0 & \mu_{\overline{\mathrm{a}}^{-1}}
\end{array}\right) .
$$

But if the slope $v>0$ is positive, then the answer to this question is not known.

What is known?

The answer depends on the slope $v \in \mathbb{Q}_{\geq 0} \cup\{\infty\}$. Recall:
Definition
The slope $v=v\left(a_{p}\right)$ of f at p is the p-adic valuation of the p-th Fourier coefficient of f.

If the slope $v=0$ is zero (the ordinary case), the local reduction is well known to be reducible (Deligne):

$$
\rho \simeq\left(\begin{array}{cc}
\mu_{\overline{\mathrm{a}}_{\rho}} \cdot \omega^{k-1} & * \\
0 & \mu_{\overline{\mathrm{a}}^{-1}}
\end{array}\right) .
$$

But if the slope $v>0$ is positive, then the answer to this question is not known.

However, there are some partial results...

Positive slopes

Assume $v>0$ is positive. Then the p-adic local rep.

$$
\left.\rho_{f}\right|_{G_{p}} \simeq V_{k, a_{p}},
$$

where $V_{k, a_{p}}$ is a crystalline representation of G_{ρ}.

Positive slopes

Assume $v>0$ is positive. Then the p-adic local rep.

$$
\left.\rho_{f}\right|_{G_{p}} \simeq V_{k, a_{p}}
$$

where $V_{k, a_{p}}$ is a crystalline representation of G_{p}.
NB: $V_{k, a_{p}}$ can be defined explicitly in terms of its filtered φ-module and depends only on k and a_{p}.

Positive slopes

Assume $v>0$ is positive. Then the p-adic local rep.

$$
\left.\rho_{f}\right|_{G_{p}} \simeq V_{k, a_{p}}
$$

where $V_{k, a_{p}}$ is a crystalline representation of G_{p}.
NB: $V_{k, a_{p}}$ can be defined explicitly in terms of its filtered φ-module and depends only on k and a_{p}.
So, to answer the question, it is enough to compute $\bar{V}_{k, a_{p}}$.

Positive slopes

Assume $v>0$ is positive. Then the p-adic local rep.

$$
\left.\rho_{f}\right|_{G_{p}} \simeq V_{k, a_{p}},
$$

where $V_{k, a_{p}}$ is a crystalline representation of G_{p}.
NB: $V_{k, a_{p}}$ can be defined explicitly in terms of its filtered φ-module and depends only on k and a_{p}.
So, to answer the question, it is enough to compute $\bar{V}_{k, a_{p}}$.
$\bar{V}_{k, a_{p}}^{s s}$ is known for

- Small weights (Fontaine-Edixhoven)

$$
2 \leq k \leq p+1 \Longrightarrow \bar{V}_{k, a_{p}} \simeq \text { ind } \omega_{2}^{k-1} .
$$

Positive slopes

Assume $v>0$ is positive. Then the p-adic local rep.

$$
\left.\rho_{f}\right|_{G_{p}} \simeq V_{k, a_{p}},
$$

where $V_{k, a_{p}}$ is a crystalline representation of G_{p}.
NB: $V_{k, a_{p}}$ can be defined explicitly in terms of its filtered φ-module and depends only on k and a_{p}.
So, to answer the question, it is enough to compute $\bar{V}_{k, a_{p}}$.
$\bar{V}_{k, a_{p}}^{s s}$ is known for

- Small weights (Fontaine-Edixhoven)

$$
2 \leq k \leq p+1 \Longrightarrow \bar{V}_{k, a_{p}} \simeq \text { ind } \omega_{2}^{k-1} .
$$

Breuil further classified the reduction for $k \leq 2 p+1$.

Positive slopes

Assume $v>0$ is positive. Then the p-adic local rep.

$$
\rho_{f} \mid G_{p} \simeq V_{k, a_{p}},
$$

where $V_{k, a_{p}}$ is a crystalline representation of G_{p}.
NB: $V_{k, a_{p}}$ can be defined explicitly in terms of its filtered φ-module and depends only on k and a_{p}.
So, to answer the question, it is enough to compute $\bar{V}_{k, a_{p}}$.
$\bar{V}_{k, a_{p}}^{s s}$ is known for

- Small weights (Fontaine-Edixhoven)

$$
2 \leq k \leq p+1 \Longrightarrow \bar{V}_{k, a_{\rho}} \simeq \text { ind } \omega_{2}^{k-1} .
$$

Breuil further classified the reduction for $k \leq 2 p+1$.

- Large slopes (Berger-Li-Zhu)

$$
v>\left\lfloor\frac{k-2}{p-1}\right\rfloor \text { or }\{v=\infty\} \Longrightarrow \bar{V}_{k, a_{p}} \simeq \operatorname{ind} \omega_{2}^{k-1} .
$$

Slopes in $(0,1)$
The reduction is also known for small slopes $0<v<1$.

Slopes in $(0,1)$
The reduction is also known for small slopes $0<v<1$.
Theorem (Buzzard-Gee)
Let $r=k-2>1$

Slopes in $(0,1)$
The reduction is also known for small slopes $0<v<1$.
Theorem (Buzzard-Gee)
Let $r=k-2>1$ and $r \equiv a \bmod p-1(a=1, \ldots, p-1)$.

Slopes in $(0,1)$
The reduction is also known for small slopes $0<v<1$.
Theorem (Buzzard-Gee)
Let $r=k-2>1$ and $r \equiv a \bmod p-1(a=1, \ldots, p-1)$.
Let $v \in(0,1)$. Then

$$
\bar{V}_{k, a_{\rho}} \simeq \operatorname{ind} \omega_{2}^{a+1}
$$

Slopes in $(0,1)$
The reduction is also known for small slopes $0<v<1$.
Theorem (Buzzard-Gee)
Let $r=k-2>1$ and $r \equiv a \bmod p-1(a=1, \ldots, p-1)$.
Let $v \in(0,1)$. Then

$$
\bar{V}_{k, a_{p}} \simeq \operatorname{ind} \omega_{2}^{a+1}
$$

except if $v=\frac{1}{2}$ and $a=1$

Slopes in $(0,1)$

The reduction is also known for small slopes $0<v<1$.
Theorem (Buzzard-Gee)
Let $r=k-2>1$ and $r \equiv a \bmod p-1(a=1, \ldots, p-1)$. Let $v \in(0,1)$. Then

$$
\bar{V}_{k, a_{p}} \simeq \operatorname{ind} \omega_{2}^{a+1}
$$

except if $v=\frac{1}{2}$ and $a=1$ and the quantity on the right in the equation

$$
\lambda+\frac{1}{\lambda}=\overline{\frac{1}{1-r} \cdot\left(\frac{a_{p}}{p}-\binom{r}{1} \frac{1}{a_{p}}\right)}
$$

is a well-defined element of $\overline{\mathbb{F}}_{p}$,

Slopes in $(0,1)$

The reduction is also known for small slopes $0<v<1$.
Theorem (Buzzard-Gee)
Let $r=k-2>1$ and $r \equiv a \bmod p-1(a=1, \ldots, p-1)$.
Let $v \in(0,1)$. Then

$$
\bar{V}_{k, a_{p}} \simeq \operatorname{ind} \omega_{2}^{a+1}
$$

except if $v=\frac{1}{2}$ and $a=1$ and the quantity on the right in the equation

$$
\lambda+\frac{1}{\lambda}=\overline{\frac{1}{1-r} \cdot\left(\frac{a_{p}}{p}-\binom{r}{1} \frac{1}{a_{p}}\right)}
$$

is a well-defined element of $\overline{\mathbb{F}}_{p}$, in which case

$$
\bar{V}_{k, a_{p}}^{s s} \simeq \mu_{\lambda} \cdot \omega \oplus \mu_{\lambda^{-1}} \cdot \omega
$$

where λ is a root of the equation above.

Slope 1 and beyond

We have extended this result to the case of slopes

- $v=1$, in S. Bhattacharya, E. Ghate, S. Rozensztajn, Preprint (2016)

Slope 1 and beyond

We have extended this result to the case of slopes

- $v=1$, in S. Bhattacharya, E. Ghate, S. Rozensztajn, Preprint (2016)
- $v \in(1,2)$, in S. Bhattacharya, E. Ghate, Doc. Math. (2015)

Slope 1 and beyond

We have extended this result to the case of slopes

- $v=1$, in S. Bhattacharya, E. Ghate, S. Rozensztajn, Preprint (2016)
- $v \in(1,2)$, in S. Bhattacharya, E. Ghate, Doc. Math. (2015)

p-adic unit disk

Notation

To state our results, let $r:=k-2$.

Notation

To state our results, let $r:=k-2$.
Instead of a, say

$$
r \equiv b \quad \bmod (p-1), \text { with } b=2,3, \ldots, p-1, p .
$$

Notation

To state our results, let $r:=k-2$.
Instead of a, say

$$
r \equiv b \quad \bmod (p-1), \text { with } b=2,3, \ldots, p-1, p
$$

The reduction $\bar{V}_{k, a_{p}}$ will be classified according to the congruence classes b of $r \bmod (p-1)$.

Notation

To state our results, let $r:=k-2$.
Instead of a, say

$$
r \equiv b \quad \bmod (p-1), \text { with } b=2,3, \ldots, p-1, p .
$$

The reduction $\bar{V}_{k, a_{p}}$ will be classified according to the congruence classes b of $r \bmod (p-1)$.
In view of Breuil's work, we may and do assume that $r \geq 2 p$.

Notation

To state our results, let $r:=k-2$. Instead of a, say

$$
r \equiv b \quad \bmod (p-1), \text { with } b=2,3, \ldots, p-1, p .
$$

The reduction $\bar{V}_{k, a_{p}}$ will be classified according to the congruence classes b of $r \bmod (p-1)$.

In view of Breuil's work, we may and do assume that $r \geq 2 p$.
We assume that $p \geq 5$, though sometimes allow $p=3$.

Theorem A: Slope 1
Let $p \geq 5$, let $k \geq 2 p+2$ and let $r=k-2 \equiv b \bmod (p-1)$.

Theorem A: Slope 1

Let $p \geq 5$, let $k \geq 2 p+2$ and let $r=k-2 \equiv b \bmod (p-1)$.
If $v=1$, then the semisimplification $\bar{V}_{k, a_{p}}^{s s}$ is as follows:

Theorem A: Slope 1

Let $p \geq 5$, let $k \geq 2 p+2$ and let $r=k-2 \equiv b \bmod (p-1)$.
If $v=1$, then the semisimplification $\bar{V}_{k, a_{p}}^{s s}$ is as follows:

$$
3 \leq b \leq p-1 \Longrightarrow \begin{cases}\mu_{\lambda} \cdot \omega^{b} \oplus \mu_{\lambda^{-1}} \cdot \omega, & \text { if } p \nmid r-b \\ & \end{cases}
$$

Theorem A: Slope 1

Let $p \geq 5$, let $k \geq 2 p+2$ and let $r=k-2 \equiv b \bmod (p-1)$.
If $v=1$, then the semisimplification $\bar{V}_{k, a_{p}}^{s s}$ is as follows:

$$
3 \leq b \leq p-1 \Longrightarrow \begin{cases}\mu_{\lambda} \cdot \omega^{b} \oplus \mu_{\lambda-1} \cdot \omega, & \text { if } p \nmid r-b \\ & \text { with } \lambda=\overline{\frac{b}{b-r} \cdot \frac{a_{p}}{p}} \in \overline{\mathbb{F}}_{p}^{\times}\end{cases}
$$

Theorem A: Slope 1

Let $p \geq 5$, let $k \geq 2 p+2$ and let $r=k-2 \equiv b \bmod (p-1)$.
If $v=1$, then the semisimplification $\bar{V}_{k, a_{p}}^{s s}$ is as follows:

$$
3 \leq b \leq p-1 \Longrightarrow \begin{cases}\mu_{\lambda} \cdot \omega^{b} \oplus \mu_{\lambda^{-1}} \cdot \omega, & \text { if } p \nmid r-b \\ & \text { with } \lambda=\overline{\frac{b}{b-r} \cdot \frac{a_{p}}{p} \in \overline{\mathbb{F}}_{p}^{\times}} \\ \text {ind } \omega_{2}^{b+1}, & \text { if } p \mid r-b,\end{cases}
$$

Theorem A: Slope 1

Let $p \geq 5$, let $k \geq 2 p+2$ and let $r=k-2 \equiv b \bmod (p-1)$.
If $v=1$, then the semisimplification $\bar{V}_{k, a_{p}}^{s s}$ is as follows:

$$
\begin{aligned}
& 3 \leq b \leq p-1 \Longrightarrow \begin{cases}\mu_{\lambda} \cdot \omega^{b} \oplus \mu_{\lambda^{-1}} \cdot \omega, & \text { if } p \nmid r-b \\
& \text { with } \lambda=\overline{\frac{b}{b-r} \cdot \frac{a_{p}}{p} \in \overline{\mathbb{F}}_{p}^{\times}}\end{cases} \\
& \text {ind } \omega_{2}^{b+1}, \quad \text { if } p \mid r-b, \\
& \text { ind } \omega_{2}^{b+p}, \quad \text { if } p \nmid r-b
\end{aligned}
$$

Theorem A: Slope 1

Let $p \geq 5$, let $k \geq 2 p+2$ and let $r=k-2 \equiv b \bmod (p-1)$.
If $v=1$, then the semisimplification $\bar{V}_{k, a_{p}}^{s s}$ is as follows:

$$
\begin{aligned}
& 3 \leq b \leq p-1 \Longrightarrow \Longrightarrow \begin{cases}\mu_{\lambda} \cdot \omega^{b} \oplus \mu_{\lambda^{-1}} \cdot \omega, & \text { if } p \nmid r-b \\
\text { with } \lambda=\overline{\frac{b}{b-r} \cdot \frac{a_{p}}{p}} \in \overline{\mathbb{F}}_{p}^{\times} \\
\text {ind } \omega_{2}^{b+1}, & \text { if } p \mid r-b,\end{cases} \\
& b=p \Longrightarrow \begin{cases}\text { ind } \omega_{2}^{b+p}, & \text { if } p \nmid r-b \\
\mu_{\lambda} \cdot \omega \oplus \mu_{\lambda^{-1}} \cdot \omega, & \text { if } p \mid r-b\end{cases}
\end{aligned}
$$

Theorem A: Slope 1

Let $p \geq 5$, let $k \geq 2 p+2$ and let $r=k-2 \equiv b \bmod (p-1)$.
If $v=1$, then the semisimplification $\bar{V}_{k, a_{p}}^{s s}$ is as follows:

$$
\begin{aligned}
& 3 \leq b \leq p-1 \Longrightarrow \begin{cases}\mu_{\lambda} \cdot \omega^{b} \oplus \mu_{\lambda-1} \cdot \omega, & \text { if } p \nmid r-b \\
\text { with } \lambda=\overline{\frac{b}{b-r} \cdot \frac{a_{p}}{p}} \in \overline{\mathbb{F}}_{p}^{\times} \\
\text {ind } \omega_{2}^{b+1}, & \text { if } p \mid r-b,\end{cases} \\
& b=p \Longrightarrow \begin{cases}\text { ind } \omega_{2}^{b+p}, & \text { if } p \nmid r-b \\
\mu_{\lambda} \cdot \omega \oplus \mu_{\lambda-1} \cdot \omega, & \text { if } p \mid r-b\end{cases} \\
& \text { with } \lambda+\frac{1}{\lambda}=\frac{\overline{a_{p}} \frac{b-r}{p}+\frac{b}{a_{p}} \in \overline{\mathbb{F}}_{p},}{}
\end{aligned}
$$

Theorem A: Slope 1 continued

Finally, for the 'exceptional class' $b=2, \bar{V}_{k, a_{p}}^{s s}$ is described by the following trichotomy:

Theorem A: Slope 1 continued

Finally, for the 'exceptional class' $b=2, \bar{V}_{k, a_{p}}^{s s}$ is described by the following trichotomy:

$$
b=2 \Longrightarrow \begin{cases}\text { ind } \omega_{2}^{b+1}, & \text { if } v\left(\frac{a_{p}}{p}-\binom{r}{2} \frac{p}{a_{p}}\right)<v(r-b) \\ \\ \end{cases}
$$

Theorem A: Slope 1 continued

Finally, for the 'exceptional class' $b=2, \bar{V}_{k, a_{p}}^{s s}$ is described by the following trichotomy:

$$
b=2 \Longrightarrow \begin{cases}\text { ind } \omega_{2}^{b+1}, & \text { if } v\left(\frac{a_{p}}{p}-\binom{r}{2} \frac{p}{a_{p}}\right)<v(r-b) \\ \mu_{\lambda} \cdot \omega^{b} \oplus \mu_{\lambda^{-1}} \cdot \omega, & \text { if } v\left(\frac{a_{p}}{p}-\binom{r}{2} \frac{p}{a_{p}}\right)=v(r-b) \\ \end{cases}
$$

Theorem A: Slope 1 continued

Finally, for the 'exceptional class' $b=2, \bar{V}_{k, a_{p}}^{s s}$ is described by the following trichotomy:

$$
b=2 \Longrightarrow \begin{cases}\text { ind } \omega_{2}^{b+1}, & \text { if } v\left(\frac{a_{p}}{p}-\binom{r}{2} \frac{p}{a_{p}}\right)<v(r-b) \\ \mu_{\lambda} \cdot \omega^{b} \oplus \mu_{\lambda^{-1}} \cdot \omega, & \text { if } v\left(\frac{a_{p}}{p}-\binom{r}{2} \frac{p}{a_{p}}\right)=v(r-b) \\ \text { with } \lambda=\overline{u\left(a_{p}\right)}\end{cases}
$$

Theorem A: Slope 1 continued

Finally, for the 'exceptional class' $b=2, \bar{V}_{k, a_{p}}^{s s}$ is described by the following trichotomy:

$$
b=2 \Longrightarrow \begin{cases}\text { ind } \omega_{2}^{b+1}, & \text { if } v\left(\frac{a_{p}}{p}-\binom{r}{2} \frac{p}{a_{p}}\right)<v(r-b) \\ \mu_{\lambda} \cdot \omega^{b} \oplus \mu_{\lambda^{-1}} \cdot \omega, & \text { if } v\left(\frac{a_{p}}{p}-\binom{r}{2} \frac{p}{a_{p}}\right)=v(r-b) \\ \text { with } \lambda=\overline{u\left(a_{p}\right)} \\ \text { ind } \omega_{2}^{b+p}, & \text { if } v\left(\frac{a_{p}}{p}-\binom{r}{2} \frac{p}{a_{p}}\right)>v(r-b),\end{cases}
$$

Theorem A: Slope 1 continued

Finally, for the 'exceptional class' $b=2, \bar{V}_{k, a_{p}}^{s s}$ is described by the following trichotomy:

$$
b=2 \Longrightarrow \begin{cases}\text { ind } \omega_{2}^{b+1}, & \text { if } v\left(\frac{a_{p}}{p}-\binom{r}{2} \frac{p}{a_{p}}\right)<v(r-b) \\ \mu_{\lambda} \cdot \omega^{b} \oplus \mu_{\lambda^{-1}} \cdot \omega, & \text { if } v\left(\frac{a_{p}}{p}-\binom{r}{2} \frac{p}{a_{p}}\right)=v(r-b) \\ \text { with } \lambda=\overline{u\left(a_{p}\right)} \\ \text { ind } \omega_{2}^{b+p}, & \text { if } v\left(\frac{a_{p}}{p}-\binom{r}{2} \frac{p}{a_{p}}\right)>v(r-b),\end{cases}
$$

where

$$
u\left(a_{p}\right):=\frac{b}{b-r}\left(\frac{a_{p}}{p}-\binom{r}{2} \frac{p}{a_{p}}\right) .
$$

Theorem B: Slopes in $(1,2)$
Let $p \geq 3$, let $r=k-2 \geq 2 p$ and let $r \equiv b \bmod (p-1)$.

Theorem B: Slopes in $(1,2)$
Let $p \geq 3$, let $r=k-2 \geq 2 p$ and let $r \equiv b \bmod (p-1)$.
If $v\left(a_{p}\right)=\frac{3}{2}$ and $b=3$, assume that

$$
v\left(a_{p}^{2}-\binom{r-1}{2}\binom{r-2}{1} p^{3}\right)=3 .
$$

Theorem B: Slopes in $(1,2)$
Let $p \geq 3$, let $r=k-2 \geq 2 p$ and let $r \equiv b \bmod (p-1)$.
If $v\left(a_{p}\right)=\frac{3}{2}$ and $b=3$, assume that

$$
\begin{equation*}
v\left(a_{p}^{2}-\binom{r-1}{2}\binom{r-2}{1} p^{3}\right)=3 . \tag{*}
\end{equation*}
$$

If $v \in(1,2)$, then the reduction $\bar{V}_{k, a_{p}}^{s s}$ has the following shape:

$$
b=2 \Longrightarrow \begin{cases}\text { ind } \omega_{2}^{b+1}, & \text { if } p \nmid r(r-1) \\ \text { ind } \omega_{2}^{b+p}, & \text { if } p \mid r(r-1),\end{cases}
$$

Theorem B: Slopes in $(1,2)$
Let $p \geq 3$, let $r=k-2 \geq 2 p$ and let $r \equiv b \bmod (p-1)$.
If $v\left(a_{p}\right)=\frac{3}{2}$ and $b=3$, assume that

$$
v\left(a_{p}^{2}-\binom{r-1}{2}\binom{r-2}{1} p^{3}\right)=3 .
$$

If $v \in(1,2)$, then the reduction $\bar{V}_{k, a_{p}}^{s s}$ has the following shape:

$$
\begin{aligned}
b=2 & \Longrightarrow \begin{cases}\text { ind } \omega_{2}^{b+1}, & \text { if } p \nmid r(r-1) \\
\text { ind } \omega_{2}^{b+p}, & \text { if } p \mid r(r-1),\end{cases} \\
3 \leq b \leq p-1 & \Longrightarrow \begin{cases}\text { ind } \omega_{2}^{b+p}, & \text { if } p \nmid r-b \\
\text { ind } \omega_{2}^{b+1}, & \text { if } p \mid r-b,\end{cases}
\end{aligned}
$$

Theorem B: Slopes in $(1,2)$
Let $p \geq 3$, let $r=k-2 \geq 2 p$ and let $r \equiv b \bmod (p-1)$.
If $v\left(a_{p}\right)=\frac{3}{2}$ and $b=3$, assume that

$$
v\left(a_{p}^{2}-\binom{r-1}{2}\binom{r-2}{1} p^{3}\right)=3 .
$$

If $v \in(1,2)$, then the reduction $\bar{V}_{k, a_{p}}^{s s}$ has the following shape:

$$
\begin{aligned}
b=2 & \Longrightarrow \begin{cases}\text { ind } \omega_{2}^{b+1}, & \text { if } p \nmid r(r-1) \\
\text { ind } \omega_{2}^{b+p}, & \text { if } p \mid r(r-1),\end{cases} \\
3 \leq b \leq p-1 & \Longrightarrow \begin{cases}\text { ind } \omega_{2}^{b+p}, & \text { if } p \nmid r-b \\
\text { ind } \omega_{2}^{b+1}, & \text { if } p \mid r-b,\end{cases} \\
b=p & \Longrightarrow \begin{cases}\text { ind } \omega_{2}^{b+p}, & \text { if } p^{2} \nmid r-b \\
\mu_{\sqrt{-1}} \cdot \omega \oplus \mu_{-\sqrt{-1}} \cdot \omega, & \text { if } p^{2} \mid r-b .\end{cases}
\end{aligned}
$$

Corollaries and Remarks

1. Weights: Both Theorems A and B match with Breuil's work for weight $k \leq 2 p+1$ and are valid for all $k>2$.

Corollaries and Remarks

1. Weights: Both Theorems A and B match with Breuil's work for weight $k \leq 2 p+1$ and are valid for all $k>2$.
2. Irreducibility: If k is even, then

$$
v \in(0,1) \text { or }(1,2) \text { fractional } \Longrightarrow \bar{V}_{k, a_{p}} \text { is irreducible. }
$$

This is in marked contrast to the case of integral slopes $v=0$ and $v=1$ where the reduction is mostly reducible.

Corollaries and Remarks

1. Weights: Both Theorems A and B match with Breuil's work for weight $k \leq 2 p+1$ and are valid for all $k>2$.
2. Irreducibility: If k is even, then

$$
v \in(0,1) \text { or }(1,2) \text { fractional } \Longrightarrow \bar{V}_{k, a_{p}} \text { is irreducible. }
$$

This is in marked contrast to the case of integral slopes $v=0$ and $v=1$ where the reduction is mostly reducible.
3. Local constancy in the weight: If $v \in(1,2)$ and (\star) holds, then

$$
k^{\prime} \equiv k \quad \bmod p^{2}(p-1) \Longrightarrow \bar{V}_{k^{\prime}, a_{p}}^{s s} \simeq \bar{V}_{k, a_{p}}^{s s}
$$

Corollaries and Remarks

1. Weights: Both Theorems A and B match with Breuil's work for weight $k \leq 2 p+1$ and are valid for all $k>2$.
2. Irreducibility: If k is even, then

$$
v \in(0,1) \text { or }(1,2) \text { fractional } \Longrightarrow \bar{V}_{k, a_{p}} \text { is irreducible. }
$$

This is in marked contrast to the case of integral slopes $v=0$ and $v=1$ where the reduction is mostly reducible.
3. Local constancy in the weight: If $v \in(1,2)$ and (\star) holds, then

$$
k^{\prime} \equiv k \quad \bmod p^{2}(p-1) \Longrightarrow \bar{V}_{k^{\prime}, a_{p}}^{s s} \simeq \bar{V}_{k, a_{p}}^{s s}
$$

$\mathrm{NB}: 2=\lceil\alpha\rceil$, for $\alpha \in(1,2)$.

Corollaries and Remarks

1. Weights: Both Theorems A and B match with Breuil's work for weight $k \leq 2 p+1$ and are valid for all $k>2$.
2. Irreducibility: If k is even, then

$$
v \in(0,1) \text { or }(1,2) \text { fractional } \Longrightarrow \bar{V}_{k, a_{p}} \text { is irreducible. }
$$

This is in marked contrast to the case of integral slopes $v=0$ and $v=1$ where the reduction is mostly reducible.
3. Local constancy in the weight: If $v \in(1,2)$ and (\star) holds, then

$$
k^{\prime} \equiv k \quad \bmod p^{2}(p-1) \Longrightarrow \bar{V}_{k^{\prime}, a_{p}}^{s s} \simeq \bar{V}_{k, a_{p}}^{s s}
$$

NB: $2=\lceil\alpha\rceil$, for $\alpha \in(1,2)$. Is this local constancy a reflection of the Gouvêa-Mazur conjecture?

Corollaries and Remarks continued

4. θ-derivation: If f has weight k and slope $v \in(0,1)$, then

$$
g=\theta f, \quad \text { for } \theta=q \frac{d}{d q},
$$

has weight $I=k+2$ and slope $v+1 \in(1,2)$,

Corollaries and Remarks continued

4. θ-derivation: If f has weight k and slope $v \in(0,1)$, then

$$
g=\theta f, \quad \text { for } \theta=q \frac{d}{d q}
$$

has weight $I=k+2$ and slope $v+1 \in(1,2)$, although g is not classical.

Corollaries and Remarks continued

4. θ-derivation: If f has weight k and slope $v \in(0,1)$, then

$$
g=\theta f, \quad \text { for } \theta=q \frac{d}{d q}
$$

has weight $I=k+2$ and slope $v+1 \in(1,2)$, although g is not classical. Generically, $b=a+2$,

Corollaries and Remarks continued

4. θ-derivation: If f has weight k and slope $v \in(0,1)$, then

$$
g=\theta f, \quad \text { for } \theta=q \frac{d}{d q}
$$

has weight $I=k+2$ and slope $v+1 \in(1,2)$, although g is not classical. Generically, $b=a+2$, and

$$
\bar{\rho}_{g} \simeq \bar{\rho}_{f} \otimes \omega
$$

Corollaries and Remarks continued

4. θ-derivation: If f has weight k and slope $v \in(0,1)$, then

$$
g=\theta f, \quad \text { for } \theta=q \frac{d}{d q}
$$

has weight $I=k+2$ and slope $v+1 \in(1,2)$, although g is not classical. Generically, $b=a+2$, and

$$
\bar{\rho}_{g} \simeq \bar{\rho}_{f} \otimes \omega \simeq \operatorname{ind} \omega_{2}^{a+1} \otimes \omega
$$

Corollaries and Remarks continued

4. θ-derivation: If f has weight k and slope $v \in(0,1)$, then

$$
g=\theta f, \quad \text { for } \theta=q \frac{d}{d q}
$$

has weight $I=k+2$ and slope $v+1 \in(1,2)$, although g is not classical. Generically, $b=a+2$, and

$$
\bar{\rho}_{g} \simeq \bar{\rho}_{f} \otimes \omega \simeq \operatorname{ind} \omega_{2}^{a+1} \otimes \omega=\operatorname{ind} \omega_{2}^{a+1+p+1}
$$

Corollaries and Remarks continued

4. θ-derivation: If f has weight k and slope $v \in(0,1)$, then

$$
g=\theta f, \quad \text { for } \theta=q \frac{d}{d q}
$$

has weight $I=k+2$ and slope $v+1 \in(1,2)$, although g is not classical. Generically, $b=a+2$, and

$$
\bar{\rho}_{g} \simeq \bar{\rho}_{f} \otimes \omega \simeq \operatorname{ind} \omega_{2}^{a+1} \otimes \omega=\operatorname{ind} \omega_{2}^{a+1+p+1}=\operatorname{ind} \omega_{2}^{b+p}
$$

Corollaries and Remarks continued

4. θ-derivation: If f has weight k and slope $v \in(0,1)$, then

$$
g=\theta f, \quad \text { for } \theta=q \frac{d}{d q}
$$

has weight $I=k+2$ and slope $v+1 \in(1,2)$, although g is not classical. Generically, $b=a+2$, and

$$
\bar{\rho}_{g} \simeq \bar{\rho}_{f} \otimes \omega \simeq \operatorname{ind} \omega_{2}^{a+1} \otimes \omega=\operatorname{ind} \omega_{2}^{a+1+p+1}=\operatorname{ind} \omega_{2}^{b+p}
$$

This might explain why the generic answer in Theorem B is what it is.

Corollaries and Remarks continued

4. θ-derivation: If f has weight k and slope $v \in(0,1)$, then

$$
g=\theta f, \quad \text { for } \theta=q \frac{d}{d q}
$$

has weight $I=k+2$ and slope $v+1 \in(1,2)$, although g is not classical. Generically, $b=a+2$, and

$$
\bar{\rho}_{g} \simeq \bar{\rho}_{f} \otimes \omega \simeq \operatorname{ind} \omega_{2}^{a+1} \otimes \omega=\operatorname{ind} \omega_{2}^{a+1+p+1}=\operatorname{ind} \omega_{2}^{b+p}
$$

This might explain why the generic answer in Theorem B is what it is.
5. Trichotomy: The trichotomy for $v=1$ and $b=2$ is analogous to the dichotomy for $v=\frac{1}{2}$ and $a=1$.

Overview of proof of Theorems A, B

Overview of proof of Theorems A, B

Idea: We use the compatibility between the p-adic and $\bmod p$
Local Langlands Correspondences (LLC),
due to Breuil, Berger, Colmez, Dospinescu, Paškūnas, ... with respect to the process of reduction,

Overview of proof of Theorems A, B

Idea: We use the compatibility between the p-adic and $\bmod p$

Local Langlands Correspondences (LLC),

due to Breuil, Berger, Colmez, Dospinescu, Paškūnas, ... with respect to the process of reduction, to transfer the problem to one on the automorphic side,

Overview of proof of Theorems A, B

Idea: We use the compatibility between the p-adic and $\bmod p$
Local Langlands Correspondences (LLC),
due to Breuil, Berger, Colmez, Dospinescu, Paškūnas, ... with respect to the process of reduction, to transfer the problem to one on the automorphic side, which we solve using spectral analysis on the Bruhat-Tits tree.

Overview of proof of Theorems A, B

Idea: We use the compatibility between the p-adic and $\bmod p$
Local Langlands Correspondences (LLC),
due to Breuil, Berger, Colmez, Dospinescu, Paškūnas, ... with respect to the process of reduction, to transfer the problem to one on the automorphic side, which we solve using spectral analysis on the Bruhat-Tits tree.

Let $G:=\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$ and $B\left(V_{k, a_{p}}\right)$ be the associated unitary G-Banach space.

Overview of proof of Theorems A, B

Idea: We use the compatibility between the p-adic and $\bmod p$
Local Langlands Correspondences (LLC),
due to Breuil, Berger, Colmez, Dospinescu, Paškūnas, ... with respect to the process of reduction, to transfer the problem to one on the automorphic side, which we solve using spectral analysis on the Bruhat-Tits tree.

Let $G:=\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$ and $B\left(V_{k, a_{p}}\right)$ be the associated unitary G-Banach space. We have the following commutative square:

Overview of proof of Theorems A, B

Idea: We use the compatibility between the p-adic and $\bmod p$

Local Langlands Correspondences (LLC),

due to Breuil, Berger, Colmez, Dospinescu, Paškūnas, ... with respect to the process of reduction, to transfer the problem to one on the automorphic side, which we solve using spectral analysis on the Bruhat-Tits tree.

Let $G:=\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$ and $B\left(V_{k, a_{p}}\right)$ be the associated unitary G-Banach space. We have the following commutative square:
Galois side: G_{p}-reps
Automorphic side: G-reps

Bruhat-Tits tree

Let $G=\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right), K=\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$ and $Z=\mathbb{Q}_{p}^{\times}$.

Bruhat-Tits tree

Let $G=\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right), K=\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$ and $Z=\mathbb{Q}_{p}^{\times}$.
Let $X=K Z \backslash G$ be the tree attached to G :

Bruhat-Tits tree

Let $G=\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right), K=\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$ and $Z=\mathbb{Q}_{p}^{\times}$.
Let $X=K Z \backslash G$ be the tree attached to G :

Bruhat-Tits tree

Let $G=\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right), K=\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$ and $Z=\mathbb{Q}_{p}^{\times}$.
Let $X=K Z \backslash G$ be the tree attached to G :

Let V be (a twist of) a symmetric power representation of $K Z$, defined over $\overline{\mathbb{Q}}_{p}$ or $\overline{\mathbb{F}}_{p}$.

Bruhat-Tits tree

Let $G=\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right), K=\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$ and $Z=\mathbb{Q}_{p}^{\times}$.
Let $X=K Z \backslash G$ be the tree attached to G :

Let V be (a twist of) a symmetric power representation of $K Z$, defined over $\overline{\mathbb{Q}}_{p}$ or $\overline{\mathbb{F}}_{p}$. The cover

$$
K Z \backslash(G \times V) \rightarrow K Z \backslash G=X
$$

defines a local system on X.

Hecke operator T

Let $\operatorname{ind}_{K Z}^{G} V$ be the space of sections $f: G \rightarrow V$, which are compactly supported $\bmod K Z$.

Hecke operator T

Let ind ${ }_{K Z}^{G} V$ be the space of sections $f: G \rightarrow V$, which are compactly supported mod $K Z$.

There is an action of the Hecke operator T on $\operatorname{ind}_{K Z}^{G} V$.

Hecke operator T

Let ind ${ }_{K Z}^{G} V$ be the space of sections $f: G \rightarrow V$, which are compactly supported mod $K Z$.

There is an action of the Hecke operator T on $\operatorname{ind}_{K Z}^{G} V$. E.g., if V is trivial, then

- $\operatorname{ind}_{K Z}^{G} V$ is the space of comp. supp. functions f on X,

Hecke operator T

Let ind ${ }_{K Z}^{G} V$ be the space of sections $f: G \rightarrow V$, which are compactly supported mod $K Z$.

There is an action of the Hecke operator T on $\operatorname{ind}_{K Z}^{G} V$.
E.g., if V is trivial, then

- $\operatorname{ind}_{K Z}^{G} V$ is the space of comp. supp. functions f on X,
- T is the 'sum of neighbors' operator $T f(x)=\sum_{y-x} f(y)$.

Hecke operator T

Let $\operatorname{ind}_{K Z}^{G} V$ be the space of sections $f: G \rightarrow V$, which are compactly supported mod $K Z$.

There is an action of the Hecke operator T on $\operatorname{ind}_{K Z}^{G} V$. E.g., if V is trivial, then

- $\operatorname{ind}_{K Z}^{G} V$ is the space of comp. supp. functions f on X,
- T is the 'sum of neighbors' operator $T f(x)=\sum_{y-x} f(y)$.

Let $V=V_{r}:=\operatorname{Sym}^{r} \overline{\mathbb{F}}_{p}^{2}$.

Hecke operator T

Let ind ${ }_{K Z}^{G} V$ be the space of sections $f: G \rightarrow V$, which are compactly supported mod $K Z$.

There is an action of the Hecke operator T on $\operatorname{ind}_{K Z}^{G} V$.
E.g., if V is trivial, then

- $\operatorname{ind}_{K Z}^{G} V$ is the space of comp. supp. functions f on X,
- T is the 'sum of neighbors' operator $T f(x)=\sum_{y-x} f(y)$.

Let $V=V_{r}:=\operatorname{Sym}^{r} \overline{\mathbb{F}}_{p}^{2}$.
It turns out there is a natural surjection

$$
\pi: \operatorname{ind}_{K Z}^{G} V_{r} \rightarrow \overline{B\left(V_{k, a_{p}}\right)},
$$

for $r=k-2$.

Hecke operator T

Let $\operatorname{ind}_{K Z}^{G} V$ be the space of sections $f: G \rightarrow V$, which are compactly supported mod $K Z$.

There is an action of the Hecke operator T on $\operatorname{ind}_{K z}^{G} V$.
E.g., if V is trivial, then

- $\operatorname{ind}_{K Z}^{G} V$ is the space of comp. supp. functions f on X,
- T is the 'sum of neighbors' operator $T f(x)=\sum_{y-x} f(y)$.

Let $V=V_{r}:=\operatorname{Sym}^{r} \overline{\mathbb{F}}_{p}^{2}$.
It turns out there is a natural surjection

$$
\pi: \operatorname{ind}_{K Z}^{G} V_{r} \rightarrow \overline{B\left(V_{k, a_{p}}\right)},
$$

for $r=k-2$.
We need to study its kernel using T, as follows.

Algorithm

Algorithm

Given k, a_{p}, and

- a JH-factor J of V_{r},

Algorithm

Given k, a_{p}, and

- a JH-factor J of V_{r},
- resp., a pair of JH-factors $J^{ \pm}$of V_{r},

Algorithm

Given k, a_{p}, and

- a JH-factor J of V_{r},
- resp., a pair of JH -factors $\mathrm{J}^{ \pm}$of V_{r},
find a function

$$
f: G \rightarrow \operatorname{Sym}^{k-2} \overline{\mathbb{Q}}_{p}^{2}
$$

Algorithm

Given k, a_{p}, and

- a JH-factor J of V_{r},
- resp., a pair of JH -factors $\mathrm{J}^{ \pm}$of V_{r},
find a function

$$
f: G \rightarrow \operatorname{Sym}^{k-2} \overline{\mathbb{Q}}_{P}^{2}
$$

such that

Algorithm

Given k, a_{p}, and

- a JH-factor J of V_{r},
- resp., a pair of JH -factors $\mathrm{J}^{ \pm}$of V_{r},
find a function

$$
f: G \rightarrow \operatorname{Sym}^{k-2} \overline{\mathbb{Q}}_{p}^{2}
$$

such that
i) $\left(T-a_{p}\right) f$ is integral, i.e., takes values in $\operatorname{Sym}^{k-2} \overline{\mathbb{Z}}_{p}^{2}$,

Algorithm

Given k, a_{p}, and

- a JH-factor J of V_{r},
- resp., a pair of JH-factors $J^{ \pm}$of V_{r},
find a function

$$
f: G \rightarrow \operatorname{Sym}^{k-2} \overline{\mathbb{Q}}_{p}^{2}
$$

such that
i) $\left(T-a_{p}\right) f$ is integral, i.e., takes values in $\operatorname{Sym}^{k-2} \overline{\mathbb{Z}}_{p}^{2}$, and
ii) the image of $\overline{\left(T-a_{p}\right) f}$ in ind ${ }_{K Z}^{G} V_{r}$ generates

- $\operatorname{ind}_{K z}^{G} J$,

Algorithm

Given k, a_{p}, and

- a JH-factor J of V_{r},
- resp., a pair of JH-factors $J^{ \pm}$of V_{r},
find a function

$$
f: G \rightarrow \operatorname{Sym}^{k-2} \overline{\mathbb{Q}}_{p}^{2}
$$

such that
i) $\left(T-a_{p}\right) f$ is integral, i.e., takes values in $\operatorname{Sym}^{k-2} \overline{\mathbb{Z}}_{p}^{2}$, and
ii) the image of $\overline{\left(T-a_{p}\right) f}$ in ind ${ }_{K Z}^{G} V_{r}$ generates

- $\operatorname{ind}_{K Z}^{G} J$,
- resp., $\left(T-\lambda^{ \pm 1}\right)\left(\operatorname{ind}_{K Z}^{G} J^{ \pm}\right)$, for some $\lambda \in \overline{\mathbb{F}}_{p}^{\times}$,

Algorithm

Given k, a_{p}, and

- a JH-factor J of V_{r},
- resp., a pair of JH-factors $J^{ \pm}$of V_{r},
find a function

$$
f: G \rightarrow \operatorname{Sym}^{k-2} \overline{\mathbb{Q}}_{p}^{2}
$$

such that
i) $\left(T-a_{p}\right) f$ is integral, i.e., takes values in $\operatorname{Sym}^{k-2} \overline{\mathbb{Z}}_{p}^{2}$, and
ii) the image of $\overline{\left(T-a_{p}\right) f}$ in ind ${ }_{K Z}^{G} V_{r}$ generates

- $\operatorname{ind}_{K Z}^{G} J$,
- resp., $\left(T-\lambda^{ \pm 1}\right)\left(\operatorname{ind}_{K Z}^{G} J^{ \pm}\right)$, for some $\lambda \in \overline{\mathbb{F}}_{p}^{\times}$,
as a G-module.

Algorithm

Given k, a_{p}, and

- a JH-factor J of V_{r},
- resp., a pair of JH-factors $J^{ \pm}$of V_{r},
find a function

$$
f: G \rightarrow \operatorname{Sym}^{k-2} \overline{\mathbb{Q}}_{p}^{2}
$$

such that
i) $\left(T-a_{p}\right) f$ is integral, i.e., takes values in $\operatorname{Sym}^{k-2} \overline{\mathbb{Z}}_{p}^{2}$, and
ii) the image of $\overline{\left(T-a_{p}\right) f}$ in $\operatorname{ind}_{K Z}^{G} V_{r}$ generates

- $\operatorname{ind}_{K Z}^{G} J$,
- resp., $\left(T-\lambda^{ \pm 1}\right)\left(\operatorname{ind}_{K Z}^{G} J^{ \pm}\right)$, for some $\lambda \in \overline{\mathbb{F}}_{p}^{\times}$,
as a G-module. This algorithm eliminates all but
- 1 JH -factors J from the kernel of π,

Algorithm

Given k, a_{p}, and

- a JH-factor J of V_{r},
- resp., a pair of JH-factors $J^{ \pm}$of V_{r},
find a function

$$
f: G \rightarrow \operatorname{Sym}^{k-2} \overline{\mathbb{Q}}_{p}^{2}
$$

such that
i) $\left(T-a_{p}\right) f$ is integral, i.e., takes values in $\operatorname{Sym}^{k-2} \overline{\mathbb{Z}}_{p}^{2}$, and
ii) the image of $\overline{\left(T-a_{p}\right) f}$ in $\operatorname{ind}_{K Z}^{G} V_{r}$ generates

- $\operatorname{ind}_{K Z}^{G} J$,
- resp., $\left(T-\lambda^{ \pm 1}\right)\left(\operatorname{ind}_{K Z}^{G} J^{ \pm}\right)$, for some $\lambda \in \overline{\mathbb{F}}_{p}^{\times}$,
as a G-module. This algorithm eliminates all but
- 1 JH -factors J from the kernel of π,
- resp., 2 JH -factors $J^{ \pm}$from $\operatorname{kernel}(\pi)$, which pair up nicely,

Algorithm

Given k, a_{p}, and

- a JH-factor J of V_{r},
- resp., a pair of JH-factors $J^{ \pm}$of V_{r},
find a function

$$
f: G \rightarrow \operatorname{Sym}^{k-2} \overline{\mathbb{Q}}_{p}^{2}
$$

such that
i) $\left(T-a_{p}\right) f$ is integral, i.e., takes values in $\operatorname{Sym}^{k-2} \overline{\mathbb{Z}}_{p}^{2}$, and
ii) the image of $\overline{\left(T-a_{p}\right) f}$ in $\operatorname{ind}_{K Z}^{G} V_{r}$ generates

- $\operatorname{ind}_{K Z}^{G} J$,
- resp., $\left(T-\lambda^{ \pm 1}\right)\left(\operatorname{ind}_{K Z}^{G} J^{ \pm}\right)$, for some $\lambda \in \overline{\mathbb{F}}_{p}^{\times}$,
as a G-module. This algorithm eliminates all but
- 1 JH -factors J from the kernel of π,
- resp., 2 JH -factors $J^{ \pm}$from $\operatorname{kernel}(\pi)$, which pair up nicely, allowing us to compute $\overline{B\left(V_{\left.k, a_{p}\right)}\right)}$, so $\bar{V}_{k, a_{p}}^{s s}$ by the $\bmod p$ LLC.

Reduction without semisimplification

Theorem A: the reduction $\bar{V}_{k, a_{p}}$ is often reducible if $v=1$.

Reduction without semisimplification

Theorem A: the reduction $\bar{V}_{k, a_{p}}$ is often reducible if $v=1$. Ribet: Given $\bar{V}_{k, a_{p}}^{s s}$ reducible, we can choose a lattice in $V_{k, a_{p}}$ so that the reduction $\bar{V}_{k, a_{p}}$ is split or non-split.

Reduction without semisimplification

Theorem A: the reduction $\bar{V}_{k, a_{p}}$ is often reducible if $v=1$. Ribet: Given $\bar{V}_{k, a_{p}}^{s s}$ reducible, we can choose a lattice in $V_{k, a_{p}}$ so that the reduction $\bar{V}_{k, a_{p}}$ is split or non-split.
The extension class lies in a cohomology group, and is determined up to a constant.

Reduction without semisimplification

Theorem A: the reduction $\bar{V}_{k, a_{p}}$ is often reducible if $v=1$. Ribet: Given $\bar{V}_{k, a_{p}}^{s s}$ reducible, we can choose a lattice in $V_{k, a_{p}}$ so that the reduction $\bar{V}_{k, a_{p}}$ is split or non-split.
The extension class lies in a cohomology group, and is determined up to a constant.

Since in most cases this cohomology group is 1-dimn'l, there is nothing more to be said: either the extension splits or not.

Reduction without semisimplification

Theorem A: the reduction $\bar{V}_{k, a_{p}}$ is often reducible if $v=1$.
Ribet: Given $\bar{V}_{k, a_{p}}^{s s}$ reducible, we can choose a lattice in $V_{k, a_{p}}$ so that the reduction $\bar{V}_{k, a_{p}}$ is split or non-split.
The extension class lies in a cohomology group, and is determined up to a constant.

Since in most cases this cohomology group is 1-dimn'l, there is nothing more to be said: either the extension splits or not. However, sometimes the extension class lies in the 2-dimn'।

$$
\mathrm{H}^{1}\left(G_{p}, \overline{\mathbb{F}}_{p}(\omega)\right)=\frac{\mathbb{Q}_{p}^{\times}}{\left(\mathbb{Q}_{p}^{\times}\right)^{p}} \otimes \overline{\mathbb{F}}_{p} .
$$

This happens exactly when $\bar{V}_{k, a_{p}}$ is an extension of 1 by ω, up to a twist.

Peu vs très ramifiée extensions

Definition (Serre)
Such an extension is peu ramifiée if it lies on the line

$$
\frac{\mathbb{Z}_{p}^{\times}}{\left(\mathbb{Z}_{p}^{\times}\right)^{p}} \otimes \overline{\mathbb{F}}_{p} \subset \frac{\mathbb{Q}_{p}^{\times}}{\left(\mathbb{Q}_{p}^{\times}\right)^{p}} \otimes \overline{\mathbb{F}}_{p},
$$

and is très ramifiée otherwise.

Peu vs très ramifiée extensions

Definition (Serre)
Such an extension is peu ramifiée if it lies on the line

$$
\frac{\mathbb{Z}_{p}^{\times}}{\left(\mathbb{Z}_{p}^{\times}\right)^{p}} \otimes \overline{\mathbb{F}}_{p} \subset \frac{\mathbb{Q}_{p}^{\times}}{\left(\mathbb{Q}_{p}^{\times}\right)^{p}} \otimes \overline{\mathbb{F}}_{p},
$$

and is très ramifiée otherwise.
Theorem A: $\bar{V}_{k, a_{p}}^{s s}$ is an extension of 1 by ω (up to twist) twice:

Peu vs très ramifiée extensions

Definition (Serre)
Such an extension is peu ramifiée if it lies on the line

$$
\frac{\mathbb{Z}_{p}^{\times}}{\left(\mathbb{Z}_{p}^{\times}\right)^{p}} \otimes \overline{\mathbb{F}}_{p} \subset \frac{\mathbb{Q}_{p}^{\times}}{\left(\mathbb{Q}_{p}^{\times}\right)^{p}} \otimes \overline{\mathbb{F}}_{p},
$$

and is très ramifiée otherwise.
Theorem A: $\bar{V}_{k, a_{p}}^{s s}$ is an extension of 1 by ω (up to twist) twice:

1. $b=2$ and $\lambda=\overline{u\left(a_{p}\right)}= \pm 1$ (middle case of trichotomy), so

$$
\frac{\overline{a_{p}}}{p}= \pm \frac{r}{2} \quad \text { or } \quad \frac{\overline{a_{p}}}{p}= \pm(1-r) .
$$

Peu vs très ramifiée extensions

Definition (Serre)
Such an extension is peu ramifiée if it lies on the line

$$
\frac{\mathbb{Z}_{p}^{\times}}{\left(\mathbb{Z}_{p}^{\times}\right)^{p}} \otimes \overline{\mathbb{F}}_{p} \subset \frac{\mathbb{Q}_{p}^{\times}}{\left(\mathbb{Q}_{p}^{\times}\right)^{p}} \otimes \overline{\mathbb{F}}_{p},
$$

and is très ramifiée otherwise.
Theorem A: $\bar{V}_{k, a_{p}}^{s s}$ is an extension of 1 by ω (up to twist) twice:

1. $b=2$ and $\lambda=\overline{u\left(a_{p}\right)}= \pm 1$ (middle case of trichotomy), so

$$
\frac{\overline{a_{p}}}{p}= \pm \frac{r}{2} \quad \text { or } \quad \frac{\overline{a_{p}}}{p}= \pm(1-r) .
$$

NB: These are distinct if $r \not \equiv \frac{2}{3} \bmod p$, so assume this.

Peu vs très ramifiée extensions

Definition (Serre)

Such an extension is peu ramifiée if it lies on the line

$$
\frac{\mathbb{Z}_{p}^{\times}}{\left(\mathbb{Z}_{p}^{\times}\right)^{p}} \otimes \overline{\mathbb{F}}_{p} \subset \frac{\mathbb{Q}_{p}^{\times}}{\left(\mathbb{Q}_{p}^{\times}\right)^{p}} \otimes \overline{\mathbb{F}}_{p},
$$

and is très ramifiée otherwise.
Theorem A: $\bar{V}_{k, a_{p}}^{s s}$ is an extension of 1 by ω (up to twist) twice:

1. $b=2$ and $\lambda=\overline{u\left(a_{p}\right)}= \pm 1$ (middle case of trichotomy), so

$$
\frac{\overline{a_{p}}}{p}= \pm \frac{r}{2} \quad \text { or } \quad \frac{\overline{a_{p}}}{p}= \pm(1-r) .
$$

NB: These are distinct if $r \not \equiv \frac{2}{3} \bmod p$, so assume this.
2. $b=p-1$ and $p \nmid r-b$ and $\lambda= \pm 1$, so

$$
\frac{\overline{a_{p}}}{p}= \pm(r+1) .
$$

Peu vs très ramifiée extensions

Definition (Serre)

Such an extension is peu ramifiée if it lies on the line

$$
\frac{\mathbb{Z}_{p}^{\times}}{\left(\mathbb{Z}_{p}^{\times}\right)^{p}} \otimes \overline{\mathbb{F}}_{p} \subset \frac{\mathbb{Q}_{p}^{\times}}{\left(\mathbb{Q}_{p}^{\times}\right)^{p}} \otimes \overline{\mathbb{F}}_{p},
$$

and is très ramifiée otherwise.
Theorem A: $\bar{V}_{k, a_{p}}^{s s}$ is an extension of 1 by ω (up to twist) twice:

1. $b=2$ and $\lambda=\overline{u\left(a_{p}\right)}= \pm 1$ (middle case of trichotomy), so

$$
\frac{\overline{a_{p}}}{p}= \pm \frac{r}{2} \quad \text { or } \quad \frac{\overline{a_{p}}}{p}= \pm(1-r) .
$$

NB: These are distinct if $r \not \equiv \frac{2}{3} \bmod p$, so assume this.
2. $b=p-1$ and $p \nmid r-b$ and $\lambda= \pm 1$, so

$$
\frac{\overline{a_{p}}}{p}= \pm(r+1) .
$$

Question: Can one distinguish between peu and très?

Theorem C: peu vs très ramifiée
Let $p \geq 5, k \geq p+3, r=k-2 \equiv b \bmod (p-1)$.

Theorem C: peu vs très ramifiée

Let $p \geq 5, k \geq p+3, r=k-2 \equiv b \bmod (p-1)$. Assume $v=1$ and $\bar{V}_{k, a_{p}}$ is a non-split extension of 1 by ω, up to twist.

Theorem C: peu vs très ramifiée

Let $p \geq 5, k \geq p+3, r=k-2 \equiv b \bmod (p-1)$. Assume $v=1$ and $\bar{V}_{k, a_{p}}$ is a non-split extension of 1 by ω, up to twist.

1. Suppose $b=2$ and $\overline{u\left(a_{p}\right)}=\bar{\varepsilon}$, for $\varepsilon \in\{ \pm 1\}$.
a) If $\frac{\overline{a_{p}}}{p}=\bar{\varepsilon} \frac{r}{2}$, then $\bar{V}_{k, a_{p}}$ is peu ramifiée.

Theorem C: peu vs très ramifiée

Let $p \geq 5, k \geq p+3, r=k-2 \equiv b \bmod (p-1)$. Assume $v=1$ and $\bar{V}_{k, a_{p}}$ is a non-split extension of 1 by ω, up to twist.

1. Suppose $b=2$ and $\overline{u\left(a_{p}\right)}=\bar{\varepsilon}$, for $\varepsilon \in\{ \pm 1\}$.
a) If $\frac{\overline{a_{p}}}{p}=\bar{\varepsilon} \frac{r}{2}$, then $\bar{V}_{k, a_{p}}$ is peu ramifiée.
b) If $\frac{\frac{p}{a_{p}}}{p}=\overline{\varepsilon(1-r)}$ and $r \not \equiv 2 \bmod p$, then $\bar{V}_{k, a_{p}}$ is peu ramifiée if and only if

$$
v\left(u\left(a_{p}\right)-\varepsilon\right)<1 .
$$

Theorem C: peu vs très ramifiée

Let $p \geq 5, k \geq p+3, r=k-2 \equiv b \bmod (p-1)$. Assume $v=1$ and $\bar{V}_{k, a_{p}}$ is a non-split extension of 1 by ω, up to twist.

1. Suppose $b=2$ and $\overline{u\left(a_{p}\right)}=\bar{\varepsilon}$, for $\varepsilon \in\{ \pm 1\}$.
a) If $\frac{\overline{a_{p}}}{p}=\bar{\varepsilon} \frac{r}{2}$, then $\bar{V}_{k, a_{p}}$ is peu ramifiée.
b) If $\frac{\frac{p}{d_{p}}}{p}=\overline{\varepsilon(1-r)}$ and $r \neq 2 \bmod p$, then $\bar{V}_{k, a_{p}}$ is peu ramifiée if and only if

$$
v\left(u\left(a_{p}\right)-\varepsilon\right)<1 .
$$

Moreover, as a_{p} varies with $v\left(u\left(a_{p}\right)-\varepsilon\right) \geq 1$, the reduction $\bar{V}_{k, a_{p}}$ varies through all très ramifiée extensions.

Theorem C: peu vs très ramifiée

Let $p \geq 5, k \geq p+3, r=k-2 \equiv b \bmod (p-1)$. Assume $v=1$ and $\bar{V}_{k, a_{p}}$ is a non-split extension of 1 by ω, up to twist.

1. Suppose $b=2$ and $\overline{u\left(a_{p}\right)}=\bar{\varepsilon}$, for $\varepsilon \in\{ \pm 1\}$.
a) If $\frac{\overline{a_{p}}}{p}=\overline{\varepsilon_{2}}$, then $\bar{V}_{k, a_{p}}$ is peu ramifiée.
b) If $\frac{\frac{p}{d_{p}}}{p}=\overline{\varepsilon(1-r)}$ and $r \neq 2 \bmod p$, then $\bar{V}_{k, a_{p}}$ is peu ramifiée if and only if

$$
v\left(u\left(a_{p}\right)-\varepsilon\right)<1 .
$$

Moreover, as a_{p} varies with $v\left(u\left(a_{p}\right)-\varepsilon\right) \geq 1$, the reduction $\bar{V}_{k, a_{\boldsymbol{p}}}$ varies through all très ramifiée extensions.
2. If $b=p-1, p \nmid r-b$ and $\frac{\overline{a_{p}}}{p}= \pm \overline{(r+1)}$, then $\bar{V}_{k, a_{p}}$ is peu ramifiée.

Theorem C: peu vs très ramifiée

Let $p \geq 5, k \geq p+3, r=k-2 \equiv b \bmod (p-1)$. Assume $v=1$ and $\bar{V}_{k, a_{p}}$ is a non-split extension of 1 by ω, up to twist.

1. Suppose $b=2$ and $\overline{u\left(a_{p}\right)}=\bar{\varepsilon}$, for $\varepsilon \in\{ \pm 1\}$.
a) If $\frac{\overline{a_{p}}}{p}=\overline{\varepsilon_{2}}$, then $\bar{V}_{k, a_{p}}$ is peu ramifiée.
b) If $\frac{\frac{p}{d_{p}}}{p}=\overline{\varepsilon(1-r)}$ and $r \not \equiv 2 \bmod p$, then $\bar{V}_{k, a_{p}}$ is peu ramifiée if and only if

$$
v\left(u\left(a_{p}\right)-\varepsilon\right)<1 .
$$

Moreover, as a_{p} varies with $v\left(u\left(a_{p}\right)-\varepsilon\right) \geq 1$, the reduction $\bar{V}_{k, a_{\boldsymbol{p}}}$ varies through all très ramifiée extensions.
2. If $b=p-1, p \nmid r-b$ and $\frac{\overline{a_{p}}}{p}= \pm \overline{(r+1)}$, then $\bar{V}_{k, a_{p}}$ is peu ramifiée.

Rmk: In part 1b), the extra condition that $r \not \equiv 2 \bmod p$ can partly be removed.

Theorem C: peu vs très ramifiée

Let $p \geq 5, k \geq p+3, r=k-2 \equiv b \bmod (p-1)$. Assume $v=1$ and $\bar{V}_{k, a_{p}}$ is a non-split extension of 1 by ω, up to twist.

1. Suppose $b=2$ and $\overline{u\left(a_{p}\right)}=\bar{\varepsilon}$, for $\varepsilon \in\{ \pm 1\}$.
a) If $\frac{\overline{a_{p}}}{p}=\overline{\frac{r}{2}}$, then $\bar{V}_{k, a_{p}}$ is peu ramifiée.
b) If $\frac{\frac{p}{d_{p}}}{p}=\overline{\varepsilon(1-r)}$ and $r \not \equiv 2 \bmod p$, then $\bar{V}_{k, a_{p}}$ is peu ramifiée if and only if

$$
v\left(u\left(a_{\rho}\right)-\varepsilon\right)<1 .
$$

Moreover, as a_{p} varies with $v\left(u\left(a_{p}\right)-\varepsilon\right) \geq 1$, the reduction $\bar{V}_{k, a_{p}}$ varies through all très ramifiée extensions.
2. If $b=p-1, p \nmid r-b$ and $\frac{\overline{a_{p}}}{p}= \pm \overline{(r+1)}$, then $\bar{V}_{k, a_{p}}$ is peu ramifiée.

Rmk: In part 1 b), the extra condition that $r \not \equiv 2 \bmod p$ can partly be removed. We we can also prove 1 b) when $r \equiv 2 \bmod p$, if we assume $u\left(a_{p}\right)-\varepsilon$ is a uniformizer of $\mathbb{Q}_{p}\left(a_{p}\right)$, or if $\mathbb{Q}_{p}\left(a_{p}\right) / \mathbb{Q}_{p}$ is unramified.

Picture for $v=1, b=2, t=v(r-2)>0: \bar{V}_{k, a_{p}}$ irreducible (grey and green), $\bar{V}_{k, a_{p}}$ reducible (yellow) with peu ramifiée (orange) and très ramifiée (blue):

Picture for $v=1, b=2, t=v(r-2)>0: \bar{V}_{k, a_{p}}$ irreducible (grey and green), $\bar{V}_{k, a_{p}}$ reducible (yellow) with peu ramifiée (orange) and très ramifiée (blue):

Example: the Delta function

Let $f=\Delta=\sum_{n=1}^{\infty} \tau(n) q^{n}$, of weight $k=12$ and level $N=1$.

Example: the Delta function

Let $f=\Delta=\sum_{n=1}^{\infty} \tau(n) q^{n}$, of weight $k=12$ and level $N=1$. Then $v>0$ for $p=2,3,5,7$,

Example: the Delta function

Let $f=\Delta=\sum_{n=1}^{\infty} \tau(n) q^{n}$, of weight $k=12$ and level $N=1$. Then $v>0$ for $p=2,3,5,7,2,411, \cdots$

Example: the Delta function

Let $f=\Delta=\sum_{n=1}^{\infty} \tau(n) q^{n}$, of weight $k=12$ and level $N=1$. Then $v>0$ for $p=2,3,5,7,2,411, \cdots, 7,758,337,633, \cdots$

Example: the Delta function

Let $f=\Delta=\sum_{n=1}^{\infty} \tau(n) q^{n}$, of weight $k=12$ and level $N=1$. Then $v>0$ for $p=2,3,5,7,2,411, \cdots, 7,758,337,633, \cdots$

Consider $p=5$

Example: the Delta function

Let $f=\Delta=\sum_{n=1}^{\infty} \tau(n) q^{n}$, of weight $k=12$ and level $N=1$. Then $v>0$ for $p=2,3,5,7,2,411, \cdots, 7,758,337,633, \cdots$

Consider $p=5$, so $\tau(p)=4,830=5 \times 966$ and $v=1$.

Example: the Delta function

Let $f=\Delta=\sum_{n=1}^{\infty} \tau(n) q^{n}$, of weight $k=12$ and level $N=1$. Then $v>0$ for $p=2,3,5,7,2,411, \cdots, 7,758,337,633, \cdots$

Consider $p=5$, so $\tau(p)=4,830=5 \times 966$ and $v=1$.
Recall the congruence $\tau(n) \equiv n \cdot \sigma_{1}(n) \bmod 5$, for $n \geq 1$.

Example: the Delta function

Let $f=\Delta=\sum_{n=1}^{\infty} \tau(n) q^{n}$, of weight $k=12$ and level $N=1$. Then $v>0$ for $p=2,3,5,7,2,411, \cdots, 7,758,337,633, \cdots$

Consider $p=5$, so $\tau(p)=4,830=5 \times 966$ and $v=1$.
Recall the congruence $\tau(n) \equiv n \cdot \sigma_{1}(n) \bmod 5$, for $n \geq 1$.
Swinnerton-Dyer: Globally, mod 5 , we have $\bar{\rho}_{\Delta}^{s s} \simeq\left(\begin{array}{cc}\omega & 0 \\ 0 & 1\end{array}\right) \otimes \omega$.

Example: the Delta function

Let $f=\Delta=\sum_{n=1}^{\infty} \tau(n) q^{n}$, of weight $k=12$ and level $N=1$. Then $v>0$ for $p=2,3,5,7,2,411, \cdots, 7,758,337,633, \cdots$

Consider $p=5$, so $\tau(p)=4,830=5 \times 966$ and $v=1$.
Recall the congruence $\tau(n) \equiv n \cdot \sigma_{1}(n) \bmod 5$, for $n \geq 1$.
Swinnerton-Dyer: Globally, mod 5 , we have $\bar{\rho}_{\Delta}^{s s} \simeq\left(\begin{array}{cc}\omega & 0 \\ 0 & 1\end{array}\right) \otimes \omega$.
This matches with Theorem A for $b=2$, noting $r \equiv 2 \bmod 4$.

Example: the Delta function

Let $f=\Delta=\sum_{n=1}^{\infty} \tau(n) q^{n}$, of weight $k=12$ and level $N=1$. Then $v>0$ for $p=2,3,5,7,2,411, \cdots, 7,758,337,633, \cdots$

Consider $p=5$, so $\tau(p)=4,830=5 \times 966$ and $v=1$.
Recall the congruence $\tau(n) \equiv n \cdot \sigma_{1}(n) \bmod 5$, for $n \geq 1$.
Swinnerton-Dyer: Globally, mod 5, we have $\bar{\rho}_{\Delta}^{s s} \simeq\left(\begin{array}{cc}\omega & 0 \\ 0 & 1\end{array}\right) \otimes \omega$.
This matches with Theorem A for $b=2$, noting $r \equiv 2 \bmod 4$.
We are in the middle case of the trichotomy there,

Example: the Delta function

Let $f=\Delta=\sum_{n=1}^{\infty} \tau(n) q^{n}$, of weight $k=12$ and level $N=1$. Then $v>0$ for $p=2,3,5,7,2,411, \cdots, 7,758,337,633, \cdots$

Consider $p=5$, so $\tau(p)=4,830=5 \times 966$ and $v=1$.
Recall the congruence $\tau(n) \equiv n \cdot \sigma_{1}(n) \bmod 5$, for $n \geq 1$.
Swinnerton-Dyer: Globally, mod 5, we have $\bar{\rho}_{\Delta}^{s s} \simeq\left(\begin{array}{cc}\omega & 0 \\ 0 & 1\end{array}\right) \otimes \omega$.
This matches with Theorem A for $b=2$, noting $r \equiv 2 \bmod 4$.
We are in the middle case of the trichotomy there, and

$$
\lambda \equiv \frac{2}{2-r}\left(\frac{\tau(p)}{p}-\binom{r}{2} \frac{p}{\tau(p)}\right)
$$

Example: the Delta function

Let $f=\Delta=\sum_{n=1}^{\infty} \tau(n) q^{n}$, of weight $k=12$ and level $N=1$. Then $v>0$ for $p=2,3,5,7,2,411, \cdots, 7,758,337,633, \cdots$

Consider $p=5$, so $\tau(p)=4,830=5 \times 966$ and $v=1$.
Recall the congruence $\tau(n) \equiv n \cdot \sigma_{1}(n) \bmod 5$, for $n \geq 1$.
Swinnerton-Dyer: Globally, mod 5, we have $\bar{\rho}_{\Delta}^{s s} \simeq\left(\begin{array}{ll}\omega & 0 \\ 0 & 1\end{array}\right) \otimes \omega$.
This matches with Theorem A for $b=2$, noting $r \equiv 2 \bmod 4$.
We are in the middle case of the trichotomy there, and

$$
\lambda \equiv \frac{2}{2-r}\left(\frac{\tau(p)}{p}-\binom{r}{2} \frac{p}{\tau(p)}\right) \equiv-\frac{2}{8}(966) \equiv 1(!) \bmod 5 .
$$

Example: the Delta function

Let $f=\Delta=\sum_{n=1}^{\infty} \tau(n) q^{n}$, of weight $k=12$ and level $N=1$. Then $v>0$ for $p=2,3,5,7,2,411, \cdots, 7,758,337,633, \cdots$

Consider $p=5$, so $\tau(p)=4,830=5 \times 966$ and $v=1$.
Recall the congruence $\tau(n) \equiv n \cdot \sigma_{1}(n) \bmod 5$, for $n \geq 1$.
Swinnerton-Dyer: Globally, $\bmod 5$, we have $\bar{\rho}_{\Delta}^{s s} \simeq\left(\begin{array}{ll}\omega & 0 \\ 0 & 1\end{array}\right) \otimes \omega$.
This matches with Theorem A for $b=2$, noting $r \equiv 2 \bmod 4$.
We are in the middle case of the trichotomy there, and

$$
\lambda \equiv \frac{2}{2-r}\left(\frac{\tau(p)}{p}-\binom{r}{2} \frac{p}{\tau(p)}\right) \equiv-\frac{2}{8}(966) \equiv 1(!) \bmod 5 .
$$

Theorem C says more: $\frac{a_{p}}{p} \equiv 1 \equiv \varepsilon(1-r) \bmod p$ with $\varepsilon=1$,

Example: the Delta function

Let $f=\Delta=\sum_{n=1}^{\infty} \tau(n) q^{n}$, of weight $k=12$ and level $N=1$. Then $v>0$ for $p=2,3,5,7,2,411, \cdots, 7,758,337,633, \cdots$

Consider $p=5$, so $\tau(p)=4,830=5 \times 966$ and $v=1$.
Recall the congruence $\tau(n) \equiv n \cdot \sigma_{1}(n) \bmod 5$, for $n \geq 1$.
Swinnerton-Dyer: Globally, mod 5 , we have $\bar{\rho}_{\Delta}^{s s} \simeq\left(\begin{array}{cc}\omega & 0 \\ 0 & 1\end{array}\right) \otimes \omega$.
This matches with Theorem A for $b=2$, noting $r \equiv 2 \bmod 4$.
We are in the middle case of the trichotomy there, and

$$
\lambda \equiv \frac{2}{2-r}\left(\frac{\tau(p)}{p}-\binom{r}{2} \frac{p}{\tau(p)}\right) \equiv-\frac{2}{8}(966) \equiv 1(!) \bmod 5 .
$$

Theorem C says more: $\frac{a_{p}}{p} \equiv 1 \equiv \varepsilon(1-r) \bmod p$ with $\varepsilon=1$, and $v\left(u\left(a_{p}\right)-\varepsilon\right)$ is necessarily ≥ 1,

Example: the Delta function

Let $f=\Delta=\sum_{n=1}^{\infty} \tau(n) q^{n}$, of weight $k=12$ and level $N=1$. Then $v>0$ for $p=2,3,5,7,2,411, \cdots, 7,758,337,633, \cdots$

Consider $p=5$, so $\tau(p)=4,830=5 \times 966$ and $v=1$.
Recall the congruence $\tau(n) \equiv n \cdot \sigma_{1}(n) \bmod 5$, for $n \geq 1$.
Swinnerton-Dyer: Globally, $\bmod 5$, we have $\bar{\rho}_{\Delta}^{s s} \simeq\left(\begin{array}{cc}\omega & 0 \\ 0 & 1\end{array}\right) \otimes \omega$.
This matches with Theorem A for $b=2$, noting $r \equiv 2 \bmod 4$.
We are in the middle case of the trichotomy there, and

$$
\lambda \equiv \frac{2}{2-r}\left(\frac{\tau(p)}{p}-\binom{r}{2} \frac{p}{\tau(p)}\right) \equiv-\frac{2}{8}(966) \equiv 1(!) \bmod 5 .
$$

Theorem C says more: $\frac{a_{p}}{p} \equiv 1 \equiv \varepsilon(1-r) \bmod p$ with $\varepsilon=1$, and $v\left(u\left(a_{p}\right)-\varepsilon\right)$ is necessarily ≥ 1, so by part 1 b),
$\left.\bar{\rho}_{\Delta}\right|_{G_{5}}$ is a très ramifiée extension, whenever it is a non-split extension of ω by ω^{2}.

Counting exotic forms for $k=1$

We now turn to forms of weight 1. A basic problem is to count such forms by conductor.

Counting exotic forms for $k=1$

We now turn to forms of weight 1. A basic problem is to count such forms by conductor.

If $f \in S_{1}(N, \epsilon)$, then the image of $\rho_{f}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}(\mathbb{C})$ is a finite group.

Counting exotic forms for $k=1$

We now turn to forms of weight 1 . A basic problem is to count such forms by conductor.

If $f \in S_{1}(N, \epsilon)$, then the image of $\rho_{f}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}(\mathbb{C})$ is a finite group.

The image of the associated projective representation $\tilde{\rho}_{f}$ is of four types:

> dihedral $\left(D_{n}\right)$, tetrahedral $\left(A_{4}\right)$, octahedral $\left(S_{4}\right)$, icosahedral $\left(A_{5}\right)$,
where D_{n} is the dihedral group with $2 n$ elements.

Counting exotic forms for $k=1$

We now turn to forms of weight 1 . A basic problem is to count such forms by conductor.

If $f \in S_{1}(N, \epsilon)$, then the image of $\rho_{f}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}(\mathbb{C})$ is a finite group.

The image of the associated projective representation $\tilde{\rho}_{f}$ is of four types:

> dihedral $\left(D_{n}\right)$, tetrahedral $\left(A_{4}\right)$, octahedral $\left(S_{4}\right)$, icosahedral $\left(A_{5}\right)$,
where D_{n} is the dihedral group with $2 n$ elements.
We are especially interested in counting exotic forms (last three types).

Octahedral case

There are no tetrahedral forms of prime level.

Octahedral case

There are no tetrahedral forms of prime level.
Some years ago, in

- M. Bhargava, E. Ghate, Math. Ann. (2009), we counted octahedral forms of prime level, on average.

Octahedral case

There are no tetrahedral forms of prime level.
Some years ago, in

- M. Bhargava, E. Ghate, Math. Ann. (2009),
we counted octahedral forms of prime level, on average.
Theorem
Let

$$
N_{\mathrm{oct}}^{\text {prime }}(X)=\#\{\text { octahedral forms of prime level }<X\}
$$

Octahedral case

There are no tetrahedral forms of prime level.
Some years ago, in

- M. Bhargava, E. Ghate, Math. Ann. (2009), we counted octahedral forms of prime level, on average.

Theorem
Let

$$
N_{\mathrm{oct}}^{\text {prime }}(X)=\#\{\text { octahedral forms of prime level }<X\} .
$$

Then

$$
N_{\mathrm{oct}}^{\text {prime }}(X)=O(X / \log X)
$$

Octahedral case

There are no tetrahedral forms of prime level.
Some years ago, in

- M. Bhargava, E. Ghate, Math. Ann. (2009), we counted octahedral forms of prime level, on average.

Theorem
Let

$$
N_{\mathrm{oct}}^{\text {prime }}(X)=\#\{\text { octahedral forms of prime level }<X\}
$$

Then

$$
N_{\mathrm{oct}}^{\text {prime }}(X)=O(X / \log X)
$$

In particular, the number of octahedral forms of prime level is on average bounded above by a constant.

Strategy of proof

We use the fact that the following sets are closely related:
$\{$ oct. forms $f\} \leftrightarrow\left\{\rho_{f}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}(\mathbb{C})\right.$ odd, $\left.\tilde{\rho}_{f}\left(G_{\mathbb{Q}}\right) \simeq S_{4}\right\}$

Strategy of proof

We use the fact that the following sets are closely related:
$\{$ oct. forms $f\} \leftrightarrow\left\{\rho_{f}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}(\mathbb{C})\right.$ odd, $\left.\tilde{\rho}_{f}\left(G_{\mathbb{Q}}\right) \simeq S_{4}\right\}$

$$
\rightarrow\left\{\tilde{\rho}_{f}: G_{\mathbb{Q}} \rightarrow \mathrm{PGL}_{2}(\mathbb{C}) \text { odd, } \tilde{\rho}_{f}\left(G_{\mathbb{Q}}\right) \simeq S_{4}\right\}
$$

Strategy of proof

We use the fact that the following sets are closely related:
$\{$ oct. forms $f\} \leftrightarrow\left\{\rho_{f}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}(\mathbb{C})\right.$ odd, $\left.\tilde{\rho}_{f}\left(G_{\mathbb{Q}}\right) \simeq S_{4}\right\}$

$$
\rightarrow\left\{\tilde{\rho}_{f}: G_{\mathbb{Q}} \rightarrow \mathrm{PGL}_{2}(\mathbb{C}) \text { odd, } \tilde{\rho}_{f}\left(G_{\mathbb{Q}}\right) \simeq S_{4}\right\}
$$

\leftrightarrow \{non-real S_{4}-quartic numbers fields K \},

Strategy of proof

We use the fact that the following sets are closely related:
$\{$ oct. forms $f\} \leftrightarrow\left\{\rho_{f}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}(\mathbb{C})\right.$ odd, $\left.\tilde{\rho}_{f}\left(G_{\mathbb{Q}}\right) \simeq S_{4}\right\}$

$$
\rightarrow\left\{\tilde{\rho}_{f}: G_{\mathbb{Q}} \rightarrow \mathrm{PGL}_{2}(\mathbb{C}) \text { odd, } \tilde{\rho}_{f}\left(G_{\mathbb{Q}}\right) \simeq S_{4}\right\}
$$

\leftrightarrow \{non-real S_{4}-quartic numbers fields $\left.K\right\}$, and appeal to work of Bhargava on
counting S_{4}-quartic fields K on average,
(by counting pairs of ternary quadratic forms).

Strategy of proof

We use the fact that the following sets are closely related:
$\{$ oct. forms $f\} \leftrightarrow\left\{\rho_{f}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}(\mathbb{C})\right.$ odd, $\left.\tilde{\rho}_{f}\left(G_{\mathbb{Q}}\right) \simeq S_{4}\right\}$

$$
\rightarrow\left\{\tilde{\rho}_{f}: G_{\mathbb{Q}} \rightarrow \mathrm{PGL}_{2}(\mathbb{C}) \text { odd, } \tilde{\rho}_{f}\left(G_{\mathbb{Q}}\right) \simeq S_{4}\right\}
$$

\leftrightarrow \{non-real S_{4}-quartic numbers fields $\left.K\right\}$, and appeal to work of Bhargava on counting S_{4}-quartic fields K on average,
(by counting pairs of ternary quadratic forms).
There are two complications:

Strategy of proof

We use the fact that the following sets are closely related:
$\{$ oct. forms $f\} \leftrightarrow\left\{\rho_{f}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}(\mathbb{C})\right.$ odd, $\left.\tilde{\rho}_{f}\left(G_{\mathbb{Q}}\right) \simeq S_{4}\right\}$

$$
\rightarrow\left\{\tilde{\rho}_{f}: G_{\mathbb{Q}} \rightarrow \mathrm{PGL}_{2}(\mathbb{C}) \text { odd, } \tilde{\rho}_{f}\left(G_{\mathbb{Q}}\right) \simeq S_{4}\right\}
$$

\leftrightarrow \{non-real S_{4}-quartic numbers fields K \}, and appeal to work of Bhargava on counting S_{4}-quartic fields K on average,
(by counting pairs of ternary quadratic forms).
There are two complications:

- The map $\rho_{f} \mapsto \tilde{\rho}_{f}$ is many to one.

Strategy of proof

We use the fact that the following sets are closely related:
$\{$ oct. forms $f\} \leftrightarrow\left\{\rho_{f}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}(\mathbb{C})\right.$ odd, $\left.\tilde{\rho}_{f}\left(G_{\mathbb{Q}}\right) \simeq S_{4}\right\}$

$$
\rightarrow\left\{\tilde{\rho}_{f}: G_{\mathbb{Q}} \rightarrow \mathrm{PGL}_{2}(\mathbb{C}) \text { odd, } \tilde{\rho}_{f}\left(G_{\mathbb{Q}}\right) \simeq S_{4}\right\}
$$

\leftrightarrow \{non-real S_{4}-quartic numbers fields K \}, and appeal to work of Bhargava on counting S_{4}-quartic fields K on average,
(by counting pairs of ternary quadratic forms).
There are two complications:

- The map $\rho_{f} \mapsto \tilde{\rho}_{f}$ is many to one.
- Bhargava counts K by discriminant, but we want to count f by conductor.

Minimal forms

We address the first issue.

Minimal forms

We address the first issue.
The fiber of the map

$$
\rho_{f} \mapsto \tilde{\rho}_{f}
$$

is the set $\left\{\rho_{f} \otimes \chi\right\}$, where χ varies through all Dirichlet characters.

Minimal forms

We address the first issue.
The fiber of the map

$$
\rho_{f} \mapsto \tilde{\rho}_{f}
$$

is the set $\left\{\rho_{f} \otimes \chi\right\}$, where χ varies through all Dirichlet characters.

Definition
Say f is minimal if f has minimal level among all twists $f \otimes \chi$.

Minimal forms

We address the first issue.
The fiber of the map

$$
\rho_{f} \mapsto \tilde{\rho}_{f}
$$

is the set $\left\{\rho_{f} \otimes \chi\right\}$, where χ varies through all Dirichlet characters.

Definition
Say f is minimal if f has minimal level among all twists $f \otimes \chi$.
Equivalently, the conductor of ρ_{f} equals the conductor of $\tilde{\rho}_{f}$.

Minimal forms

We address the first issue.
The fiber of the map

$$
\rho_{f} \mapsto \tilde{\rho}_{f}
$$

is the set $\left\{\rho_{f} \otimes \chi\right\}$, where χ varies through all Dirichlet characters.

Definition
Say f is minimal if f has minimal level among all twists $f \otimes \chi$.
Equivalently, the conductor of ρ_{f} equals the conductor of $\tilde{\rho}_{f}$.
E.g., Forms of prime level are minimal.

Minimal forms

We address the first issue.
The fiber of the map

$$
\rho_{f} \mapsto \tilde{\rho}_{f}
$$

is the set $\left\{\rho_{f} \otimes \chi\right\}$, where χ varies through all Dirichlet characters.

Definition
Say f is minimal if f has minimal level among all twists $f \otimes \chi$. Equivalently, the conductor of ρ_{f} equals the conductor of $\tilde{\rho}_{f}$.
E.g., Forms of prime level are minimal.

Rmk: Minimal forms have cube-free conductors.

Proposition: twists and minimality

Let f be a minimal octahed. form of (cube-free) conductor N.

Proposition: twists and minimality

Let f be a minimal octahed. form of (cube-free) conductor N. Let N_{p} be the exact power of $p \geq 5$ dividing N, and let χ_{p} be a Dirichlet character of p-power conductor.

Proposition: twists and minimality

Let f be a minimal octahed. form of (cube-free) conductor N. Let N_{p} be the exact power of $p \geq 5$ dividing N, and let χ_{p} be a Dirichlet character of p-power conductor. If

1. $N_{p}=p$, there are exactly 2 characters χ_{p}
2. $N_{p}=p^{2}$, there are exactly $p-1$ characters χ_{p} such that

Proposition: twists and minimality

Let f be a minimal octahed. form of (cube-free) conductor N. Let N_{p} be the exact power of $p \geq 5$ dividing N, and let χ_{p} be a Dirichlet character of p-power conductor. If

1. $N_{p}=p$, there are exactly 2 characters χ_{p}
2. $N_{p}=p^{2}$, there are exactly $p-1$ characters χ_{p} such that $f \otimes \chi_{p}$ is minimal at p.

Proposition: twists and minimality

Let f be a minimal octahed. form of (cube-free) conductor N. Let N_{p} be the exact power of $p \geq 5$ dividing N, and let χ_{p} be a Dirichlet character of p-power conductor. If

1. $N_{p}=p$, there are exactly 2 characters χ_{p}
2. $N_{p}=p^{2}$, there are exactly $p-1$ characters χ_{p}
such that $f \otimes \chi_{p}$ is minimal at p.
Proof: Study the local Galois rep. $\rho=\left.\rho_{f}\right|_{G_{\rho}}$.

Proposition: twists and minimality

Let f be a minimal octahed. form of (cube-free) conductor N. Let N_{p} be the exact power of $p \geq 5$ dividing N, and let χ_{p} be a Dirichlet character of p-power conductor. If

1. $N_{p}=p$, there are exactly 2 characters χ_{p}
2. $N_{p}=p^{2}$, there are exactly $p-1$ characters χ_{p}
such that $f \otimes \chi_{p}$ is minimal at p.
Proof: Study the local Galois rep. $\rho=\rho_{f} \mid G_{\rho}$. One knows that in case 1 , resp. case 2 , we have

$$
\rho \simeq\left(\begin{array}{cc}
\omega^{a} & 0 \\
0 & 1
\end{array}\right)
$$

Proposition: twists and minimality

Let f be a minimal octahed. form of (cube-free) conductor N. Let N_{p} be the exact power of $p \geq 5$ dividing N, and let χ_{p} be a Dirichlet character of p-power conductor. If

1. $N_{p}=p$, there are exactly 2 characters χ_{p}
2. $N_{p}=p^{2}$, there are exactly $p-1$ characters χ_{p} such that $f \otimes \chi_{p}$ is minimal at p.
Proof: Study the local Galois rep. $\rho=\left.\rho_{f}\right|_{G_{p}}$. One knows that in case 1 , resp. case 2 , we have

$$
\rho \simeq\left(\begin{array}{cc}
\omega^{a} & 0 \\
0 & 1
\end{array}\right), \quad \text { resp. } \quad \rho \simeq\left(\begin{array}{cc}
\omega_{2}^{c} & 0 \\
0 & \omega_{2}^{p c}
\end{array}\right),
$$

where ω, ω_{2} are the (char 0 avatars) of the fund. chars. of levels 1,2 , and a, c are integers with $p+1 \nmid c$.

Proposition: twists and minimality

Let f be a minimal octahed. form of (cube-free) conductor N. Let N_{p} be the exact power of $p \geq 5$ dividing N, and let χ_{p} be a Dirichlet character of p-power conductor. If

1. $N_{p}=p$, there are exactly 2 characters χ_{p}
2. $N_{p}=p^{2}$, there are exactly $p-1$ characters χ_{p} such that $f \otimes \chi_{p}$ is minimal at p.
Proof: Study the local Galois rep. $\rho=\left.\rho_{f}\right|_{G_{p}}$. One knows that in case 1 , resp. case 2 , we have

$$
\rho \simeq\left(\begin{array}{cc}
\omega^{a} & 0 \\
0 & 1
\end{array}\right), \quad \text { resp. } \quad \rho \simeq\left(\begin{array}{cc}
\omega_{2}^{c} & 0 \\
0 & \omega_{2}^{p c}
\end{array}\right),
$$

where ω, ω_{2} are the (char 0 avatars) of the fund. chars. of levels 1,2 , and a, c are integers with $p+1 \nmid c$.

In case 1 , twisting by $\chi_{p}=1, \omega^{-a}$ preserves $N_{p}=p$, whereas in case 2 , twisting by any $\chi_{p}=\omega^{b}$ preserves $N_{p}=p^{2}$.

Conductor vs Discriminant: notation

We now address the second issue. We need some notation.

- Let K be an S_{4}-quartic field.

Conductor vs Discriminant: notation

We now address the second issue. We need some notation.

- Let K be an S_{4}-quartic field.
- If $p=P_{1}^{e_{1}} P_{2}^{e_{2}} \ldots P_{r}^{e_{r}}$ in the ring of integers \mathcal{O}_{K}, then we say that p has ramification type

$$
f_{1}^{e_{1}} f_{2}^{e_{2}} \cdots f_{r}^{e_{r}},
$$

where f_{i} is the cardinality of the residue field \mathcal{O}_{K} / P_{i} of P_{i}. (We drop the exponent e_{i} when $e_{i}=1$.)

Conductor vs Discriminant: notation

We now address the second issue. We need some notation.

- Let K be an S_{4}-quartic field.
- If $p=P_{1}^{e_{1}} P_{2}^{e_{2}} \cdots P_{r}^{e_{r}}$ in the ring of integers \mathcal{O}_{K}, then we say that p has ramification type

$$
f_{1}^{e_{1} f_{2}^{e_{2}} \ldots f_{r}^{e_{r}},}
$$

where f_{i} is the cardinality of the residue field \mathcal{O}_{K} / P_{i} of P_{i}. (We drop the exponent e_{i} when $e_{i}=1$.)

- If $p \geq 5$, which we assume, then p is (at most) tamely ramified in K, and the image of I_{p} under $\tilde{\rho}_{f}$ is cyclic.

Conductor vs Discriminant: notation

We now address the second issue. We need some notation.

- Let K be an S_{4}-quartic field.
- If $p=P_{1}^{e_{1}} P_{2}^{e_{2}} \cdots P_{r}^{e_{r}}$ in the ring of integers \mathcal{O}_{K}, then we say that p has ramification type

$$
f_{1}^{e_{1}} f_{2}^{e_{2}} \ldots f_{r}^{e_{r}}
$$

where f_{i} is the cardinality of the residue field \mathcal{O}_{K} / P_{i} of P_{i}. (We drop the exponent e_{i} when $e_{i}=1$.)

- If $p \geq 5$, which we assume, then p is (at most) tamely ramified in K, and the image of I_{p} under $\tilde{\rho}_{f}$ is cyclic. Also, the image of G_{p} under $\tilde{\rho}_{f}$ is either cyclic or dihedral.

Conductor vs Discriminant: notation

We now address the second issue. We need some notation.

- Let K be an S_{4}-quartic field.
- If $p=P_{1}^{e_{1}} P_{2}^{e_{2}} \cdots P_{r}^{e_{r}}$ in the ring of integers \mathcal{O}_{K}, then we say that p has ramification type

$$
f_{1}^{e_{1}} f_{2}^{e_{2}} \ldots f_{r}^{e_{r}}
$$

where f_{i} is the cardinality of the residue field \mathcal{O}_{K} / P_{i} of P_{i}. (We drop the exponent e_{i} when $e_{i}=1$.)

- If $p \geq 5$, which we assume, then p is (at most) tamely ramified in K, and the image of I_{p} under $\tilde{\rho}_{f}$ is cyclic. Also, the image of G_{p} under $\tilde{\rho}_{f}$ is either cyclic or dihedral.
- We write $V_{4} \subset S_{4}$ for the Klein 4-group and $D_{4} \subset S_{4}$ for the dihedral group with 8 elements.

Table: legend

In the first three columns, we list
all possible ramification types for $p \geq 5$ in K, corresponding to all possible choices of I_{p} and G_{p} in S_{4}.

Table: legend

In the first three columns, we list
all possible ramification types for $p \geq 5$ in K, corresponding to all possible choices of I_{p} and G_{p} in S_{4}.

There are 10 possibilities.

Table: legend

In the first three columns, we list
all possible ramification types for $p \geq 5$ in K, corresponding to all possible choices of I_{p} and G_{p} in S_{4}.

There are 10 possibilities.
For each ramification type we list the power of p appearing in

- D_{K}, the absolute discriminant of K, and,
- N_{f}, the conductor of $\tilde{\rho}_{f}$, that is, N_{p}.

Table: legend

In the first three columns, we list
all possible ramification types for $p \geq 5$ in K, corresponding to all possible choices of I_{p} and G_{p} in S_{4}.

There are 10 possibilities.
For each ramification type we list the power of p appearing in

- D_{K}, the absolute discriminant of K, and,
- N_{f}, the conductor of $\tilde{\rho}_{f}$, that is, N_{p}.

In the third last column we list congruence conditions on p.

Table: legend

In the first three columns, we list
all possible ramification types for $p \geq 5$ in K, corresponding to all possible choices of I_{p} and G_{p} in S_{4}.

There are 10 possibilities.
For each ramification type we list the power of p appearing in

- D_{K}, the absolute discriminant of K, and,
- N_{f}, the conductor of $\tilde{\rho}_{f}$, that is, N_{p}.

In the third last column we list congruence conditions on p.
In the last column we list the number of twists by characters of p-power conductor preserving minimality.

Table: Conductor vs Discriminant

I_{p}	G_{p}	ram. of p in K	D_{K}	N_{p}	$p \equiv$	good	twists
(12)	I_{p}	$1^{2} 11$	p	p		yes	2
(12)	$(12),(34)$	$1^{2} 2$	p	p^{2}		yes	$p-1$
$(12)(34)$	I_{p}	$1^{2} 1^{2}$	p^{2}	p			2
$(13)(24)$	(1234)	2^{2}	p^{2}	p			2
$(12)(34)$	V_{4}	2^{2}	p^{2}	p^{2}		yes	$p-1$
$(12)(34)$	$(12),(34)$	$1^{2} 1^{2}$	p^{2}	p^{2}		yes	$p-1$
(123)	I_{p}	$1^{3} 1$	p^{2}	p	$1(3)$		2
(123)	S_{3}	$1^{3} 1$	p^{2}	p^{2}	$2(3)$	yes	$p-1$
(1234)	I_{p}	1^{4}	p^{3}	p	$1(4)$		2
(1234)	D_{4}	1^{4}	p^{3}	p^{2}	$3(4)$		$p-1$

Octahedral Ramification Table

Table: Conductor vs Discriminant

I_{p}	G_{p}	ram. of p in K	D_{K}	N_{p}	$p \equiv$	good	twists
(12)	I_{p}	$1^{2} 11$	p	p		yes	2
(12)	$(12),(34)$	$1^{2} 2$	p	p^{2}		yes	$p-1$
$(12)(34)$	I_{p}	$1^{2} 1^{2}$	p^{2}	p			2
$(13)(24)$	(1234)	2^{2}	p^{2}	p			2
$(12)(34)$	V_{4}	2^{2}	p^{2}	p^{2}		yes	$p-1$
$(12)(34)$	$(12),(34)$	$1^{2} 1^{2}$	p^{2}	p^{2}		yes	$p-1$
(123)	I_{p}	$1^{3} 1$	p^{2}	p	$1(3)$		2
(123)	S_{3}	$1^{3} 1$	p^{2}	p^{2}	$2(3)$	yes	$p-1$
(1234)	I_{p}	1^{4}	p^{3}	p	$1(4)$		2
(1234)	D_{4}	1^{4}	p^{3}	p^{2}	$3(4)$		$p-1$

Octahedral Ramification Table
In 5 rows, the power of p in D_{K} is at most N_{p}.

Table: Conductor vs Discriminant

I_{p}	G_{p}	ram. of p in K	D_{K}	N_{p}	$p \equiv$	good	twists
(12)	I_{p}	$1^{2} 11$	p	p		yes	2
(12)	$(12),(34)$	$1^{2} 2$	p	p^{2}		yes	$p-1$
$(12)(34)$	I_{p}	$1^{2} 1^{2}$	p^{2}	p			2
$(13)(24)$	(1234)	2^{2}	p^{2}	p			2
$(12)(34)$	V_{4}	2^{2}	p^{2}	p^{2}		yes	$p-1$
$(12)(34)$	$(12),(34)$	$1^{2} 1^{2}$	p^{2}	p^{2}		yes	$p-1$
(123)	I_{p}	$1^{3} 1$	p^{2}	p	$1(3)$		2
(123)	S_{3}	$1^{3} 1$	p^{2}	p^{2}	$2(3)$	yes	$p-1$
(1234)	I_{p}	1^{4}	p^{3}	p	$1(4)$		2
(1234)	D_{4}	1^{4}	p^{3}	p^{2}	$3(4)$		$p-1$

Octahedral Ramification Table
In 5 rows, the power of p in D_{K} is at most N_{p}. These cases are 'good' for us, since one can then hope to show
$\sum_{f: N_{f}<X^{1}}$ is bounded by (a constant times) $\sum_{K:\left|D_{K}\right|<X^{1}} 1$,

Table: Conductor vs Discriminant

I_{p}	G_{p}	ram. of p in K	D_{K}	N_{p}	$p \equiv$	good	twists
(12)	I_{p}	$1^{2} 11$	p	p		yes	2
(12)	$(12),(34)$	$1^{2} 2$	p	p^{2}		yes	$p-1$
$(12)(34)$	I_{p}	$1^{2} 1^{2}$	p^{2}	p			2
$(13)(24)$	(1234)	2^{2}	p^{2}	p			2
$(12)(34)$	V_{4}	2^{2}	p^{2}	p^{2}		yes	$p-1$
$(12)(34)$	$(12),(34)$	$1^{2} 1^{2}$	p^{2}	p^{2}		yes	$p-1$
(123)	I_{p}	$1^{3} 1$	p^{2}	p	$1(3)$		2
(123)	S_{3}	$1^{3} 1$	p^{2}	p^{2}	$2(3)$	yes	$p-1$
(1234)	I_{p}	1^{4}	p^{3}	p	$1(4)$		2
(1234)	D_{4}	1^{4}	p^{3}	p^{2}	$3(4)$		$p-1$

Octahedral Ramification Table
In 5 rows, the power of p in D_{K} is at most N_{p}. These cases are 'good' for us, since one can then hope to show
$\sum_{f: N_{f}<x} 1$ is bounded by (a constant times) $\sum_{K:\left|D_{K}\right|<x} 1$, and estimate the right hand sum by Bhargava.

Concluding arguments: octahedral forms of prime level

In prime level, it turns out D_{K} is either p or p^{3}, so only the first and ninth line of the table apply.

Concluding arguments: octahedral forms of prime level

In prime level, it turns out D_{K} is either p or p^{3}, so only the first and ninth line of the table apply.

The first line is 'good'. To deal with the ninth line we have to invoke some algebraic number theory arguments and reduce to the first line.

Concluding arguments: octahedral forms of prime level

In prime level, it turns out D_{K} is either p or p^{3}, so only the first and ninth line of the table apply.

The first line is 'good'. To deal with the ninth line we have to invoke some algebraic number theory arguments and reduce to the first line.

NB: The number of twists in both these lines is 2 , which is bounded independently of p.

Concluding arguments: octahedral forms of prime level

In prime level, it turns out D_{K} is either p or p^{3}, so only the first and ninth line of the table apply.

The first line is 'good'. To deal with the ninth line we have to invoke some algebraic number theory arguments and reduce to the first line.

NB: The number of twists in both these lines is 2 , which is bounded independently of p.

We now apply results of Bhargava (and use sieve methods) to deduce the upper bound in the Theorem.

Concluding arguments: octahedral forms of prime level

In prime level, it turns out D_{K} is either p or p^{3}, so only the first and ninth line of the table apply.

The first line is 'good'. To deal with the ninth line we have to invoke some algebraic number theory arguments and reduce to the first line.

NB: The number of twists in both these lines is 2 , which is bounded independently of p.

We now apply results of Bhargava (and use sieve methods) to deduce the upper bound in the Theorem.

For general minimal levels, all lines of the table would apply! In particular, cases with $p-1$ twists will occur.

Concluding arguments: octahedral forms of prime level

In prime level, it turns out D_{K} is either p or p^{3}, so only the first and ninth line of the table apply.

The first line is 'good'. To deal with the ninth line we have to invoke some algebraic number theory arguments and reduce to the first line.

NB: The number of twists in both these lines is 2 , which is bounded independently of p.

We now apply results of Bhargava (and use sieve methods) to deduce the upper bound in the Theorem.

For general minimal levels, all lines of the table would apply! In particular, cases with $p-1$ twists will occur.

Question: Can one use the table to get instead good lower bounds on the number of octahedral forms (of minimal level)?

Thank you

