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Abstract. We study the local reducibility at p of the p-adic Galois represen-

tation attached to a cuspidal automorphic representation of GLn(AQ). In the

case that the underlying Weil-Deligne representation is Frobenius semisimple
and indecomposable, we analyze the reducibility completely. We use methods

from p-adic Hodge theory, and work under a transversality assumption on the

Hodge and Newton filtrations in the corresponding filtered module.

1. Introduction

Let f =
∑∞
n=1 an(f)qn be a primitive elliptic modular cusp form of weight k ≥ 2,

level N ≥ 1, and nebentypus χ : (Z/NZ)× → C×. Let Kf denote the number field
generated by the Fourier coefficients of f . Fix an embedding of Q̄ into Q̄p, and let
℘ be the prime of Q̄ determined by this embedding. Let ℘ also denote the induced
prime of Kf , and let Kf,℘ be the completion of Kf at ℘. For a global or local field
F of characteristic 0, let GF denote the absolute Galois group of F . There is a
global Galois representation

(1.1) ρf,℘ : GQ → GL2(Kf,℘)

associated to f (and ℘) by Deligne which has the property that for all primes ` - Np,

trace(ρf,℘(Frob`)) = a`(f) and det(ρf,℘(Frob`)) = χ(`)`k−1.

Thus det(ρf,℘) = χχk−1cyc,p, where χcyc,p is the p-adic cyclotomic character.
It is a well-known result of Ribet that the global representation ρf,℘ is irreducible.

However, if f is ordinary at ℘, i.e., ap(f) is a ℘-adic unit, then an important
theorem of Wiles, valid more generally for Hilbert modular forms, says that the
corresponding local representation is reducible.

Theorem 1.1 ([W88]). Let f be a ℘-ordinary primitive form as above. Then the
restriction of ρf,℘ to the decomposition subgroup GQp is reducible. More precisely,
there exists a basis in which

(1.2) ρf,℘|GQp
∼
(
χp · λ(β/pk−1) · χk−1cyc,p u

0 λ(α)

)
,

where χ = χpχ
′ is the decomposition of χ into its p and prime-to-p-parts, λ(x) :

GQp → K×f,℘ is the unramified character which takes arithmetic Frobenius to x,

and u : GQp → Kf,℘ is a continuous function. Here α is (i) the unit root of

X2−ap(f)X+pk−1χ(p) if p - N (ii) the unit ap(f) if p||N , p - cond(χ), k = 2 (iii)
the unit ap(f) if p|N , vp(N) = vp(cond(χ)). In all cases αβ = χ′(p)pk−1.

The numbering used in this paper differs slightly from that used in the published version.
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Moreover, in case (ii), ap(f) is a unit if and only if k = 2, and one can easily show
that ρf,℘|GQp

is irreducible when k > 2.
Urban has generalized Theorem 1.1 to the case of primitive Siegel modular cusp

forms of genus 2. We briefly recall this result here. Let π be a cuspidal automorphic
representation on GSp4(AQ) whose archimedean component π∞ belongs to the
discrete series, with cohomological weights (a, b; a + b) with a ≥ b ≥ 0. For each
prime p, Laumon, Taylor and Weissauer have defined a four-dimensional Galois
representation

ρπ,p : GQ → GL4(Q̄p)
with standard properties. Let p be an unramified prime for π. Then Tilouine and
Urban have generalized the notion of ordinariness for such primes p in three ways to
what they call Borel ordinary, Siegel ordinary, and Klingen ordinary (these terms
come from the underlying parabolic subgroups of GSp4(AQ)). In the Borel case,
the p-ordinariness of π implies that the Hecke polynomial of πp, namely

(X − α)(X − β)(X − γ)(X − δ),
has the property that the p-adic valuations of α, β, γ and δ are 0, b+ 1, a+ 2 and
a+ b+ 3, respectively.

Theorem 1.2 ([U05], [TU99]). Say π is a Borel p-ordinary cuspidal automor-
phic representation of GSp4(AQ) which is stable at ∞ with cohomological weights
(a, b; a + b). Then the restriction of ρπ,p to the decomposition subgroup GQp is
upper-triangular. More precisely, there is a basis in which ρπ,p|GQp

∼


λ(δ/pa+b+3) · χa+b+3

cyc,p ∗ ∗ ∗
0 λ(γ/pa+2) · χa+2

cyc,p ∗ ∗
0 0 λ(β/pb+1) · χb+1

cyc,p ∗
0 0 0 λ(α)

 ,

where λ(x) is the unramified character which takes arithmetic Frobenius to x.

We remark that ρπ,p above is the contragredient of the one used in [U05] (we also
use the arithmetic Frobenius in defining our unramified characters), so the theorem
matches exactly with [U05, Cor. 1 (iii)]. Similar results in the Siegel and Klingen
cases can be found in the other parts of [U05, Cor. 1].

The local Galois representations appearing in Theorems 1.1 and 1.2 are some-
times referred to as (p, p)-Galois representations. The goal of this paper is to prove
structure theorems for the local (p, p)-Galois representations attached to automor-
phic forms on GLn(AQ).

In the first part of this paper (cf. Section 3) we reprove Theorem 1.1 using the
celebrated work of Colmez-Fontaine [CF00] establishing an equivalence of categories
between potentially semistable representations and filtered (ϕ,N)-modules with
coefficients and descent data. Our proof is quite simple and serves to illustrate the
techniques that will be used in the rest of the paper.

In the second and main part of this work (Section 4 onwards), we generalize
Theorem 1.1 to the local (p, p)-Galois representations attached to an automorphic
form π on GLn(AQ). We assume that the global p-adic Galois representation ρπ,p
attached to π exists, and that it satisfies several natural properties, e.g., it lives in
a strictly compatible system of Galois representations, and satisfies Local-Global
compatibility. Recently, much progress has been made on this front: such Galois
representations have been attached to what are referred to as RAESDC (regular,
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algebraic, essentially self dual, cuspidal) automorphic forms on GLn(AQ) by Clozel,
Harris, Kottwitz and Taylor, and for conjugate self-dual automorphic forms over
CM fields these representations were shown to satisfy Local-Global compatibility
away from p by Taylor-Yoshida. Under some standard hypotheses (e.g., that the
Hodge and Newton filtrations are in general position in the corresponding crystal,
cf. Assumption 4.6 in the text), we show that in several cases the corresponding
local (p, p)-representation ρπ,p|GQp

has an ‘upper-triangular’ form, and completely
determine the ‘diagonal’ characters. In other cases, and perhaps more interest-
ingly, we give conditions under which this local representation is irreducible. For
instance, we directly generalize the comment about irreducibility made just after
the statement of Theorem 1.1. As a sample of our results, let us state the following
theorem (which is a collation of Theorems 6.6, 6.7 and 7.17 in the text).

Theorem 1.3 (Indecomposable Case). Say π is a cuspidal automorphic form on
GLmn(AQ) with infinitesimal character given by the integers −β1 > · · · > −βmn.
Suppose that the Weil-Deligne representation attached to πp is Frobenius semisimple
and indecomposable, i.e.,

WD(ρπ,p|GQp
) ∼ τm ⊗ Sp(n),

where τm is an irreducible representation of WQp of dimension m ≥ 1, and Sp(n)
is the special representation, for n ≥ 1. Assume that Assumption 4.6 holds.

(i) Suppose m = 1 and τ1 = χ0 ·χ′ is a character, where χ0 is the ramified part,
and χ′ is an unramified character mapping arithmetic Frobenius to α.

a) If π is ordinary at p (i.e., vp(α) = −β1), then the βi are necessarily consecutive
integers, and ρπ,p|GQp

∼
χ0 · λ( α

pvp(α) ) · χ−β1
cyc,p ∗ · · · ∗

0 χ0 · λ( α
pvp(α) ) · χ−β1−1

cyc,p · · · ∗
0 0 · · · ∗
0 0 0 χ0 · λ( α

pvp(α) ) · χ−β1−(n−1)
cyc,p

 ,

where λ(x) is the unramified character taking arithmetic Frobenius to x.
b) If π is not p-ordinary, then ρπ,p|GQp

is irreducible.

(ii) Suppose m ≥ 2. Then ρπ,p|GQp
is irreducible.

The theorem gives complete information about the reducibility of the (p, p)-
representation in the indecomposable case (under Assumption 4.6). In particular,
the image of the (p, p)-representation tends to be either in a minimal parabolic
subgroup or a maximal parabolic subgroup of GLn. While this is forced in the GL2

setting, it is somewhat surprising that the image does not lie in any ‘intermediate’
parabolic subgroups even in the GLn setting. Finally we point out that parts (i)
b) and (ii) of the theorem imply that the global representation ρπ,p is irreducible
(see also [TY07, Cor. B] for the case of conjugate self-dual representations over
CM fields).

The theorem is proved in Sections 6 and 7, using methods from p-adic Hodge
theory. It is well-known that the category of Weil-Deligne representations is equiv-
alent to the category of (ϕ,N)-modules [BS07, Prop. 4.1]. In Section 7, we clas-
sify the (ϕ,N)-submodules of the (ϕ,N)-module associated to the indecomposable
Weil-Deligne representation in the theorem. This classification plays a key role in
analyzing the (p, p)-representation once the Hodge filtration is introduced. Along
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the way, we take a slight detour to write down explicitly the filtered (ϕ,N)-module
attached to an m-dimensional ‘unramified supercuspidal’ representation, since this
might be a useful addition to the literature (cf. [GM09] for the two-dimensional
case).

The terminology ‘indecomposable case’ in the discussion above refers to the
standard fact that every Frobenius semisimple indecomposable Weil-Deligne repre-
sentation has the form stated in the theorem. Some results in the decomposable
case (where the Weil-Deligne representation is a direct sum of indecomposables)
are given in Section 8, though the principal series case is treated completely a bit
earlier, in Section 5 (in the spherical case our results overlap with those in D. Ger-
aghty’s recent thesis, and we thank T. Gee for pointing this out to us). We refer the
reader to these sections for explicit statements of results. Of the remaining sections,
Section 2 recalls some useful facts from p-adic Hodge theory, whereas Section 4 re-
calls some general facts and conjectures about Galois representations associated to
automorphic forms on GLn(AQ).

2. p-adic Hodge theory

We start by recalling some results we need from p-adic Hodge theory. For the
basic definitions in the subject, e.g., of Fontaine’s ring Bst, filtered (ϕ,N)-modules
with coefficients and descent data, Newton and Hodge numbers, see [F94], [FO],
[GM09, §2].

2.1. Newton and Hodge Numbers. We start by stating some facts about New-
ton and Hodge numbers, which do not seem to be in the literature when the coef-
ficients are not necessarily Qp.

Let F and E be two finite field extensions of Qp and assume that all the con-
jugates of F are contained in E. Suppose D is a free of finite rank module over
F ⊗Qp E. Then clearly

(2.1) dimF D = [E : Qp] · rankF⊗QpE
D.

Lemma 2.1. Suppose D2 ⊆ D1 are two free of finite rank modules over F ⊗Qp E.
Then D1/D2 is also free of finite rank = rank(D1)− rank(D2).

Proof. It suffices to show any basis of D2 can be extended to a basis of D1. For
any F ⊗Qp E-module D, we have:

(2.2) D '
∏

σ:F↪→E
Dσ,

where Dσ = D ⊗F⊗E,σ E. Apply this isomorphism to D1. Look at the image of
D2σ of D2 in each projection D1σ. Since the D1σ are vector spaces over E, we can
extend to the basis of the E-subspaces D2σ to a basis of the D1σ. Now pulling
back the extended basis vectors in each D1σ, we get a basis of D1 which extends
the basis of D2. �

Lemma 2.2 (Newton number). Suppose D is a filtered (ϕ,N, F,E)-module of rank
n, such that the action of ϕ is E-semisimple, i.e., there exists a basis {e1, · · · , en}
of D such that ϕ(ei) = αiei, for some αi ∈ E×. Then

tN (D) = [E : Qp] ·
n∑
i=1

vp(αi).
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Proof. The proof is standard from the definition of the Newton number. �

Lemma 2.3 (Hodge number). Suppose D is a filtered (ϕ,N, F,E)-module of rank
n. Then

(2.3) tH(D) = [E : Qp] ·
∑
i∈Z

i · rankF⊗QpE
griDF .

Proof. Since D is a filtered (ϕ,N, F,E)-module, there exists a separated, exhausted
and decreasing filtration (FiliDF )i∈Z of (F⊗QpE)-submodules of DF := F⊗F0⊗QpE

D. Then, by forgetting the E-module structure, D is also a filtered (ϕ,N, F,Qp)-
module and each term of the filtration {FiliDF } can also thought of as an F -module.
By a standard formula (see, e.g., [FO, Prop. 6.45]), we have:

tH(D) =
∑
i∈Z

i · dimF griDF ,

with griDF = FiliDF /Fili+1DF , with griDF thought of as an F -module. Savitt has
observed [S05] that each FiliDF is free of finite rank over F ⊗Qp E. By Lemma 2.1,

we have griDF is also a free of finite rank module over F ⊗Qp E. Applying (2.1),
we obtain the lemma. �

Remark 1. By the last two lemmas, one can drop the common factor of [E : Qp]
when checking the admissibility of a filtered (ϕ,N, F,E)-module.

Corollary 2.4. Suppose D is a filtered (ϕ,N, F,E)-module of rank 1. Then

(2.4) tH(D) = [E : Qp] · β,

where β is the unique integer such that 0 = Filβ+1DF ( FilβDF = DF .

Lemma 2.5. Let D1, D2 be two filtered (ϕ,N, F,E)-modules, of rank r1, r2, re-
spectively. Assume that the action of ϕ on D1, D2 is semisimple. Then

tN (D1 ⊗D2) = rank(D1) tN (D2) + rank(D2) tN (D1),(2.5a)

tH(D1 ⊗D2) = rank(D1) tH(D2) + rank(D2) tH(D1).(2.5b)

Remark 2. The above formulas are well-known if E = Qp.

Proof. The proof of (2.5a) is an easy check. It is enough to prove (2.5b) when D1,
D2 are of rank 1, since

∧r1r2(D1 ⊗D2) = ∧r2(D2)⊗ · · · ⊗ ∧r2(D2)︸ ︷︷ ︸
r1-times

⊗∧r1(D1)⊗ · · · ⊗ ∧r1(D1)︸ ︷︷ ︸
r2-times

,

where the tensor products are taken over F ⊗Qp E. In this case (2.5b) follows from
Corollary 2.4. �

2.2. Potentially semistable representations. Let E and F be two finite exten-
sions of Qp, and let V be a finite dimensional vector space over E.

Definition 1. A representation ρ : GQp → GL(V ) is said to be semistable over F ,

or F -semistable, if dimF0
Dst,F (V ) = dimF0

(Bst ⊗Qp V )GF = dimQp V where F0 =

BGF
st . If such an F exists, ρ is said to be a potentially semistable representation. If

F = Qp, we say that ρ is semistable.
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Remark 3. If ρ is F -semistable, then ρ is F ′-semistable for any finite extension of
F ′/F . Hence we may and do assume that F is Galois over Qp.

The following fundamental theorem plays a key role in subsequent arguments.

Theorem 2.6 ([CF00]). There is an equivalence of categories between F -semistable
representations ρ : GQp → GLn(E) with Hodge-Tate weights −βn ≤ · · · ≤ −β1 and
admissible filtered (ϕ,N, F,E)-modules D of rank n over F0 ⊗Qp E such that the

jumps in the Hodge filtration FiliDF on DF := F ⊗F0 D are at β1 ≤ · · · ≤ βn.

The jumps in the filtration on DF = F ⊗F0 Dst,F (ρ) are the negatives of the

Hodge-Tate weights of ρ. That is, if h is a Hodge-Tate weight, then Fil−h+1(DF ) (
Fil−h(DF ). The equivalence of categories in the theorem is induced by Fontaine’s
functor Dst,F . The Frobenius ϕ, monodromy N , and filtration on Bst induce the
corresponding structures onDst,F (V ). There is also an induced action of Gal(F/Qp)
on Dst,F (V ). As an illustration of the power of the theorem we recall the following
useful (and well-known) fact:

Corollary 2.7. Every potentially semistable character χ : GQp → E× is of the

form χ = χ0 · λ(a0) · χicyc,p, where χ0 is a finite order character of Gal(F/Qp),
for a cyclotomic extension F of Qp, −i ∈ Z is the Newton number of Dst,F (χ),
and λ(a0) is the unramified character that takes arithmetic Frobenius to the unit
a0 = p−i/a ∈ O×E , where a = ϕ(v)/v for any non-zero vector v in Dst,F (χ).

Proof. Every potentially semistable χ : GQ → E× is F -semistable for a sufficiently
large cyclotomic extension of Qp. Let Dst,F (χ) be the corresponding filtered (ϕ,N)-
module with coefficients and descent data. Suppose that the induced Gal(F/Qp)-
action on Dst,F (χ) is given the character χ0. Now consider the F -semistable E-
valued character χ′ := χ0 · λ(a0) · χicyc,p. One easily checks that Dst,F (χ′) =

Dst,F (χ). By Theorem 2.6, we have χ = χ′ = χ0 · λ(a0) · χicyc,p. �

2.3. Weil-Deligne representations. We now recall the definition of the Weil-
Deligne representation associated to an F -semistable representation ρ : GQp →
GLn(E), due to Fontaine. We assume that F/Qp is Galois and F ⊆ E. Let
WF denote the Weil group of F . For any (ϕ,N, F,E)-module D, we have the
decomposition

(2.6) D '
[F0:Qp]∏
i=1

Di

where Di = D ⊗(F0⊗QpE,σ
i) E, and σ is the arithmetic Frobenius of F0/Qp.

Definition 2 (Weil-Deligne representation). Let ρ : GQp → GLn(E) be an F -
semistable representation. Let D be the corresponding filtered module. Noting
WQp/WF = Gal(F/Qp), we let

(2.7) g ∈WQp act on D by (g mod WF ) ◦ ϕ−α(g),

where the image of g in Gal(F̄p/Fp) is the α(g)-th power of the arithmetic Frobenius
at p. We also have an action of N via the monodromy operator on D. These
actions induce a Weil-Deligne action on each Di in (2.6) and the resulting Weil-
Deligne representations are all isomorphic. This isomorphism class is defined to be
the Weil-Deligne representation WD(ρ) associated to ρ.
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Remark 4. If F/Qp is totally ramified and Frobp ∈WQp is the arithmetic Frobenius,

then observe that WD(ρ)(Frobp) acts by ϕ−1.

Lemma 2.8. Let ρ : Gal(Q̄p/Qp)→ GLn(E) be a potentially semistable represen-
tation. If WD(ρ) is irreducible, then so is ρ.

Proof. Suppose the space V which affords ρ is reducible. By Theorem 2.6, the
reducibility of V is equivalent to the existence of a non-trivial admissible filtered
(ϕ,N, F,E)-submodule of Dst,F (V ). From the definition of the Weil-Deligne action
given above, this submodule is both WQp and N stable. Thus WD(ρ) is reducible,
a contradiction. �

3. The case of GL2

Let f be a primitive cusp form, which is ℘-ordinary. Let π be the correspond-
ing cuspidal automorphic representation on GL2(AQ). Let ρf,℘ be the associated
Galois representation. In this section, we shall reprove Theorem 1.1 (reducibility
of ρf,℘|GQp

).

Wiles’ original proof in [W88] involves some amount of p-adic Hodge theory.
More precisely it uses some Dieudonné theory for the abelian varieties associated
by Shimura to cuspforms of weight 2. The result for forms of weight greater than
2 is then deduced by a clever use of certain auxiliary Λ-adic Galois representations
attached to Hida families of ordinary forms [H86] (see [BGK10, §6] for a detailed ex-
position of the argument). The proof we give below avoids Hida theory completely,
and as the expert will note, is a simple extension of Wiles’ weight 2 argument. We
remark that this proof could not have been given in [W88], since the equivalence of
categories of Colmez and Fontaine (Theorem 2.6) was of course unavailable at the
time.

Another key ingredient in our proof is the fact that Galois representations at-
tached to elliptic modular eigenforms live in strictly compatible systems of Galois
representations [S97]. The consequent ability to transfer information about the
Weil-Deligne parameter between various members of the family has been used to
great effect in recent times (e.g., in the Khare-Wintenberger proof of Serre’s con-
jecture) and is important for us as well. We start by recalling the definition of such
a system of Galois representations following [KW09, §5].

Let F be a number field, ` be a prime, and let ρ : GF → GLn(Q̄`) be a continuous
global Galois representation.

Definition 3. Say that ρ is geometric if it is unramified outside a finite set of
primes of F and its restrictions to the decomposition group at primes above ` are
potentially semistable.

A geometric representation defines, for every prime q of F , a representation of the
Weil-Deligne group at q, denoted by WDq, with values in GLn(Q̄`), well defined
up to conjugacy. For q of characteristic not `, the definition is classical, and comes
from the theory of Deligne-Grothendieck, and for q of characteristic `, the definition
comes from Fontaine theory (Definition 2).

Definition 4. For a number field L, we call an L-rational, n-dimensional strictly
compatible system of geometric representations (ρ`) of GF the data of:

(1) For each prime ` and each embedding i : L ↪→ Q̄`, a continuous, semisimple
representation ρ` : GF → GLn(Q̄`) that is geometric.
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(2) for each prime q of F , an F -semisimple (Frobenius semisimple) representa-
tion rq of the Weil-Deligne group WDq with values in GLn(L) such that:
• rq is unramified for all q outside a finite set.
• for each ` and each i : L ↪→ Q̄`, the Frobenius semisimple Weil-Deligne

representation WDq → GLn(Q̄`) associated to ρ`|Dq is conjugate to rq
(via the embedding i : L ↪→ Q̄`).

• There are n distinct integers β1 < · · · < βn, such that ρ` has Hodge-
Tate weights {−β1, . . . ,−βn} (the minus signs arise since the weights
are the negatives of the jumps in the Hodge filtration on the associated
filtered module).

By work of Faltings, it is known that ρf,℘|GQp
is a potentially semistable rep-

resentation with Hodge-Tate weights (0, k − 1). Let D be the admissible filtered
(ϕ,N, F,E)-module associated to this representation for a suitable choices of F , and
E = Kf,℘. By Theorem 2.6, the study of the structure of the (p, p)-Galois represen-
tation ρf,℘|GQp

reduces to that of the study of the filtered module D. In particular,

ρf,℘|GQp
is reducible if and only if D has a non-trivial admissible submodule.

As mentioned above, a key ingredient in our proof of Theorem 1.1 is that the
representation ρf,℘ lives in a strictly compatible system of Galois representations
(ρf,λ), where λ varies over the primes of Kf . This result is the culmination of
the work of several people, including Langlands, Deligne, Carayol, Katz-Messing
and most recently Saito [S97]. In particular, one may read off the Weil-Deligne
representation WD(ρf,℘|GQp

) on D (cf. Definition 2) by looking at the Weil-Deligne

representation attached to ρf,λ|GQp
for a place λ of Kf with λ - p. As a consequence,

one may read off, e.g., the characteristic polynomial of crystalline Frobenius ϕ
purely in terms of a λ-adic member of the strictly compatible family for λ - p. Now
it is well-known that f is ordinary at ℘ only if the underlying local automorphic
representation πp is in the principal series or (an unramified twist of) the Steinberg
representation. We obtain:

Theorem 3.1 (Carayol, Deligne, Langlands, Katz-Messing, Saito [S97]). The char-
acteristic polynomial P (X) of the (inverse of) crystalline Frobenius ϕ on D coin-
cides with that of ρf,λ(Frobp) for a place λ of Kf with λ - p. More precisely, in the
cases we need, P (X) is given by:

• (Unramified principal series) If p - N , then ρf,℘|GQp
is crystalline and

P (X) = X2 − ap(f)X + χ(p)pk−1.
• (Steinberg) If p||N and vp(cond(χ)) = 0, then ρf,℘|GQp

is Qp-semistable

and P (X) = (X − ap(f))(X − pap(f)).
• (Ramified principal series) If p|N with vp(N) = vp(cond(χ)), then ρf,℘|GQp

is potentially crystalline and P (X) = (X − ap(f))(X − χ′(p)āp(f)), where
χ′ denotes the prime-to-p part of the conductor χ.

More generally, the complete rank 2 filtered (ϕ,N, F,E)-module D can be written
down quite explicitly in all the above cases ([B01], [GM09]). We now give a proof of
Theorem 1.1 using this structure of D, which we first recall below in various cases.

3.1. Good reduction: p - N . In this case F = Qp and ρf,℘|GQp
is crystalline. Let

D = Dst,Qp(ρf,℘|GQp
) be the corresponding filtered (ϕ,N)-module. Let α and β be

the two roots of P (X) = X2−ap(f)X+χ(p)pk−1, with vp(α) = 0 and vp(β) = k−1
(recall vp(ap(f)) = 0).
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The structure of the filtered module D in this case is well-known (see [B01, p.
30-32], where the normalizations are a bit different). There are essentially two
possibilities for D depending on whether D is decomposable or indecomposable.
Assume that the crystal is decomposable (e.g., if f is a CM form). Let e1, e2
be the eigenvectors for ϕ with eigenvalues 1/α and 1/β (cf. Remark 4). Then
D = Ee1 ⊕ Ee2, with

D =


ϕ(e1) = α−1e1

ϕ(e2) = β−1e2

N = 0

Fili(DF ) = 0 if i ≥ 1, Ee1 if 2− k ≤ i ≤ 0, D if i ≤ 1− k.

If D is indecomposable, then D = Ee1 ⊕ Ee2, and

D =


ϕ(e1) = α−1e1 + p1−ke2

ϕ(e2) = β−1e2

N = 0

Fili(DF ) = 0 if i ≥ 1, Ee1 if 2− k ≤ i ≤ 0, D if i ≤ 1− k.

3.2. Steinberg case: p ‖ N and p - cond(χ). In this case ρf,℘|GQp
is semistable

over F = Qp but is not crystalline, and vp(ap(f)) = k−2
2 . Note vp(ap(f)) = 0 if

and only if k = 2. Let D be the corresponding filtered (ϕ,N)-module over Qp (cf.
[GM09, §3.1]). Set α = ap(f) and β = pap(f), so that the eigenvalues of crystalline
Frobenius are 1/α = p/β and 1/β. Then D = Ee1 ⊕ Ee2, and

D =



ϕ(e1) = pβ−1e1

ϕ(e2) = β−1e2

N(e1) = e2

N(e2) = 0

Fili(DF ) = 0 if i ≥ 1, E(e1 − Le2) if 2− k ≤ i ≤ 0, D if i ≤ 1− k,

for some unique non-zero L ∈ E.

3.3. Ramified principal series: vp(cond(χ)) = vp(N) ≥ 1. In this case ρf,℘|GQp

is potentially crystalline. If m is the exact power of p dividing N and cond(χ),
then ρf,℘|GQp

becomes crystalline over the totally ramified abelian extension F =

Qp(µpm) of Qp. Decompose χ = χpχ
′ into its p-part and prime-to-p part.

Let D be the associated admissible filtered (ϕ,N, F,E)-module. An explicit
description of this module was given in [GM09, §3.2]. Let α = ap(f) and β =
χ′(p)āp(f). Then D = Ee1 ⊕ Ee2, with

D =



ϕ(e1) = α−1e1

ϕ(e2) = β−1e2

N = 0

g(e1) = e1

g(e2) = χp(g)e2

for g ∈ Gal(F/Qp). Moreover, in [GM09, §3.2], the filtered module associated to
ρf,℘|GQp

was further classified into three types. Since vp(ap(f)) = 0, this module is
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either Dord-split or Dord-non-split (cf. [GM09, 3.2]). The corresponding filtrations in
these cases are given by

Fili(DF ) = 0 if i ≥ 1, (F ⊗ E)e1 if 2− k ≤ i ≤ 0, DF if i ≤ 1− k, and,

Fili(DF ) = 0 if i ≥ 1, (F ⊗ E)(xe1 + ye2) if 2− k ≤ i ≤ 0, DF if i ≤ 1− k,
respectively, where x and y are explicit non-zero Gauss sum like quantities in F ⊗E
(see [GM09, §3.2] for their exact definitions, which we do not need here).

3.4. Proof of Wiles’ theorem. Let Dn be the submodule of D generated by en,
for n = 1, 2. Since, in all cases, the ‘line’ which determines the interesting step in
the filtration on DF , is transverse to D2,F , the induced filtration on D2,F is given
by

(3.1) · · · = Fil0(D2,F ) = · · · = Fil2−k(D2,F ) = 0 ( Fil1−k(D2,F ) = D2,F = · · ·
Thus tH(D2) = 1− k in all cases.

In the principal series cases (i.e., the first and third cases above), we see that
tN (D2) = vp(β

−1) = 1 − k, so that D2 is an admissible ϕ-submodule of D (in the
corresponding split subcases D1 is also admissible but we do not need that here).
In the second (Steinberg) case, D2 is the only (ϕ,N)-submodule of rank 1, since N
must act trivially on any such module. Moreover, tN (D2) = vp(β

−1) = −k2 which
equals 1 − k = tH(D2) if and only if k = 2. Thus D2 is an admissible submodule
if and only if k = 2, and D is irreducible if k > 2. Thus, in all (ordinary) cases,
we have shown the existence of an admissible submodule D2 of the filtered module
D associated to ρf,℘|GQp

such that on the quotient D/D2, crystalline Frobenius ϕ

acts by an explicit element α−1 of valuation zero.
Assume that we are in the first two cases, so that F = Qp. By Theorem 2.6,

the representation ρf,℘|GQp
is clearly reducible, with a one-dimensional submodule

given by the character λ(β/pk−1)χk−1cyc,p (see Corollary 2.7), and quotient given by
the unramified character λ(α) (again, by Corollary 2.7), proving the theorem in
these cases. In the last case (when F 6= Qp) we may still use Theorem 2.6 to deduce
that ρf,℘|GQp

is reducible. Indeed, the one dimensional module D2 is a filtered

(ϕ,N, F,E)-module, with descent data given by the character χp of Gal(F/Qp),
so by the one dimensional case of Theorem 2.6, D2 corresponds to the character
ψ = χpλ(β/pk−1)χk−1cyc,p of GQp . Since D2 ⊂ D as filtered modules with descent
data, we see V (ψ) is a one dimensional submodule of ρf,℘|GQp

with unramified

quotient given by λ(α), proving the theorem in this case as well.
To recap, we have proved that if v(ap(f)) = 0, then ρf,℘|GQp

is reducible with
quotient given by the unramified character which sends arithmetic Frobenius to

• the unique p-adic unit root of X2 − ap(f)X + χ(p)pk−1 = 0 if p - N , or,
• ap(f) if p ‖ N , p - cond(χ) and k = 2, or if vp(N) = cond(χ) ≥ 1,

and submodule completely determined by the condition that the determinant is
χχk−1cyc,p. Moreover, ρf,℘|GQp

is irreducible if p ‖ N , p - cond(χ) and k > 2.

4. The case of GLn

The goal of this paper is to prove various generalizations of Theorem 1.1 for the
local (p, p)-Galois representations attached to automorphic forms on GLn(AQ). In
this section we collect together some facts about such automorphic forms and their
Galois representations needed for the proof. The main results we need are the Local
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Langlands correspondence (now a theorem of Henniart [H00] and Harris-Taylor
[HT01]), and the existence of strictly compatible systems of Galois representations
attached to cuspidal automorphic forms on GLn (much progress has been made on
this by Clozel, Harris, Kottwitz and Taylor [CHT08]).

4.1. Local Langlands correspondence. We state a few results concerning the
Local Langlands correspondence, which we need later. We follow Kudla’s article
[K91], noting this article follows Rodier [R82], which in turn is based on the original
work of Bernstein and Zelevinsky.

Let F be a complete non-Archimedean local field of residue characteristic p, let
n ≥ 1, and let G = GLn(F ). For a partition n = n1 + n2 + · · ·+ nr of n, let P be
the corresponding parabolic subgroup of G, M the Levi subgroup of P , and N the
unipotent radical of P . Let δP denote the modulus character of the adjoint action
of M on N . If σ = σ1⊗ σ2⊗ · · · ⊗ σr is a smooth representation of M on V , we let

IGP (σ) = {f : G→ V | f smooth on G and f(nmg) = δ
1
2

P (m)(σ(m)(f(g))},

for n ∈ N , m ∈ M , g ∈ G. G acts on functions in IGP (σ) by right translation and
IGP (σ) is the usual induced representation of σ. It is an admissible representation
of finite length.

A result of Bernstein-Zelevinsky says that if all the σi are supercuspidal, and σ
is irreducible, smooth and admissible, then IGP (σ) is reducible if and only if ni = nj
and σi = σj(1) for some i 6= j. For the partition n = m + m + · · · + m (r times),
and for a supercuspidal representation of σ of GLm(F ), call the data

(4.1) (σ, σ(1), · · · , σ(r − 1)) = [σ, σ(r − 1)] = ∆

a segment. Clearly IGP (∆) is reducible. By [K91, Thm. 1.2.2], the induced repre-
sentation IGP (∆) has a unique irreducible quotient Q(∆) which is essentially square-
integrable.

Two segments

∆1 = [σ1, σ1(r1 − 1)] and ∆2 = [σ2, σ2(r2 − 1)]

are said to be linked if ∆1 * ∆2, ∆2 * ∆1, and ∆1 ∪ ∆2 is a segment. We say
that ∆1 precedes ∆2 if ∆1 and ∆2 are linked and if σ2 = σ1(k), for some positive
integer k.

Theorem 4.1 (Langlands classification). Given segments ∆1, · · · ,∆r, assume that
for i < j, ∆i does not precede ∆j. Then

(1) The induced representation IGP (Q(∆1)⊗· · ·⊗Q(∆r)) admits a unique irre-
ducible quotient Q(∆1, · · · ,∆r), called the Langlands quotient. Moreover,
r and the segments ∆i up to permutation are uniquely determined by the
Langlands quotient.

(2) Every irreducible admissible representation of GLn(F ) is isomorphic to
some Q(∆1, · · · ,∆r).

(3) The induced representation IGP (Q(∆1) ⊗ · · · ⊗ Q(∆r)) is irreducible if and
only if no two of the segments ∆i and ∆j are linked.

So much for the automorphic side. We now turn to the Galois side. Recall that
a representation of WF is said to be Frobenius semisimple if arithmetic Frobenius
acts semisimply. An admissible representation of the Weil-Deligne group of F is
one for which the action of WF is Frobenius semisimple. Let Sp(r) denote the
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Weil-Deligne representation of order r with the usual definition. When F = Qp
there is a basis {fi} of Sp(r) for which ϕfi = pi−1fi, and Nfi = fi−1 for i > 1 and
Nf1 = 0. It is well-known that every indecomposable admissible representation
of the Weil-Deligne group of F is of the form τ ⊗ Sp(r) where τ is an irreducible
admissible representation of WF and r ≥ 1. Moreover (cf. [R94, §5, Cor. 2]), every
admissible representation of the Weil-Deligne group of F is of the form

⊕i τi ⊗ Sp(ri),

where the τi are irreducible admissible representations of WF and the ri are positive
integers.

Theorem 4.2 (Local Langlands correspondence). ([HT01, VII.2.20], [H00], [K80]).
There exists a bijection between isomorphism classes of irreducible admissible rep-
resentations of GLn(F ) and isomorphism classes of admissible n-dimensional rep-
resentations of the Weil-Deligne group of F .

The correspondence is given as follows. The key point is to construct a bijection
ΦF : σ 7→ τ = ΦF (σ) between the set of isomorphism classes of supercuspidal rep-
resentations of GLn(F ) and the set of isomorphism classes of irreducible admissible
representations of WF . This is due to Henniart [H00] and Harris-Taylor [HT01].
Then, to Q(∆), for the segment ∆ = [σ, σ(r − 1)], one associates the indecompos-
able admissible representation ΦF (σ)⊗Sp(r) of the Weil-Deligne group of F . More
generally, to the Langlands quotient Q(∆1, · · · ,∆r), where ∆i = [σi, σi(ri−1)], for
i = 1 to r, one associates the admissible representation ⊕iΦF (σi) ⊗ Sp(ri) of the
Weil-Deligne group of F .

4.2. Automorphic forms on GLn. The Harish-Chandra isomorphism identifies
the center zn of the universal enveloping algebra of the complexified Lie algebra gln
of GLn, with the algebra C[X1, X2, · · · , Xn]Sn , where the symmetric group Sn acts
by permuting the Xi. Given a multiset H = {x1, x2, . . . , xn} of n complex numbers
one obtains an infinitesimal character of zn given by χH : Xi 7→ xi.

Cuspidal automorphic forms with infinitesimal character χH (or more simply just
H) are smooth functions f : GLn(Q)\GLn(AQ)→ C satisfying the usual finiteness
condition under a maximal compact subgroup, a cuspidality condition, and a growth
condition for which we refer the reader to [T04]. In addition, if z ∈ zn then z · f =
χH(z)f . The space of such functions is denoted by A◦H(GLn(Q)\GLn(AQ)). This

space is a direct sum of irreducible admissible GLn(A(∞)
Q ) × (gln, O(n))-modules

each occurring with multiplicity one, and these irreducible constituents are referred
to as cuspidal automorphic representations on GLn(AQ) with infinitesimal character
χH . Let π be such an automorphic representation (we will also refer to π as an
automorphic form). By a result of Flath, π is a restricted tensor product π = ⊗′pπp
(cf. [B97, Thm. 3.3.3]) of local automorphic representations.

4.3. Galois representations. Let π be an automorphic form on GLn(AQ) with
infinitesimal character χH , where H is a multiset of integers. The following very
strong, but natural, conjecture seems to be part of the folklore.

Conjecture 4.3. Let H consist of n distinct integers. There is a strictly compatible
system of Galois representations (ρπ,`) associated to π, with Hodge-Tate weights H,
such that Local-Global compatibility holds.
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Here Local-Global compatibility means that the underlying semisimplified Weil-
Deligne representation at p in the compatible system (which is independent of the
residue characteristic ` of the coefficients by hypothesis) corresponds to πp via the
Local Langlands correspondence. Considerable evidence towards this conjecture is
available for self-dual representations thanks to the work of Clozel, Kottwitz, Harris
and Taylor. We quote the following theorem from Taylor’s paper [T04], referring
to that paper for the original references (e.g., [C91]).

Theorem 4.4 (cf. [T04], Thm. 3.6). Let H consist of n distinct integers. Suppose
that the contragredient representation π∨ = π⊗ψ for some character ψ : Q×\A×Q →
C×, and suppose that for some prime q, the representation πq is square-integrable.
Then there is a continuous representation

ρπ,` : GQ → GLn(Q̄`)

such that ρπ,`|GQ`
is potentially semistable with Hodge-Tate weights given by H, and

such that for any prime p 6= `, the semisimplification of the Weil-Deligne representa-
tion attached to ρπ,`|GQp

is the same as the Weil-Deligne representation associated
by the Local Langlands correspondence to πp, except possibly for the monodromy
operator.

Subsequent work of Taylor and Yoshida [TY07] shows that the two Weil-Deligne
representations in the theorem above are in fact the same (i.e., the monodromy
operators also match).

In any case, for the rest of this paper we shall assume that Conjecture 4.3 holds.
In particular, we assume that the Weil-Deligne representation at p associated to a
p-adic member of the compatible system of Galois representations attached to π
using Fontaine theory is the same as the Weil-Deligne representation at p attached
to an `-adic member of the family, for ` 6= p.

4.4. A variant, following [CHT08]. A variant of the above result can be found
in [CHT08]. We state this now using the notation and terminology from [CHT08,
§4.3].

Say π is an RAESDC (regular, algebraic, essentially self dual, cuspidal) auto-
morphic representation if π is a cuspidal automorphic representation such that

• π∨ = π ⊗ χ for some character χ : Q×\A×Q → C×.
• π∞ has the same infinitesimal character as some irreducible algebraic rep-

resentation of GLn.

Let a ∈ Zn satisfy

(4.2) a1 ≥ · · · ≥ an.

Let Ξa denote the irreducible algebraic representation of GLn with highest weight
a. We say that an RAESDC automorphic representation π has weight a if π∞ has
the same infinitesimal character as Ξ∨a ; in this case there is an integer wa such that
ai + an+1−i = wa for all i.

Let S be a finite set of primes of Q. For v ∈ S let ρv be an irreducible square
integrable representation of GLn(Qv). Say that an RAESDC representation π has
type {ρv}v∈S if for each v ∈ S, πv is an unramified twist of ρ∨v .

With this setup, Clozel, Harris, and Taylor attached a Galois representation to
an RAESDC π.
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Theorem 4.5 ([CHT08], Prop. 4.3.1). Let ι : Q̄` ' C. Let π be an RAESDC
automorphic representation as above of weight a and type {ρv}v∈S. Then there is
a continuous semisimple Galois representation

r`,ι(π) : Gal(Q̄/Q)→ GLn(Q̄`)
with the following properties:

(1) For every prime p - `, we have

r`,ι(π)|ssGQp
= (r`(ι

−1πp)
∨)(1− n)ss,

where r` is the reciprocity map defined in [HT01].
(2) If ` = p, then the restriction r`,ι(π)|GQp

is potentially semistable and if πp
is unramified then it is crystalline, with Hodge-Tate weights −(aj + n− j)
for j = 1, . . . , n.

4.5. Newton and Hodge filtration. Let ρπ,p|GQp
be the (p, p)-representation

attached to an automorphic form π andD be the corresponding filtered (ϕ,N, F,E)-
module (for suitable choices of F and E).

Note that there are are two natural filtrations on DF , the Hodge filtration FiliDF

and the Newton filtration defined by ordering the slopes of the crystalline Frobenius
(the valuations of the roots of ϕ.) To keep the analysis of the structure of the (p, p)-
representation ρπ,p|GQp

within reasonable limits in this paper, we shall make the
following assumption.

Assumption 4.6. The Newton filtration on DF is in general position with respect
to the Hodge filtration FiliDF .

Here, if V is a space and Fili1V and Filj2V are two filtrations on V then we say

they are in general position if each Fili1V is as transverse as possible to each Filj2V .
We remark that the condition above is in some sense generic since two random
filtrations on a space tend to be in general position.

4.6. (Quasi-) Ordinary representations. As mentioned earlier, our goal is to
prove that the (p, p)-representation attached to π is ‘upper-triangular’ in several
cases. To this end it is convenient to recall the following terminology (see, e.g.,
Greenberg [G94, p.152] or Ochiai [O01, Def. 3.1]).

Definition 5. Let F be a number field. A p-adic representation V of GF is called
ordinary (respectively quasi-ordinary), if the following conditions are satisfied:

(1) For each place v of F over p, there is a decreasing filtration of GFv -modules

· · ·FilivV ⊇ Fili+1
v V ⊇ · · ·

such that FilivV = V for i� 0 and FilivV = 0 for i� 0.

(2) For each v and each i, Iv acts on FilivV/Fili+1
v V via the character χicyc,p,

where χcyc,p is the p-adic cyclotomic character (respectively, there exists

an open subgroup of Iv which acts on FilivV/Fili+1
v V via χicyc,p).

5. Principal series

Let π be an automorphic representation on GLn(AQ) with infinitesimal character
H, for a set of distinct integers H. Let πp denote the local automorphic represen-
tation of GLn(Qp). In this section we study the behaviour of the (p, p)-Galois
representation assuming that πp is in the principal series.
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5.1. Spherical case. Assume that πp is an unramified principal series represen-
tation. Since πp is a spherical representation of GLn(Qp), there exist unramified
characters χ1, . . . , χn of Q×p such that πp is the Langlands quotient Q(χ1, . . . , χn).
We can parametrize the isomorphism class of this representation by the Satake
parameters α1, . . . , αn, for αi = χi(ω), where ω is a uniformizer for Qp.

Note that ρπ,p|GQp
is crystalline with Hodge-Tate weights H. Let D be the

corresponding filtered ϕ-module. Let the jumps in the filtration on D be β1 < β2 <
· · · < βn (so that the Hodge-Tate weights H are −β1 > · · · > −βn.

Definition 6. Say that the automorphic representation π is p-ordinary if βi +
vp(αi) = 0 for all i = 1, . . . , n.

We remark that if π is p-ordinary, then the vp(αi) are integers.

Theorem 5.1 (Spherical case). Let π be a cuspidal automorphic representation of
GLn(AQ) with infinitesimal character given by the integers −β1 > · · · > −βn and
such that πp is in the unramified principal series with Satake parameters α1, . . . , αn.
If π is p-ordinary, then ρπ,p|GQp

∼
λ( α1

pvp(α1) ) · χ−β1
cyc,p ∗ · · · ∗

0 λ( α2

pvp(α2) ) · χ−β2
cyc,p · · · ∗

0 0 · · · ∗
0 0 λ( αn−1

pvp(αn−1) ) · χ−βn−1
cyc,p ∗

0 0 0 λ( αn
pvp(αn) )) · χ−βncyc,p

 .

In particular, ρπ,p|GQp
is ordinary.

Proof. Since πp is p-ordinary, we have that vp(αn) < vp(αn−1) < · · · < vp(α1).
By strict compatibility, the characteristic polynomial of the inverse of crystalline
Frobenius of Dn is equal to

∏
i(X − αi).

Since the vp(αi) are distinct, there exists a basis of eigenvectors of Dn for the

operator ϕ, say {ei}, with corresponding eigenvalues {α−1i }. For any integer 1 ≤
i ≤ n, let Di be the ϕ-submodule generated by {e1, · · · , ei}. Since Dn is admissible
we know that tH(Di) ≤ tN (Di) for all i = 1, . . . , n.

The filtration on Dn is

(5.1) · · · ⊆ 0 ( Filβn(Dn) ⊆ · · · ( Filβ1(Dn) = Dn ⊆ · · ·

Since Dn is admissible, we have that

(5.2)

n∑
i=1

βi = −
n∑
i=1

vp(αi).

By Assumption 4.6, we have that the jumps in the induced filtration on Dn−1 are
β1, . . . , βn−1. By (5.2), we have

(5.3) tH(Dn−1) =

n−1∑
i=1

βi = −
n−1∑
i=1

vp(αi) = tN (Dn−1),

since βn = −vp(αn). This implies that Dn−1 is admissible. Moreover, Dn/Dn−1
is also admissible since tH(Dn/Dn−1) = βn and tN (Dn/Dn−1) = −vp(αn), since ϕ
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acts on Dn/Dn−1 by α−1n . Therefore, the Galois representation ρπ,p|GQp
looks like

(5.4) ρ ∼
(
ρn−1 ∗

0 λ( αn
pvp(αn) ) · χ−βncyc,p

)
,

where ρn−1 is the n − 1-dimensional representation of GQp which corresponds to
Dn−1.

Repeating this argument successively for Dn−1, Dn−2, . . . , D1, we obtain the
theorem. �

Corollary 5.2. When n = 2, and π corresponds to f , we recover part (i) of
Theorem 1.1 (at least when k ≥ 3 is odd).

Proof. Say 0 ≤ vp(α) ≤ vp(β) ≤ k− 1. It is well-known (cf. [B97]) that the Satake

parameters at p satisfy the formulas α1 = β · p 1−k
2 and α2 = α · p k−1

2 . In fact

L(s, π) = L(s + k−1
2 , f) and ρπ,p = ρf,℘ ⊗ χ

1−k
2

cyc,p, where (k − 1)/2 ∈ Z if k is odd.

In particular, the Hodge-Tate weights of ρπ,p|GQp
are −β2 = 1−k

2 and −β1 = k−1
2 ,

distinct integers if k ≥ 3 is odd. By the p-ordinariness condition for π, we have
that vp(α2) = 1−k

2 and vp(α1) = k−1
2 . By the theorem above, we obtain

ρπ,p|GQp
∼

(
λ(α1/p

(k−1)/2) · χ
k−1
2

cyc,p ∗
0 λ(α2/p

(1−k)/2) · χ
1−k
2

cyc,p

)
.

Twisting both sides by χ
k−1
2

cyc,p, we recover part (i) of Theorem 1.1. �

5.1.1. Variant, following [CHT08]. Let π now be an RAESDC form of weight a
as in Section 4.4 and let πp denote the local p-adic automorphic representation
associated to π. For any i = 1, . . . , n, set β′n+1−i := ai + n − i, where ai’s are as
in (4.2). We have that β′n > β′n−1 > · · · > β′1, and the Hodge-Tate weights are
−β′n < −β′n−1 < · · · < −β′1.

Assume that πp is in the unramified principal series, so πp = Q(χ1, χ2, . . . , χn),

where χi’s are unramified characters of Q×p . Set α′i = χi(ω)p
n−1
2 . Let t

(j)
p denote the

eigenvalue of T
(j)
p on π

GLn(Zp)
p , where T

(j)
p is the j-th Hecke operator as in [CHT08],

and π
GLn(Zp)
p is spanned by a GLn(Zp)-fixed vector, unique up to a constant. We

would like to compute the right hand side in the display in part (1) of Theorem 4.5.
By [CHT08, Cor. 3.1.2], in the spherical case, one has

(r`(ι
−1πp)

∨)(1− n)(Frob−1p ) =
∏
i

(X − α′i)

= Xn − t(1)p Xn−1 + · · ·+ (−1)jp
j(j−1)

2 t(j)p Xn−j + · · ·+ (−1)np
n(n−1)

2 t(n)p ,

where Frob−1p is geometric Frobenius. Let sj denote the j-th elementary symmet-
ric polynomial. Then from the equation above, for any j = 1, · · · , n, we have

p
j(j−1)

2 t
(j)
p = sj(α

′
i) = p

j(n−1)
2 sj(χi(p)) and hence t

(j)
p = sj(χi(p))p

j(n−j)
2 . In this

setting we make:

Definition 7. Say that the automorphic representation π is p-ordinary if β′i +
vp(α

′
i) = 0 for all i = 1, · · · , n.

Again, if π is p-ordinary, then the vp(α
′
i) are integers.
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Note that by strict compatibility, crystalline Frobenius has characteristic poly-
nomial exactly that above. The following theorem follows in a manner identical to
that used to prove Theorem 5.1.

Theorem 5.3 (Spherical case, variant). Let π be a cuspidal automorphic form on
GLn(AQ) of weight a, as is Section 4.4. Let rp,ι(π) be the corresponding p-adic
Galois representation, with Hodge Tate weights −β′n+1−i := ai + n − i, for i =
1, . . . , n. Suppose πp is in the principal series with Satake parameters α1, . . . , αn,

and set α′i = αip
n−1
2 . If π is p-ordinary, then rp,ι(π)|GQp

∼

λ(
α′1

pvp(α
′
1)

) · χ−β
′
1

cyc,p ∗ · · · ∗

0 λ(
α′2

pvp(α
′
2)

) · χ−β
′
2

cyc,p · · · ∗
0 0 · · · ∗
0 0 λ(

α′n−1

p
vp(α

′
n−1

)
) · χ−β

′
n−1

cyc,p ∗

0 0 0 λ(
α′n

pvp(α
′
n) )) · χ−β

′
n

cyc,p


.

In particular, rp,ι(π)|GQp
is ordinary.

The result above was also obtained by D. Geraghty in the course of proving
modularity lifting theorems for GLn (see Lem. 2.7.7 and Cor. 2.7.8 of [G10]). We
thank T. Gee for pointing this out to us.

5.2. Ramified principal series case. Returning to the case where π is an auto-
morphic form with infinitesimal character H, we assume now that the automorphic
representation πp = Q(χ1, . . . , χn), where χi are possibly ramified characters of
Q×p .

By the local Langlands correspondence, we think of the χi as characters of
the Weil group WQp . In particular χi restricted to the inertia group have finite
image. By strict compatibility, WD(ρ)|Ip '

⊕
i

χi|Ip . The characters χi|Ip factor

through Gal(Qnr
p (ζpm)/Qnr

p ) ' Gal(Qp(ζpm)/Qp) for some m ≥ 1. Denote Qp(ζpm)
by F . Observe that F is a finite abelian totally ramified extension of Qp. Let
ρπ,p|GQp

: GQp → GLn(E) be the corresponding (p, p)-representation. Note that

ρπ,p|GF is crystalline.
Let Dn be the corresponding filtered module. Then Dn = Ee1+· · ·+Een, where

g ∈ Gal(F/Qp) acts by χi on ei. A short computation shows that ϕ(ei) = α−1i ei,
where αi = χi(ωF ), for ωF a uniformizer of F .

Using Corollary 2.7, and following the proof of Theorem 5.1, we obtain:

Theorem 5.4 (Ramified principal series). Say πp = Q(χ1, . . . , χn) is in the rami-
fied principal series. If π is p-ordinary, then ρπ,p|GQp

∼
χ1 · λ( α1

pvp(α1) ) · χ−β1
cyc,p ∗ · · · ∗

0 χ2 · λ( α2

pvp(α2) ) · χ−β2
cyc,p · · · ∗

0 0 · · · ∗
0 0 0 χn · λ( αn

pvp(αn) )) · χ−βncyc,p

 .

In particular, ρπ,p|GQp
is quasi-ordinary.
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6. Steinberg case

In this section we treat the case where the Weil-Deligne representation attached
to πp is a twist of the special representation Sp(n).

6.1. Unramified twist of Steinberg. We start with the case where the Weil-
Deligne representation attached to πp is of the form χ ⊗ Sp(n), where χ is an
unramified character.

Let D be the filtered (ϕ,N,Qp, E)-module attached to ρπ,p|GQp
. Thus D is

a vector space over E. Note Nn = 0 and Nn−1 6= 0 so that there is a basis
{fn, fn−1, . . . , f1} of D with fi−1 := Nfi, for 1 < i ≤ n and Nf1 = 0, i.e.,

(6.1) fn
N7→ fn−1

N7→ · · · N7→ f1
N7→ 0.

Say χ takes arithmetic Frobenius to α. Since Nϕ = pϕN , we may assume that

ϕ(fi) = α−1i fi, for all i = 1, . . . , n, where α−1i = pi−1

α . When α = 1, D reduces to
Sp(n) mentioned in Section 4.1.

For each 1 ≤ i ≤ n, let Di denote the subspace 〈fi, · · · , f1〉. Clearly, dim(Di) = i
and D1 ( D2 ( · · · ( Dn. We have:

Lemma 6.1. For every integer 1 ≤ r ≤ n, there is a unique N -submodule of D, of
rank r, namely Dr.

Proof. Let D′ be a N -submodule of D, of rank r. Say the order of nilpotency of
N on D′ is i, i.e., N i = 0 and N i−1 6= 0. Then, D′ ⊆ Ker(N i). Observe that
dim(Ker(N i)) = i, because Ker(N i) is generated by 〈fi, · · · , f1〉. Hence, we have
r ≤ i. Clearly, the order of nilpotency of N on D′ is less than or equal to r. Hence
i = r and D′ = Ker(Nr) = 〈fr, · · · , f1〉. �

Let βn > · · · > β1 be the jumps in the Hodge filtration on D. We assume that
the Hodge filtration is in general position with respect to the Newton filtration
given by the Di (cf. Assumption 4.6). An example of such a filtration is

(6.2) 〈fn〉 ( 〈fn, fn−1〉 ( · · · ( 〈fn, fn−1, · · · , f2〉 ( 〈fn, fn−1, · · · , f1〉.

The following elementary lemma plays an important role in later proofs.

Lemma 6.2. Let m be a natural number. Let {ai}ni=1 be an increasing (resp.,
decreasing) sequence of integers such that |ai+1 − ai| = m. Let {bi}ni=1 be an-
other increasing (resp., decreasing) sequence of integers, such that |bi+1 − bi| ≥ m.
Assume that

∑
i ai =

∑
i bi. If an = bn or a1 = b1, then ai = bi,∀ i.

Proof. Let us prove the lemma when an = bn and the ai are increasing. The proof
in the other cases is similar. We have:

(6.3) m(n−1+n−2+· · ·+1) ≤
n∑
i=1

(bn−bi) =

n∑
i=1

(an−ai) = m(n−1+n−2+· · ·+1)

The first equality in the above expression follows from an = bn. From the equation
above, we see that bn − bi = an − ai, for every 1 ≤ i ≤ n. Since an = bn, we have
that ai = bi, for every 1 ≤ i ≤ n. �

By Lemma 6.1, the Di are the only (ϕ,N)-submodules of D. The following
proposition shows that if two ‘consecutive’ submodules Di and Di+1 are admissible
then all the Di are admissible.
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Proposition 6.3. Suppose there exists an integer 1 ≤ i ≤ n such that both Di and
Di+1 are admissible. Then each Dr, for 1 ≤ r ≤ n, is admissible. Moreover, the βi
are consecutive integers.

Proof. Since Di and Di+1 are admissible, we have the following equalities:

(6.4)

β1 + β2 + · · ·+ βi = −
i∑

r=1

vp(αr),

β1 + β2 + · · ·+ βi+1 = −
i+1∑
r=1

vp(αr).

From these expressions, we have that

(6.5) −vp(αi+1) = βi+1.

Define ar = −vp(αr) and br = βr, for 1 ≤ r ≤ n. Hence, we have

(6.6)
an > · · · > ai+2 > ai+1 > ai > · · · > a1,

bn > · · · > bi+2 > bi+1 > bi > · · · > b1.

By (6.5), ai+1 = bi+1. By Lemma 6.2 and by (6.4), we have that ar = br, for all
1 ≤ r ≤ i+ 1.

Since Dn is admissible, we have

(6.7) tH(Dn) =

n∑
r=1

βr = −
n∑
r=1

vp(αr) = tN (Dn).

From (6.4) and (6.7), we have that

(6.8)

n∑
r=i+1

βr = −
n∑

r=i+1

vp(αr).

Again, by (6.6) and Lemma 6.2, we have that ar = br, for all i+ 1 ≤ r ≤ n. Hence
βr = −vp(αr), for all 1 ≤ r ≤ n. This shows that all the other Di’s are admissible.
Also, the βi are consecutive integers since the vp(αi) are consecutive integers. �

Corollary 6.4. Keeping the notation as above, admissibility of D1 or Dn−1 implies
the admissibility of all other Di.

Theorem 6.5. Assume that the Hodge filtration on D is in general position with
respect to the Di (cf. Assumption 4.6). Then the crystal D is either irreducible or
reducible, in which case each Di, for 1 ≤ i ≤ n is admissible.

Proof. If D is irreducible, then we are done. If not, there exists an i, such that Di

is admissible. If Di−1 or Di+1 is admissible, then by Proposition 6.3, all the Dr

are admissible. So, it is enough to consider the case where neither Di−1 nor Di+1
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is admissible (and Di is admissible). We have:

β1 + β2 + · · ·+ βi−1 < −
r=i−1∑
r=1

vp(αr),(6.9a)

β1 + β2 + · · ·+ βi = −
r=i∑
r=1

vp(αr),(6.9b)

β1 + β2 + · · ·+ βi+1 < −
r=i+1∑
r=1

vp(αr).(6.9c)

Subtracting (6.9b) from (6.9a), we get −βi < vp(αi). Subtracting (6.9b) from
(6.9c), we get βi+1 < −vp(αi+1) = −vp(αi) + 1. Adding these inequalities, we
obtain βi+1 − βi < 1. But this is a contradiction, since βi+1 > βi. This proves the
theorem. �

Definition 8. Say π is p-ordinary if β1 + vp(α) = 0.

Note that if π is p-ordinary, then D1 is admissible, so the flag D1 ⊂ D2 ⊂ · · · ⊂
Dn is an admissible flag by Theorem 6.5 (an easy check shows that if π is p-ordinary
then Assumption 4.6 holds automatically).

Applying the above discussion to the local Galois representation ρπ,p|GQp
, we

obtain:

Theorem 6.6 (Unramified twist of Steinberg). Say π is a cuspidal automorphic
form with infinitesimal character given by the integers −β1 > · · · > −βn. Suppose
that πp is an unramified twist of the Steinberg representation, i.e., WD(ρπ,p|GQp

) ∼
χ⊗Sp(n), where χ is the unramified character mapping arithmetic Frobenius to α.
If π is ordinary at p (i.e., vp(α) = −β1), then the βi are necessarily consecutive
integers and ρπ,p|GQp

∼
λ( α

pvp(α) ) · χ−β1
cyc,p ∗ · · · ∗

0 λ( α
pvp(α) ) · χ−β1−1

cyc,p · · · ∗
0 0 · · · ∗
0 0 0 λ( α

pvp(α) ) · χ−β1−(n−1)
cyc,p

 ,

where λ( α
pvp(α) ) is an unramified character taking arithmetic Frobenius to α

pvp(α) ,

and in particular, ρπ,p|GQp
is ordinary. If π is not p-ordinary, and Assumption 4.6

holds, then ρπ,p|GQp
is irreducible.

Proof. By strict compatibility, D is the filtered (ϕ,N,Qp, E)-module attached to
ρπ,p|GQp

. If π is p-ordinary, then we are done and the characters on the diagonal
are determined by corollary 2.7.

If π is not p-ordinary, we claim that D is irreducible. Indeed, if D is reducible,
then by Theorem 6.5, all Di, and in particular D1, are admissible, so π is p-
ordinary. �

6.2. Ramified twist of Steinberg.

Theorem 6.7 (Ramified twist of Steinberg). Let the notation and hypotheses be as
in Theorem 6.6, except that this time assume that WD(ρπ,p|GQp

) ∼ χ⊗Sp(n), where

χ is an arbitrary, possibly ramified, character. Write χ = χ0 · χ′ where χ0 is the



(p, p)-GALOIS REPRESENTATIONS 21

ramified part of χ, and χ′ is an unramified character taking arithmetic Frobenius
to α. If π is p-ordinary (β1 = −vp(α)), then the βi are consecutive integers and
ρπ,p|GQp

∼
χ0 · λ( α

pvp(α) ) · χ−β1
cyc,p ∗ · · · ∗

0 χ0 · λ( α
pvp(α) ) · χ−β1−1

cyc,p · · · ∗
0 0 · · · ∗
0 0 0 χ0 · λ( α

pvp(α) ) · χ−β1−(n−1)
cyc,p

 .

If π is not p-ordinary, and Assumption 4.6 holds, then ρπ,p|GQp
is irreducible.

Proof. Let F be a totally ramified abelian (cyclotomic) extension of Qp such that
χ0|IF = 1. Then the reducibility of ρπ,p|GF over F can be shown exactly as in The-
orem 6.6, and the theorem over Qp follows using the descent data of the underlying
filtered module. If π is not p-ordinary, then by arguments similar to those used in
proving Theorem 6.6, ρπ,p|GF is irreducible, so that ρπ,p|GQp

is also irreducible. �

7. Supercuspidal ⊗ Steinberg

We now turn to the case where the Weil-Deligne representation attached to πp is
indecomposable. Thus we assume that WD(ρπ,p|GQp

) is Frobenius semisimple and

is of the form τ ⊗ Sp(n), where τ is an irreducible m-dimensional representation
corresponding to a supercuspidal representation of GLm, for m ≥ 1, and Sp(n) for
n ≥ 1 denotes the usual special representation.

We first classify the (ϕ,N, F,E)-submodules of D, the crystal attached to the
local representation ρπ,p|GQp

, where WD(ρπ,p|GQp
) = τ ⊗ Sp(n), for m ≥ 1 and

n ≥ 1. This classification will be used in the last subsection to study the structure
of ρπ,p|GQp

, taking the filtration on D into account.

Recall that there is a equivalence of categories between (ϕ,N)-modules with
coefficients and descent data, and Weil-Deligne representations [BS07, Prop. 4.1].
Write Dτ , respectively DSp(n), for the (ϕ,N)-modules corresponding to τ , respec-
tively Sp(n), etc. The main result of the first few sections is:

Theorem 7.1. All the (ϕ,N, F,E)-submodules of D = Dτ⊗DSp(n) are of the form
Dτ ⊗DSp(r), for some 1 ≤ r ≤ n.

We prove the theorem in stages, since this is how the theorem was discovered,
and it also allows one to appreciate the general argument. However the impatient
reader may turn straight to the Section 7.3 where the general case is treated. Note
the case that m = 1 was treated in the previous section (twist of Steinberg), and
the case n = 1 is vacuously true. The next simplest case is when m = 2 and n = 2,
and we start with this case in the next section.

The following lemma will be useful in our analysis throughout.

Lemma 7.2. The theory of Jordan canonical forms can be extended to nilpotent
operators on free of finite rank (F0 ⊗E)-modules, and we call the number of blocks
in the Jordan decomposition of the monodromy operator N as the ‘index’ of N .

Proof. One simply extends the usual theory of Jordan canonical forms on each
projection under (2.6) to modules over F0 ⊗ E-modules. �
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7.1. m = 2 and n = 2. We start with an exhaustive study of the case when
τ corresponds to a supercuspidal representation of GL2(Qp) whose Weil-Deligne
representation is the 2-dimensional representation obtained by inducing a character
from a quadratic extension K of Qp, and n = 2. The methods used in this case will
be used to deal with more general cases in subsequent subsections.

We also assume, for simplicity, that the quadratic extension of Qp mentioned
above is K = Qp2 , the unramified quadratic extension of Qp. By abusing language
a bit we shall say that τ corresponds to an unramified supercuspidal representation.
The argument in the ramified supercuspidal case (i.e., K/Qp ramified quadratic)
was also worked out in detail, but is excluded here for the sake of brevity.

Thus we assume that there is a character χ of Wp2 , the Weil group of Qp2 , which
does not extend to Wp, the Weil group of Qp (i.e., χ 6= χσ on Wp2 , equivalently
χ 6= χσ on Wp2 , where σ is the non-trivial automorphism of Gal(Qp2/Qp)) such
that

τ |Ip ' Ind
Wp

Wp2
χ|Ip ' χ|Ip ⊕ χσ|Ip .

The corresponding (ϕ,N)-module in this case can be written down quite explicitly
and we refer the reader to [GM09, §3.3] for details. Briefly there is an abelian field
F (depending on χ), generated by σ (a lift to F of the automorphism σ above) and
elements g of the inertia group I(F/K) of Gal(F/K), and an element t ∈ E such
that Dτ is free of rank 2 with basis e1, e2, and satisfies:

Dτ = Dunr−sc[a : b] =



ϕ(e1) = 1√
t
e1,

ϕ(e2) = 1√
t
e2,

N = 0,
σ(e1) = e2,
σ(e2) = e1,
g(e1) = (1⊗ χ(g))e1, g ∈ I(F/K)
g(e2) = (1⊗ χσ(g))e2. g ∈ I(F/K).

We do not write down the Hodge filtration since we do not need it here.
For the second factor, we recall that the module DSp(2) has a basis f1, f2 with

properties described at the start of Section 6.1. Then D = Dτ ⊗DSp(2) has a basis

of 4 vectors {vi}4i=1 defined as follows

v1 = e1 ⊗ f2 v2 = e1 ⊗ f1
v3 = e2 ⊗ f2 v4 = e2 ⊗ f1

Observe that on D, the monodromy operator N = 1 ⊗ N + N ⊗ 1 = 1 ⊗ N has
kernel of rank 2, and this space is generated by the vectors v2 and v4.

For notational simplicity, write z for 1 ⊗ z, if z ∈ E and note that for z =∑
i zi ⊗ ei ∈ F0 ⊗ E, σ(z) =

∑
i σ(zi) ⊗ ei. Then the induced action on D, the

tensor product of the two (ϕ,N)-modules Dτ and DSp(2), is summarized in the
following table:

v1 = e1 ⊗ f2 v2 = e1 ⊗ f1 v3 = e2 ⊗ f2 v4 = e2 ⊗ f1
ϕ p√

t
v1

1√
t
v2

p√
t
v3

1√
t
v4

N v2 0 v4 0
σ v3 v4 v1 v2
g χ(g)v1 χ(g)v2 χσ(g)v3 χσ(g)v4
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7.1.1. Rank 1 submodules of D.

Lemma 7.3. There are no rank 1 (ϕ,N, F,E)-submodules of D.

Proof. Let 〈v〉 be a free module of rank-1 admissible (ϕ,N, F,E)-submodule of D.
Write v = av1 + bv2 + cv3 + dv4 where a, b, c, d ∈ (F0 ⊗Qp E). Since the rank of 〈v〉
is 1, we have Nv is zero. From the above table, it is easy to see that v has to be
equal to bv2 + dv4, for some b, d. Assume that ϕ(v) = αϕv. Since ϕ is bijective, αϕ
is a unit. We compute:

αϕ(bv2 + dv4) = αϕv
(1)
= ϕv

(2)
= σ(b)

1√
t
v2 + σ(d)

1√
t
v4

(equality (1) follows from the fact that 〈v〉 is ϕ-stable and equality (2) from the
table). By comparing coefficients, we have

(7.1) αϕ
√
tb = σ(b), αϕ

√
td = σ(d).

Lemma 7.4. Suppose x is a non-zero and a non-unit element of F0 ⊗ E. Then
σ(x) 6= cx, for every c ∈ F0 ⊗ E.

From the above relations for b (resp., d) and by Lemma 7.4, we conclude that b
(resp., d) is either zero or a unit.

We know that σ also acts on v. Suppose that σ(v) = cσv, for some cσ ∈ (F0⊗E),
with c2mσ = 1 (this m is the m of [GM09, §3.3], and not the m of this paper which
is presently 2). Then

cσ(bv2 + dv4) = cσv
(1)
= σv

(2)
= σ(b)v4 + σ(d)v2

(equality (1) follows from the fact that 〈v〉 is σ-stable and equality (2) from the
table). By comparing coefficients, we have

(7.2) cσb = σ(d), cσd = σ(b).

From these relations, we can conclude that b is zero if and only if d is zero. Since
v is non-zero, we have that both b and d are both units.

Now, we shall use the fact that 〈v〉 is I(F/K)-invariant. For every g ∈ I(F/K),
we have

cg(bv2 + dv4) = cgv
(1)
= g · v (2)

= χ(g)bv2 + χσ(g)dv4

(equality (1) follows from the fact that 〈v〉 is I(F/K)-stable and equality (2) from
the table). Now, by comparing coefficients, and using the fact that b and d are
units, we have

(7.3) cg = χ(g), cg = χσ(g).

Hence χ(g) = χσ(g), for every g ∈ I(F/K). This is a contradiction. Hence, there
are no 1-dimensional (ϕ,N, F,E)-submodules of D. �

Remark 5. The above argument shows that there are no (ϕ,Gal(F/Qp))-stable
submodules of rank 1 of either 〈v2, v4〉 or, as one can show similarly, 〈v1, v3〉. This
observation will be used later. There is also a simpler proof of this Lemma which
avoids working with the above explicit manipulations which works for general m
and n (cf. the proof of Lemma 7.11).
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7.1.2. Rank 2 submodules of D.

Lemma 7.5. The only rank 2 (ϕ,N, F,E)-submodule of D is 〈v2, v4〉 = Dτ⊗DSp(1).

Proof. Let D′ be a filtered (ϕ,N, F,E)-module of rank 2. Suppose the index of
N = 1, i.e., there exists a basis, say 〈w1, N(w1)〉, of D′ such that N2(w1) is zero.
It is easy to see that 〈N(w1)〉 is a rank 1 (ϕ,N, F,E)-submodule of D. But, we
know that there are no such submodules of D by the previous Lemma. Therefore,
the index of N is not equal to 1.

Suppose the index of N = 2, i.e., there exists a basis, say 〈w1, w2〉, of D′ such
that N(w1) and N(w2) are both zero. We know that the kernel of N is 〈v2, v4〉.
Therefore, we have that 〈w1, w2〉 ⊆ 〈v2, v4〉. But both are free modules of the same
rank, hence equality holds. �

7.1.3. Rank 3 submodules of D.

Lemma 7.6. There are no rank 3 (ϕ,N, F,E)-submodules of D.

Proof. Suppose D′ is a (ϕ,N, F,E)-submodule of D of rank 3. Suppose the index
of nilpotency of N is 3, i.e., there are 3 linearly independent vectors of D′, such
that N acts trivially on these vectors. But, this cannot happen, because the kernel
of N has rank 2.

Suppose the index of nilpotency of N is 2, that is, there exists a basis, say
w1, w2, N(w2), ofD′ such thatN(w1), N2(w2) are both zero. Clearly 〈w1, N(w2)〉 =
〈v2, v4〉. Thus there is a vector w′2 = a1v1 + a3v3 such that D′ = 〈w′2, v2, v4〉. But
〈w′2〉 is stable by ϕ. Indeed ϕ acts by a scalar on w′2 since, a priori, ϕw′2 is a linear
combination of w′2, v2 and v4, but the v2 and v4 components do not appear since
ϕ preserves the space 〈v1, v3〉. Similarly 〈w′2〉 is also Gal(F/Qp)-stable. But then
〈w′2〉 ⊂ 〈v1, v3〉 is a rank 1 module stable by ϕ and Gal(F/Qp), which is not possible
(cf. Remark 5).

Suppose the index of nilpotency of N is 1. But this case does not arise since the
index of nilpotency of N on D is 2. �

7.1.4. Proof of Theorem 7.1 when m = 2 and n = 2. This follows immediately from
Lemmas 7.3, 7.5, and 7.6, when τ is an unramified supercuspidal representation of
dimension m = 2, and n = 2. As we remarked earlier, the case when τ is a ramified
supercuspidal representation is proved in a very similar manner using the notation
in [GM09, §3.4] (the only difference in the computations are the role of σ is now
played by the automorphism ι there).

We mention some immediate corollaries of Theorem 7.1 in the present case. Let
π be an automorphic form on GL4(AQ) with infinitesimal character consisting of
distinct integers −β4 < · · · < −β1. Let ρ = ρπ,p|GQp

be the corresponding (p, p)-

representation. Suppose that WD(ρ) ∼ τ ⊗ Sp(2), where τ is a supercuspidal
representation of dimension 2, as above. Let D = D(ρ) be the corresponding
admissible filtered (ϕ,N, F,E)-module. Note that β4 > β3 > β2 > β1 are also the
drops in the Hodge filtration on DF .

Corollary 7.7. With notation as above, the crystal D is irreducible if and only if
〈v2, v4〉 is not an admissible (ϕ,N, F,E)-submodule of D.

Proof. We know thatD does not have any rank 1 or rank 3 (ϕ,N, F,E)-submodules.
By Lemma 7.5, there exists a unique rank 2 (ϕ,N, F,E)-submodule of D, which
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is D′ = 〈v2, v4〉. Hence the admissibility of D′ is equivalent to the reducibility of
D. �

Corollary 7.8. The crystal D is irreducible if no two of the four βi add up to
−vp(t). In particular ρ is irreducible in this case.

Proof. By Corollary 7.7, D is irreducible if and only if D′ = 〈v2, v4〉 is not an
admissible submodule. The submodule D′ is not admissible if no two of the four
βi add up to tN (D′) which is −vp(t), from the table above. �

7.2. τ unramified supercuspidal of dim m ≥ 2 and n ≥ 2. We now prove
Theorem 7.1 for general m and n, assuming τ is an ‘unramified supercuspidal
representation’. Let us explain this terminology. We assume that τ is an induced

representation of dimension m, i.e., τ ' Ind
Wp

WK
χ, where K is a p-adic field such

that [K : Qp] = m, and χ is a character of WK . This is known to always hold
if (p,m) = 1 or p > m. For simplicity, we shall assume that K is the unique
unramified extension of Qp, namely Qpm . We refer to τ in this case as an unramified
supercuspidal representation.

Following the methods of [GM09, §3.3], we first explicitly write down the crystal
D = Dτ whose underlying Weil-Deligne representation is an unramified supercus-
pidal representation τ of dimension m. This is done in the next few subsections.
The arguments are similar to those given in [GM09, §3.3], with some minor modi-
fications. We outline the steps now.

Let σ be the generator of Gal(Qpm/Qp) and let Ipm denote the inertia subgroup
of Qpm . Then

τ |Ip=Ipm ' (Ind
Wp

Wpm
χ)|Ipm ' ⊕

m
i=1χ

σi |Ipm .

Since τ is irreducible, by Mackey’s criterion, we have that χ 6= χσ
i

, for all i, on

Wpm and also on Ipm . Moreover, we have that χσ
j 6= χσ

i

, for any i 6= j.

7.2.1. Description of Gal(F/Qp). First, we need to construct a finite extension F
over K such that τ |IF is trivial and which simultaneously has the property that
F/Qp is Galois. The construction of an explicit such field F is given in [GM09,
§3.3.1], in the case K = Qp2 using Lubin-Tate theory. The structure of Gal(F/Qp)
is described in the same place. The case K = Qpm may be treated in a very similar
manner. Write d for what was calledm in [GM09, §3.3.1], sincem already has mean-
ing here. Then F may be chosen such that Gal(F/Qp) is the semi-direct product of
a cyclic group 〈σ〉 with σmd = 1, with the product of the cyclic groups ∆ = 〈δ〉, with

δp
m−1 = 1, and Γ =

∏m
i=1〈γi〉, with each γp

n

i = 1, for some n. Moreover, the max-
imal unramified extension F0 of F is F0 = Qmdp and Gal(F0/Qp) = 〈σ̃〉 = Z/md,
such that σ̃|K is the generator of Gal(K/Qp). By abuse of notation, we denote σ̃
by σ itself.

7.2.2. Description of the Galois action. Recall D is a free F0⊗Qp E-module of rank
m. Let Di = D ⊗F0⊗E,σi E, for i = 0, 1, · · · ,md − 1, be the component of D

corresponding to σi. Each Di is a Weil-Deligne representation with an action of
Wp.

By the definition of the Weil-Deligne representation, the action of Ip matches
with the action of the inertia subgroup of Gal(F/Qp), namely ∆×Γ. The restriction
of χ to Ip can be written as χ|Ip = ωrm

∏m
i=1 χi, where ωm is the fundamental
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character of level m, r ≥ 1, and χi is the character of Γ which takes γi to a pn-th
root of unity ζi, for i = 1, . . . ,m.

We see that each Di has a basis vi,1, vi,2, . . . , vi,m such that if i ≡ k (mod m),
for some 0 ≤ k ≤ m− 1, then

(7.4) g · vi,j = χσ
j−k−1

(g)vi,j ,

for all j = 1, · · · ,m.
Since σ takes Di to Di+1, using (7.4), we may assume that

σ(vi,j) = vi+1,j ,

for all i, j.

7.2.3. Description of action of ϕ. The operator ϕ acts in a cyclic manner as well,
taking Di to Di+1. Since ϕ commutes with the action of inertia, we see that

ϕ(vi,j) = cjvi+1,j+1,

for some cj , for all 1 ≤ j ≤ m. Observe that cj ’s does not depend on i, since ϕ
commutes with σ.

For all 1 ≤ k ≤ m, define, 1
tk

:=
∏k
j=1 cj and 1

t0
= 1. Replace the extension E

with a finite extension, again denoted by E, so that it contains all m-th roots of all
cj . Let m

√
cj denote a particular m-th root, for each j.

We now write down a basis of D, say {ei}mi=1, such that ϕ(ei) = 1
m
√
tm
ei. First,

we shall define e1 and the other ei’s are defined by ei = σi−1e1. The vector e1 is
given by

e1 =

md−1∑
j=0

j≡j0 (mod m), 0≤j0≤m−1

(tm)
j0
m

tj0
vj,j+1.

Here we use the obvious convention that if j is such that j ≡ j0 (mod m), with
1 ≤ j0 ≤ m, then vi,j := vi,j0 . A small computation shows that ϕ(e1) = 1

m
√
tm
e1.

Since ϕ commutes with σ, we have ϕ(ei) = 1
m
√
tm
ei, for all 1 ≤ i ≤ m. We obtain

that Dτ is a free rank m module over F0 ⊗E with basis ei, i = 1, . . . ,m such that

(7.5) Dτ =


ϕ(ei) = 1

m
√
tm
ei,

N(ei) = 0,

σ(ei) = ei+1,

g(ei) = (1⊗ χσi−1

(g))(ei), g ∈ I(F/K),

for all 1 ≤ i ≤ m.
Whenm = 2, this (ϕ,N)-module is exactly the one given in [GM09, §3.3] (though

the ei used here differ by a scalar from the ei used there).

7.2.4. Description of the filtration. For the sake of completeness, let us make some
brief comments about the filtration on Dτ , even though we shall not need to use
the filtration in this paper.

Let D be an arbitrary filtered (ϕ,N, F,E)-module and write DF = F⊗D, where
the tensor product is taken over F0 ⊗ E. It is known that every Galois stable line
(F ⊗Qp E) · v in DF is generated by a Galois stable vector v (cf. [GM09, Lemma
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3.1]). The proof uses the fact H1(Gal(F/Qp), (F ⊗Qp E)×) = 0. In fact, for any
n ≥ 1:

H1(Gal(F/Qp),GLn(F ⊗Qp E)) = H1(Gal(F/Qp),
∏
F↪→E

GLn(E)),

=
(1)

H1(Gal(F/Qp), Ind
Gal(F/Qp)
{e} GLn(E)),

=
(2)

H1({e},GLn(E)) = {0},

(where (1) follows from the permutation action of Gal(F/Qp) on
∏

F↪→E
GLn(E) and

(2) follows from Shapiro’s lemma). Using this vanishing, we can prove the following
general fact.

Lemma 7.9. Every Gal(F/Qp)-stable submodule of DF has a basis consisting of
Galois invariant vectors.

Proof. Let D′ be a Galois stable submodule of DF . Savitt has observed that
any F ⊗Qp E-submodule of a filtered module with descent data (i.e., Gal(F/Qp)-
action) has to be free [S05, Lemma 2.1]. Hence D′ is a free of finite rank, say,
r. If {v1, v2, · · · , vr} is a basis of D′, then for every g ∈ Gal(F/Qp), we have
g · (v1, v2, · · · , vn)t = cg(v1, v2, · · · , vr)t, for some cg ∈ GLn(F ⊗Qp E). Moreover,

cg is 1-cocycle, i.e., cg ∈ Z1(Gal(F/Qp),GLn(F ⊗Qp E)). By the vanishing result

above, cg is coboundary, hence cg = cg(c)−1, for some c ∈ GLn(F ⊗Qp E). Replac-
ing the basis (v1, v2, · · · , vr)t with c · (v1, v2, · · · , vr)t, we may assume that cg = 1
and that each vector in {v1, v2, . . . , vr} is invariant under Gal(F/Qp). �

In particular each step Fili(DF ) in the filtration on DF is spanned by Gal(F/Qp)-
invariant vectors. In [GM09, §3.3.4] the Hodge filtration on DF was written down
explicitly when D = Dτ and τ is a 2-dimensional unramified supercuspidal repre-
sentation. Presumably this can be done also when τ has dimension m ≥ 2, but we
refrain from pursuing this here.

7.2.5. Proof of Theorem 7.1. We now turn to the proof of Theorem 7.1, when τ is
an unramified supercuspidal representation of dimension m.

Now Dτ has basis e1, . . . , em with properties described above. Recall that DSp(n)

has basis fn, fn−1, . . . , f1, with properties described at the start of Section 6.1. Then
D = Dτ ⊗DSp(n) has a basis of mn vectors {vi}mni=1 defined by the table:

v1 = e1 ⊗ fn v2 = e1 ⊗ fn−1 · · · vn = e1 ⊗ f1
vn+1 = e2 ⊗ fn vn+2 = e2 ⊗ fn−1 · · · v2n = e2 ⊗ f1

...
... · · ·

...
vin+1 = ei+1 ⊗ fn vin+2 = ei+1 ⊗ fn−1 · · · vin = ei+1 ⊗ f1

...
... · · ·

...
v(m−1)n+1 = em ⊗ fn v(m−1)n+2 = em ⊗ fn−1 · · · vmn = em ⊗ f1

The action of ϕ, N , σ ∈ Gal(F/Qp) and g ∈ I(F/K), on the vectors in the table
above can be written down explicitly, as in the table in Section 7.1. We only note
that ϕ acts by a scalar, N shifts one column to the right, σ shifts one row down,
and each g acts by a scalar. In particular, the span of the vectors in each column
in the table above is stable under the actions of ϕ and Gal(F/Qp). The following
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lemma concerning this submodule is useful (cf. Remark 5 for the case m = 2 and
n = 2).

Lemma 7.10. Let 1 ≤ i ≤ n. There are no rank r (ϕ,Gal(F/Qp))-sub-modules of

〈vi, vn+i, . . . , v(m−1)n+i〉 ⊂ Dτ ⊗DSp(n),

for 1 ≤ r ≤ m− 1.

Proof. Suppose there exists such a (free) module D′ with basis w1, w2, . . . , wr.

Project D′ to a fixed component say j-th under (2.6), and write wj1, . . . , w
j
r for

the corresponding basis elements of the projection. Since {wjl }rl=1’s are linearly
independent, up to an ordering of {i, n+ i, . . . , (m− 1)n+ i}, we may write:

(7.6)


wj1
wj2
· · ·
wjr

 =


1 0 · · · 0 ∗ ∗
0 1 · · · 0 ∗ ∗
· · · · · · · · · · · · ∗ ∗
0 0 · · · 1 ∗ ∗


r×m


vji
vjn+i

...

vj(m−1)n+i

 .

Assume one of the ∗’s in the above matrix is non-zero. Without loss of generality,
assume that a ∗ in the first row is non-zero, and denote it by a. Then

wj1 = vji + avjkn+i + · · · ,

for some r + 1 ≤ k ≤ m. Using the action of g ∈ I(F/K), we see from the above
matrix that

g · wj1 = cgw
j
1,

for some cg ∈ E. Now (7.5) and by comparing the coefficients of vji , v
j
kn+i, in the

above equality we see that

χ(g) = χσ
k

(g),

for every g ∈ I(F/K), a contradiction.
Thus, we may assume that all the ∗’s in the above matrix are zero. So, locally

(D′)j , the image of D′ in the j-th projection, is generated by r-vectors from the set

{vji , v
j
n+i, . . . , v

j
(m−1)n+i}, say (D′)j = 〈vjj1n+i, v

j
j2n+i

, . . . , vjjrn+i〉, where 0 ≤ j1 <

j2 < . . . < jr ≤ m− 1.
Let w̃1 be the element of D corresponding to (vjj1n+i), as j varies through all

projections, under (2.6). Similarly, define w̃2, . . . , w̃r. If any w̃j is in the set
{vi, vn+i, . . . , v(m−1)n+i}, then using the action of σ ∈ Gal(F/Qp), we see that
D′ = 〈vi, vn+i, . . . , v(m−1)n+i〉, a contradiction, since the rank of D′ is at most
m− 1.

Therefore, none of the w̃i are basis vectors. Hence, we may write:

w̃1 = akvkn+i +

m−1∑
j=k+1

ajvjn+i,

where the aj ∈ F0 ⊗ E and ak is neither zero nor a unit in F0 ⊗ E, for some
1 ≤ k ≤ m − 1. The other basis vectors w̃2, . . . , w̃r are contained in the span of
{v(k+1)n+i, . . . , v(m−1)n+i}. Moreover, we have

(7.7) D′ = 〈w1, w2, · · · , wr〉 = 〈w̃1, w̃2, · · · , w̃r〉
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Write ϕ(w̃1) =
∑
i ciw̃i, for some ci. Now, by comparing the coefficients of vkn+i

on both sides of the above equality, we see that

σ(ak) = c1 · ak.
But, by Lemma 7.4, this cannot happen. �

Now, we prove Theorem 7.1 for τ an unramified supercuspidal representation of
dimension n.

Let D′ be a rank r (ϕ,N, F,E)-submodule of D. By the lemma above (applied
when i = n, i.e., to the span of the vectors in the last column of the table above),
the index of N on D′ cannot be smaller than m, since otherwise the kernel of N
on D′ would be a (ϕ,Gal(F/Qp))-submodule of 〈vn, v2n, . . . , vmn〉 of rank smaller
than m. The index of D′ can also clearly not be bigger than m, since the index of
N on D is exactly m. We conclude that the index of N on D′ has to be m. Hence,
there are positive integers r1 ≤ r2 ≤ . . . ≤ rm such that r =

∑m
i ri and vectors

w1, w2, . . . , wm in D′ such that D′ is a free module generated by the basis elements
N jwi. We arrange these basis elements as follows:

(7.8)

w1, Nw1, . . . , Nr1−1w1,

w2, Nw2, . . . , Nr2−1w2,

...

wk, Nwk, . . . , Nrk−1wk,

wk+1, Nwk+1, . . . , N
rk+1−r1−1wk+1, N

rk+1−r1wk+1, . . . , Nrk+1−1wk+1,

...

wm, Nwm, N
2wm, . . . , N

rm−r1−1wm, N
rm−r1wm, . . . , Nrm−1wm.

Suppose, towards a contradiction, that there exists 1 ≤ k ≤ m−1 such that r1 =
r2 = · · · = rk−1 = rk but rk < rk+1. It is easy to check that the span of the vectors
in the last r1 columns in the table above is nothing but D′′ = 〈vn−(r1−1), . . . , vn,
v2n−(r1−1), . . . , v2n, . . . , vmn−(r1−1), . . . , vmn〉, the kernel of Nr1 on D. Indeed, both
spaces are of the same rank and the former is contained in the latter since Nr1 kills
the former space. Thus D′ =

〈wk+1, Nwk+1, . . . , N
rk+1−r1−1wk+1, . . . , wm, Nwm, . . . , N

rm−r1−1wm〉 ⊕D′′.
We now study the span of the basis vectors of D′ contained in the (rk + 1)-th

column from the right in (7.8) (this is the first, from the right,‘short’ column of
vectors). Since, e.g., N(Nrk+1−r1−1wk+1) ∈ D′′, the top-most vector in this ‘short’
column

Nrk+1−r1−1wk+1 ∈ 〈vn−r1 , v2n−r1 , . . . , vmn−r1〉 ⊕D′′.
Thus as a basis element of D′, we may replace Nrk+1−r1−1wk+1 by a linear com-
bination w′k+1 := a1vn−r1 + a2v2n−r1 + · · · + amvmn−r1 . The same applies to the
other basis vectors of D′ in this column and we may replace the second through
last vector in this column by similar linear combinations w′k+2, . . . , w

′
m.

We now claim that the module 〈w′k+1, . . . , w
′
m〉 is (ϕ,Gal(F/Qp))-invariant. In-

deed, ϕw′k+1 ∈ D′ has order of nilpotency r1 +1 (since w′k+1 does), hence is a linear
combination of the w′i and the vectors

vn−(r1−1), . . . , vn, . . . , vmn−(r1−1), . . . , vmn.
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However the last vectors do not appear since 〈vn−r1 , v2n−r1 , · · · , vmn−r1〉 is ϕ-stable,
so ϕw′k+1 ∈ 〈w′k+1, . . . , w

′
m〉. An identical argument applies to the other vectors

ϕw′k+2, · · · , ϕw′m. In a very similar fashion one can show that 〈w′k+1, · · ·w′m〉 is
Gal(F/Qp)-stable (this time g ∈ I(F/K) acts by a scalar on each of the vectors
vn−r1 , v2n−r1 , · · · , vmn−r1 and σ ∈ Gal(F/Qp) permutes them, but the same argu-
ment applies). But now

〈w′k+1, . . . , w
′
m〉 ⊂ 〈vn−r1 , v2n−r1 , . . . vmn−r1〉

violates Lemma 7.10, since it a (ϕ,Gal(F/Qp))-submodule of rank 1 ≤ m − k ≤
m− 1.

The upshot is that such a k does not exist, all the ri’s are equal, r is divisible by
m, and D′ = D′′ is spanned only by vectors in the last r1 columns in (7.8) above.
That is, D′ is exactly Dτ ⊗DSp(r1), proving the theorem.

7.3. General case: m ≥ 2 and n ≥ 2. Now, we shall prove Theorem 7.1 in
general. Thus, we show that the only (ϕ,N, F,E)-submodules of D = Dτ ⊗DSp(n),
for any irreducible representation τ of WQp dimension m ≥ 2, and n ≥ 2, are of the
form Dτ ⊗DSp(r), for some 1 ≤ r ≤ n.

The proof uses ideas introduced for the special cases proved so far. Note that
in the previous section many explicit formulas were used regarding the action of ϕ
and Gal(F/Qp) which depended on the shape of the unramified supercuspidal τ .
In fact it is possible to do away with these explicit formulas completely.

Recall that the module DSp(n) has a basis {fn, fn−1, · · · , f1}, with properties
as in Section 6.1, and say that Dτ has a basis {e1, e2, · · · , em} over F0 ⊗ E. Let
{vi}mni=1 denote the basis of D = Dτ ⊗DSp(r) defined exactly as in the table at the
start of Section 7.2.5.

Lemma 7.11. There are no rank r (ϕ,N, F,E)-submodules of D on which N acts
trivially, for 1 ≤ r ≤ m− 1.

Proof. Suppose there exists such a module, say D̃, of rank r < m. Since N acts
trivially on D̃, we have D̃ ⊆ 〈vn, v2n, · · · , vmn〉 = Dτ ⊗ DSp(1) ' Dτ . But τ is
irreducible, so Dτ is irreducible by Lemma 2.8, a contradiction. �

Corollary 7.12. The index of N on a (ϕ,N, F,E)-submodule of D is m.

Proof of Theorem 7.1. Let D′ be a (ϕ,N, F,E)-submodule of D = Dτ ⊗ DSp(n).
From the corollary above, there are m blocks in the Jordan canonical form of N on
D′. Without loss of generality assume that the blocks have sizes r1 ≤ r2 ≤ · · · ≤ rm
with

∑m
i=1 ri = rank D′. Suppose w1, · · · , wm are the corresponding basis vectors

in D′ such that the order of nilpotency of N on wi is ri, so that the N j(wi) form
a basis of D′. If all the ri are equal to say r, then the usual argument shows
D′ = Dτ ⊗DSp(r). We show that this is indeed the case.

Suppose towards a contradiction that ri 6= ri+1 for some 1 ≤ i < m. For
1 ≤ i ≤ n, let Di be span of the vectors in the last i columns in the table at the
start of Section 7.2.5. Observe that Di = Dτ ⊗Ker(N i) = Dτ ⊗DSp(i).

Now, arrange the basis vectors of D′, i.e., the N jwk, as in (7.8). With respect to
this arrangement, denote the span of the vectors in the last i columns as Ai. Since
ri 6= ri+1, the rank of the space Ari+1/Ari is less than m. Moreover, Ari+1/Ari is
a subspace of Dri+1/Dri , i.e., there is an inclusion of (ϕ,N, F,E)-modules

Ari+1/Ari ↪→ Dri+1/Dri .
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Now

(7.9)

Dri+1/Dri = (Dτ ⊗DSp(ri+1))/(Dτ ⊗DSp(ri))

' Dτ ⊗ (DSp(ri+1)/DSp(ri))

' Dτ ⊗DSp(1)

' Dτ .

All the isomorphisms above are isomorphisms of (ϕ,N, F,E)-modules over F0⊗E.
By Lemma 7.11, the above inclusion is not possible! Hence all the ri are indeed
equal. This finishes the proof of Theorem 7.1. �

7.4. Filtration on D = Dτ ⊗DSp(n). We finally can apply the discussion above
to write down the structure of the (p, p)-representation attached to an automorphic
form on GLmn(AQ).

We start with some remarks. Suppose D1 and D2 are two admissible filtered
modules. It is well-known (cf. [T96]) that the tensor product D1 ⊗ D2 is also
admissible. The difficulty in proving this lies in the fact that one does not have much
information about the structure of the (ϕ,N)-submodules of the tensor product. If
they are of the form D′ ⊗D′′, where D′ and D′′ are admissible (ϕ,N)-submodules
of D1 and D2 respectively, then one could use Lemma 2.5 to prove that D′⊗D′′ is
also admissible. But not all the submodules of D1 ⊗D2 are of this form.

However in the previous section we have just shown (cf. Theorem 7.1), that for
D = Dτ ⊗DSp(n), all the (ϕ,N, F,E)-submodules of D are of the form Dτ ⊗DSp(r),
for some 1 ≤ r ≤ n. This fact allows us to study the crystal D and its submodules,
once we introduce the Hodge filtration.

7.4.1. Filtration in general position. Assume that the Hodge filtration on D is in
general position with respect to the Newton filtration (cf. Assumption 4.6). Let

m be the rank of Dτ . Let {βi,j}i=n,j=mi=1,j=1 be the jumps in the Hodge filtration with
βi1,j1 > βi2,j2 , if i1 > i2, or if i1 = i2 and j1 > j2. Thus

βn,m > βn,m−1 > · · · > βn,1 > βn−1,m > · · · > β1,m > · · · > β1,1.

Define, for every 1 ≤ k ≤ n,

bk =

j=m∑
j=1

βk,j ,

and

ak = tN (Dτ ⊗DSp(k))− tN (Dτ ⊗DSp(k−1)) = tN (Dτ ) +m(k − 1),

where the last equality follows from Lemma 2.5. Clearly, we have that

bn > bn−1 > · · · > b2 > b1,

an > an−1 > · · · > a2 > a1.

Observe that bi+1 − bi ≥ m2 and ai+1 − ai = m, for every 1 ≤ i ≤ n. Since D is

admissible, the submodule Dτ ⊗DSp(i) of D is admissible if and only if
∑i
k=1 bk =∑i

k=1 ak.
The arguments below are similar to the ones used when analyzing the Steinberg

case. We start with an analog of Lemma 6.2.
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Lemma 7.13. Let {ai}ni=1 be an increasing sequence of integers, such that ai+1 −
ai = m, for every i and for some fixed natural number m. Let {bi}ni=1 be an
increasing sequence of integers, such that bi+1 − bi ≥ m2, for every i. Suppose that∑
i ai =

∑
i bi. If an = bn or a1 = b1, then m = 1 and hence ai = bi, for all i.

Proof. Let us prove the lemma when an = bn. We have:

m2(n−1+n−2+ · · ·+1) ≤
n∑
i=1

(bn−bi) =

n∑
i=1

(an−ai) = m(n−1+n−2+ · · ·+1).

The first equality in the above expression follows from an = bn. From the above
inequality, we see m = 1. Now, the rest of the proof follows from Lemma 6.2. The
proof when a1 = b1 is similar. �

Theorem 7.14. If Dτ ⊗ DSp(i) and Dτ ⊗ DSp(i+1) are admissible submodules of
D, then m = 1, in which case all the Dτ ⊗DSp(i), for 1 ≤ i ≤ n, are admissible.

Proof. Since Dτ ⊗DSp(i) and Dτ ⊗DSp(i+1) are admissible, we have:

(7.10)

b1 + b2 + · · ·+ bi =

i∑
r=1

ar,

b1 + b2 + · · ·+ bi+1 =

i+1∑
r=1

ar.

From these expressions, we have bi+1 = ai+1. As recalled above:

bn > · · · > bi+2 > bi+1 > bi > · · · > b1,

an > · · · > ai+2 > ai+1 > ai > · · · > a1.

Since ai+1 = bi+1 and (7.10) holds, by Lemma 7.13 we have m = 1 and ai = bi, for
all 1 ≤ i ≤ n. This shows that all the Dτ ⊗DSp(i) are admissible. �

Theorem 7.15. Let D = Dτ ⊗DSp(n) and assume that the Hodge filtration on D
is in general position (cf. Assumption 4.6). Then either D is irreducible or D is
reducible, in which case m = 1 and the (ϕ,N, F,E)-submodules Dτ ⊗ DSp(i), for
1 ≤ i ≤ n are all admissible.

Proof. Let Di = Dτ ⊗DSp(i), for 1 ≤ i ≤ n. If D is irreducible then we are done. If
not, by Theorem 7.1, there exists an 1 ≤ i ≤ n such that Di is admissible. If Di−1
or Di+1 is also admissible, then by the theorem above, m = 1 and hence all the
(ϕ,N, F,E)-submodules of D are admissible. So, assume Di−1 and Di+1 are not
admissible, but Di is admissible. We shall show that this is not possible. Indeed,
we have:

b1 + b2 + · · ·+ bi−1 <

r=i−1∑
r=1

ar,(7.11a)

b1 + b2 + · · ·+ bi =

r=i∑
r=1

ar,(7.11b)

b1 + b2 + · · ·+ bi+1 <

r=i+1∑
r=1

ar.(7.11c)
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Subtracting (7.11b) from (7.11a), we get −bi < −ai. Subtracting (7.11b) from
(7.11c), we get bi+1 < ai+1. Adding these two inequalities, we get bi+1 − bi <
ai+1 − ai = m. But this is a contradiction, since bi+1 − bi ≥ m. �

For emphasis we state separately the following corollary:

Corollary 7.16. With assumptions as above, for any m ≥ 2, the crystal D =
Dτ ⊗DSp(n) is irreducible.

Definition 9. Say π is ordinary at p if a1 = b1, i.e., tN (Dτ ) =
∑m
j=1 β1,j .

This condition implies m = 1, and this definition then coincides with Definition 8.
Applying the above discussion to the local (p, p)-representation in a strictly com-

patible system, we obtain:

Theorem 7.17 (Indecomposable case). Say π is a cuspidal automorphic form with
infinitesimal character consisting of distinct integers. Suppose that

WD(ρπ,p|GQp
) ∼ τm ⊗ Sp(n),

where τm is an irreducible representation of WQp of dimension m ≥ 1, and n ≥ 1.
Assume that Assumption 4.6 holds.

• If π is ordinary at p, then ρπ,p|GQp
is reducible, in which case m = 1 and

τ1 is a character and ρπ,p|GQp
is (quasi)-ordinary as in Theorems 6.6 and

6.7.
• If π is not ordinary at p, then ρπ,p|GQp

is irreducible.

7.4.2. Tensor product filtration. One might wonder what happens if the filtration
on D is not necessarily in general position. As an example, here we consider just
one case arising from the so called tensor product filtration.

Assume that Dτ and DSp(n) are the usual filtered (ϕ,N, F,E)-modules and equip
Dτ ⊗DSp(n) with the tensor product filtration. By the formulas in Lemma 2.5 one
can prove:

Lemma 7.18. Suppose that D = Dτ ⊗ DSp(n) has the tensor product filtration.
Fix 1 ≤ r ≤ n. Then Dτ ⊗DSp(r) is an admissible submodule of D if and only if
DSp(r) is an admissible submodule of DSp(n).

We recall that if the filtration on DSp(n) is in general position (as in Assump-
tion 4.6), then we have shown that furthermore DSp(r) is an admissible submodule
of DSp(n) if and only if DSp(1) is an admissible submodule.

Remark 6. The lemma can be used to give an example where the tensor product
filtration on D is not in general position (i.e., does not satisfy Assumption 4.6).
Suppose τ is an irreducible representation of dimension m = 2 and DSp(2) has
weight 2 (cf. [GM09, §3.1]). Note 〈f1〉 is an admissible submodule of DSp(2).
Hence, by the lemma, Dτ ⊗ 〈f1〉 is an admissible submodule of Dτ ⊗DSp(2). If the
tensor product filtration satisfies Assumption 4.6, then the admissibility of Dτ⊗〈f1〉
would contradict Theorem 7.15, since m = 2.

In any case, we have the following application to local Galois representations.

Proposition 7.19. Suppose that ρπ,p|GQp
∼ ρτ ⊗ ρSp(n) is a tensor product of two

(p, p)-representations, with underlying Weil-Deligne representations τ and Sp(n)
respectively. If ρSp(n) is irreducible, then so is ρπ,p|GQp

.
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8. General Weil-Deligne representations

So far, we have studied the (p, p)-representation attached to πp when the under-
lying Weil-Deligne representation is indecomposable. We now make some remarks
in the general setting where the Weil-Deligne representation can be decomposed
into a direct sum of indecomposable representations.

8.1. Sum of twisted Steinberg. For simplicity we start with the case where the
indecomposable pieces are twists of the Steinberg representation by an unramified
character. Thus we assume the underlying Weil-Deligne representation is

Dχ1 ⊗DSp(n1) ⊕Dχ2 ⊗DSp(n2) ⊕ · · · ⊕Dχr ⊗DSp(nr),

where ni ≥ 1 and χi are unramified characters taking arithmetic Frobenius to αi.
Let χi(ω) = αi where ω is a uniformizer of Q×p . Without loss of generality we may
assume that vp(α1) ≥ vp(α2) ≥ · · · ≥ vp(αr).

Let n =
∑r
i ni. Let {βi,j}r,nii=1,j=1 be the jumps in the Hodge filtration such that

βi1,j1 > βi2,j2 , if i1 > i2 or i1 = i2 and j1 > j2. Thus

(8.1)

βr,nr > · · · > βr,1 >

βr−1,nr−1
> · · · > βr−1,1 > · · · >

β2,n2
> · · · > β2,1 >

β1,n1 > · · · > β1,1.

Let D be a filtered (ϕ,N,Qp, E)-module with associated Weil-Deligne represen-
tation as above. We now define a flag inside D as follows.

Di =


Dχ1
⊗DSp(i) if 1 ≤ i ≤ n1,

Dχ1
⊗DSp(n1) ⊕Dχ2

⊗DSp(i−n1) if n1 + 1 ≤ i ≤ n1 + n2,
...

⊕r−1k=1Dχi ⊗DSp(ni) ⊕Dχr ⊗DSp(i−(n−nr)) if n− nr + 1 ≤ i ≤ n.

Clearly, Dn is the full (ϕ,N)-module D. We now show that the above flag is
admissible if and only if π is ordinary at p in the following sense:

Definition 10. Say π is ordinary at p if βi,1 = −vp(αi) for all 1 ≤ i ≤ r.

We remark that the notion of ordinariness extends the previous definitions given
in Definition 6, when all the ni = 1 and Definition 8, when r = 1 and m = 1. We
have:

Theorem 8.1. Assume that Assumption 4.6 holds. Then the flag {Di} is an
admissible flag in D (i.e., each Di is an admissible submodule of D) if and only if
π is ordinary at p.

Proof. The ‘only if’ part is clear. Indeed if the Hodge filtration is in general position
then the jump in the filtration on D1 will be the last number in (8.1), i.e., β1,1,
and the admissibility of D1 shows that β1,1 = −vp(α1). Similarly, the jumps in the
filtration on Dn1 (respectively Dn1+1) are the last n1 numbers (respectively the last
n1 numbers along with β2,1) in (8.1) above, and clearly tN (Dn1+1) = tN (Dn1

) −
vp(α2), so the admissibility of Dn1

and Dn1+1 together shows that β2,1 = −vp(α2),
etc.
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Let us prove the ‘if’ part. Since β1,1 = −vp(α1), D1 is admissible. Since D2 is a
(ϕ,N,Qp, E)-submodule of D we have that

β1,1 + β1,2 ≤ (1− vp(α1)) + (−vp(α1))

and hence β1,2 ≤ 1− vp(α1) = 1 + β1,1. Thus β1,2 − β1,1 ≤ 1. But β1,2 − β1,1 ≥ 1,
by (8.1), hence equality holds, i.e.,

β1,2 = (1− vp(α1)).

Therefore,

β1,1 + β1,2 = (1− vp(α1)) + (−vp(α1)).

By a similar argument, we see that

(8.2)

n1∑
j=1

β1,j =

n1∑
j=1

(j − 1− vp(α1)).

This shows that Dn1
is admissible.

Since Dn1+1 is an (ϕ,N, F,E)-submodule of D, we have that

n1∑
j=1

β1,j + β2,1 ≤
n1∑
j=1

(j − 1− vp(α1)) + (−vp(α2)),

but this inequality is actually an equality, by (8.2), and since β2,1 = −vp(α2) by
assumption. This shows that Dn1+1 is also admissible. The admissibility of the
other Di is proved in a similar manner. �

8.2. General ordinary case. We now assume that as a (ϕ,N, F,E)-module,

D = Dτ1 ⊗DSp(n1) ⊕Dτ2 ⊗DSp(n2) ⊕ · · · ⊕Dτr ⊗DSp(nr),

where ni ∈ N and τi’s are irreducible representations of WQp of degree mi. Without
loss of generality we may assume tN (Dτ1) ≤ tN (Dτ2) ≤ · · · ≤ tN (Dτr ).

We now define a flag inside Dτ1 ⊗DSp(n1) ⊕ · · · ⊕Dτr ⊗DSp(nr), and show that
this flag is admissible if and only if there is a relation between some numbers ai
(depending on Newton numbers) and bi (depending on Hodge numbers). More
precisely, define the flag {Di} in D by

Di =


Dτ1 ⊗DSp(i) if 1 ≤ i ≤ n1,
Dτ1 ⊗DSp(n1) ⊕Dτ2 ⊗DSp(i−n1) if n1 + 1 ≤ i ≤ n1 + n2,

...

⊕r−1k=1Dτk ⊗DSp(nk) ⊕Dτr ⊗DSp(i−(n−nr)) if n− nr + 1 ≤ i ≤ n.

Clearly, Dn = D.
We now define the numbers ai and bi. Let {βi,j} be the jumps in the Hodge

filtration associated to D such that βi1,j1 > βi2,j2 , if i1 > i2 or if i1 = i2 but j1 > j2.
Thus, in the case r = 2, the jumps in the filtration are:
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βm1+m2,n2
> βm1+m2−1,n2

> · · · > βm1+1,n2
>

βm1+m2,n2−1 > βm1+m2−1,n2−1 > · · · > βm1+1,n2−1 > · · · >
βm1+m2,1 > βm1+m2−1,1 > · · · > βm1+1,1 >

βm1,n1
> βm1−1,n1

> · · · > β1,n1
>

βm1,n1−1 > βm1−1,n1−1 > · · · > β1,n1−1 > · · · >
βm1,1 > βm1−1,1 > · · · > β1,1.

Define, for every 1 ≤ k ≤ n1,

bk =

i=m1∑
i=1

βi,k,

ak = tN (Dτ1 ⊗DSp(k))− tN (Dτ1 ⊗DSp(k−1)) = tN (Dτ1) +m1(k − 1).

Clearly, we have that
bn1 > bn1−1 > · · · > b2 > b1,

an1 > an1−1 > · · · > a2 > a1.

Observe that bi+1 − bi ≥ m2
1 and ai+1 − ai = m1, for 1 ≤ i < n1. Under

Assumption 4.6, the jumps in the induced Hodge filtration on Dτ1 ⊗ DSp(j) are
βm1,j > · · · > β1,1, so that Dτ1 ⊗ DSp(j) is an admissible submodule of D if and

only if
∑j
k=1 bk =

∑j
k=1 ak.

Similarly define bk and ak for all 1 ≤ k ≤ n =
∑r
i ni. For example, if n1 + 1 ≤

n1 + k ≤ n1 + n2, define

bn1+k =

i=m2∑
i=1

βm1+i,k,

an1+k = tN (Dτ2 ⊗DSp(k))− tN (Dτ2 ⊗DSp(k−1)) = tN (Dτ2) +m2(k − 1).

Again, we have

bn1+n2 > bn1+n2−1 > · · · > bn1+2 > bn1+1,

an1+n2 > an1+n2−1 > · · · > an1+2 > an1+1,

and bi+1 − bi ≥ m2
2 and ai+1 − ai = m2, for every n1 + 1 ≤ i < n1 + n2, etc.

Definition 11. Say π is ordinary at p if a∑i−1
j=1 nj+1 = b∑i−1

j=1 nj+1, for 1 ≤ i ≤ r.

Note that this definition of ordinariness reduces to Definition 9 when r = 1, but
also to Definition 10 since it implies mi = 1, for 1 ≤ i ≤ r.

Theorem 8.2. Assume that Assumption 4.6 holds. Then, the flag {Di} is admis-
sible (i.e., each Di is an admissible submodule of D) if and only if π is ordinary at
p.

Proof. We prove the ‘only if’ direction for r = 2, since the general case is similar,
and only notationally more cumbersome. Thus we have to show that if the flag {Di}
is admissible, then a1 = b1 and an1+1 = bn1+1. The proof is an easy application of
Lemma 7.13. Indeed

• The admissibility of D1 shows that a1 = b1.
• The admissibility of Dn1

and a1 = b1 shows m1 = 1 and ai = bi for
1 ≤ i ≤ n1 (by Lemma 7.13).

• The admissibility of Dn1+1 and Dn1
together shows an1+1 = bn1+1.
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• The admissibility of Dn1+n2 and Dn1 and an1+1 = bn1+1 shows m2 = 1
and an1+i = bn1+i for 1 ≤ i ≤ n2 (by Lemma 7.13).

Since all mi = 1, the proof of the ‘if’ part of the theorem is exactly the same
as the ‘if’ part of the proof of Theorem 8.1, noting b∑i−1

j=1 nj+1 = βi,1 and and

a∑i−1
j=1 nj+1 = −vp(αi), for 1 ≤ i ≤ r. �

Remark 7. The theorem does not tell us when D is irreducible, since there are
a large number of (ϕ,N, F,E)-submodules of D which are not part of the flag
considered above. For instance, it seems hard to determine the admissibility of the
submodule Dτi ⊗DSp(ni), except when i = 1.

Translating the theorem above in terms of the (p, p)-representation, we obtain:

Theorem 8.3 (Decomposable case). Say π is a cuspidal automorphic form on
GLN (AQ) with infinitesimal character given by the integers −β1 > · · · > −βN .
Suppose that N =

∑r
i=1mini and

WD(ρπ,p|GQp
) ∼ ⊕ri=1τi ⊗ Sp(ni),

where τi is an irreducible representation of dimensions mi ≥ 1, and ni ≥ 1. If π is
ordinary at p, then mi = 1 for all i, the βi occur in r blocks of consecutive integers,
of lengths ni, for 1 ≤ i ≤ r, and

ρπ,p|GQp
∼


ρn1

∗ · · · ∗
0 ρn2

· · · ∗
0 0 · · · ∗
0 0 0 ρnr

 ,

where each ρni is an ni-dimensional representation with shape similar to that in
Theorem 6.7. In particular, ρπ,p|GQp

is quasi-ordinary.

8.3. Further remarks. Theorem 8.3 treats the general ordinary case. In the gen-
eral non-ordinary case, the behaviour of the (p, p)-representation is more complex
and we do not have complete information about reducibility (compare with the
indecomposable case treated in Theorem 7.17). In this section we content ourselves
with a few concluding remarks about new issues that arise.

To fix ideas we assume that the Weil-Deligne representation associated to πp is
of the form

χ1 ⊗ Sp(2)⊕ χ2 ⊗ Sp(2),

where χ1 and χ2 are unramified characters of WQp taking arithmetic Frobenius
to α1 and α2, respectively. Let D be the associated (ϕ,N,Qp, E)-module. Let
β4 > β3 > β2 > β1 be the jumps in the Hodge filtration on D. We continue to
assume that Assumption 4.6 holds.

8.3.1. Classification of (ϕ,N)-submodules of D. Just as in previous sections, we
ignore the filtration, and first classify the (ϕ,N,Qp, E)-submodules of D.

Let e1, e2 = N(e1) be a basis of χ1 ⊗ Sp(2) and f1, f2 = N(f1) be a basis of
χ2 ⊗ Sp(2). Sometimes we write 〈e2〉 for χ1 ⊗ Sp(1), etc.

If α1 = α2, then any 1-dimensional subspace of 〈e2, f2〉 is a (ϕ,N)-submodule
of D, with Newton number −vp(α1). In particular, there exists infinitely many
1-dimensional submodules of D. This is already in striking contrast with the state-
ment of Theorem 7.1, which says that in the indecomposable case there are only
finitely many (ϕ,N)-submodules. So already we can expect that the analysis in
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the decomposable case might be much more complex. We remark, however, that if
α1 6= α2, then 〈e2〉 and 〈f2〉 are the only 1-dimensional submodules of D.

Again, if α1 = α2, then the 2-dimensional (ϕ,N)-submodule of D are of the
form 〈ae1 + cf1, ae2 + cf2〉, for some a, c ∈ E, with Newton number 1− 2vp(α1). If
α1 6= α2, but p/α1 = 1/α2, then again there are again infinitely many 2-dimensional
(ϕ,N)-submodules and they are given by 〈e1 + bf2, e2〉 or 〈f1 + be2, f2〉, for some
b ∈ E. If α1 6= α2 and p/α1 6= 1/α2, then there are only finitely many 2-dimensional
(ϕ,N)-submodules: they are χ1⊗Sp(2), χ2⊗Sp(2) and the diagonal one χ1⊗Sp(1)⊕
χ2 ⊗ Sp(1).

Finally, like the 1-dimensional case, if α1 = α2, then all the 3-dimensional (ϕ,N)-
submodules of D are of form 〈ae1 + bf1, e2, f2〉, for any a, b ∈ E, with Newton
number 1− 3vp(α1). If α1 6= α2, there are exactly two 3-dimensional submodules,
namely χ1 ⊗ Sp(2)⊕ χ2 ⊗ Sp(1) and χ1 ⊗ Sp(1)⊕ χ2 ⊗ Sp(2).

Hence, if we choose α1 and α2 generically (i.e., α1 6= α2 and α1 6= pα2), then
there are only finitely many (ϕ,N)-submodules of D, otherwise there are infinitely
many (ϕ,N)-submodules of D. The following table contains the possible Newton
numbers of the (ϕ,N)-submodules D′ of D.

dimE D
′ tN (D′) when α1 6= α2 tN (D′) when α1 = α2

1 −vp(α1), −vp(α2) −vp(α1)
2 −vp(α1)− vp(α2), 1− 2vp(α1), 1− 2vp(α2) 1− 2vp(α1)
3 1− 2vp(α1)− vp(α2), 1− vp(α1)− 2vp(α2) 1− 3vp(α1)
4 1− 2vp(α1) + 1− 2vp(α2) 2− 4vp(α1)

8.3.2. An irreducible example. We can now easily construct examples such that the
crystal D is irreducible. For instance, choose any α1 ∈ E with vp(α1) = 0 and take
α2 = α1. Take (β4, β3, β2, β1) = (2, 1, 0,−1). Using the table above, one can easily
check that there are no admissible (ϕ,N)-submodules of D, except for D itself. We
note that since α1 = α2, there are infinitely many (ϕ,N)-submodules of D, but
only finitely many conditions to check for non-admissibility.

8.3.3. All complete flags cannot be reducible. In proving Theorem 8.3 we showed
that ordinariness implies that a particular complete flag is admissible. We now wish
to point out that not all complete flags in D are necessarily admissible, even under
the ordinariness assumption. Indeed, in the setting of the example of this section,
if we choose α1 and α2 such that vp(α1) 6= vp(α2), then any two complete flags
whose 1-dimensional subspaces are 〈e2〉 and 〈f2〉, respectively, cannot be admissible
simultaneously, since (under Assumption 4.6) we have both β1 = −vp(α1) and
β1 = −vp(α2).

8.3.4. Intermediate cases. Finally, in the general decomposable case, the regularity
(distinct Hodge-Tate weights) of the (p, p)-representation ρπ,p|GQp

does not imply

that it is either (quasi)-ordinary in the sense of Definition 5 or irreducible (compare
with Theorem 7.17). We now give an example of such an ‘intermediate case’, i.e.,
an example for which the (p, p)-representation is reducible, but such that there is
no complete flag of reducible submodules.

Let D be as above. Choose α1 and α2 such that vp(α1) = 1 and vp(α2) = −10.
Take (β4, β3, β2, β1) = (17, 4, 0,−1). From the table above, we see that χ1 ⊗ Sp(1),
χ1 ⊗ Sp(2), and D, are admissible and all the other (ϕ,N)-submodules satisfy the
condition that their Hodge numbers are less than or equal to their Newton numbers.
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So D is reducible. However, since α1 6= α2 and α1 6= pα2, there are only two 3-
dimensional (ϕ,N)-submodules of D, and again from the table we see that neither
is admissible. Hence, there is no admissible complete flag of (ϕ,N)-submodules of
D.

Errata. We end this paper by correcting some errors in [GM09].

• p. 2254, lines 6 and 7: Q should be Qp

• p. 2257, first two lines should be ϕ(e1) = 1√
t
e1 and ϕ(e2) = 1√

t
e2

• p. 2260: first three lines in the middle display should be ϕ(e1) = 1√
t
e1,

ϕ(e2) = 1√
t
e2, and t ∈ OE , valp(t) = k − 1. Moreover, t is to be chosen in

§3.4.3 satisfying t2 = 1/c (we may take c = d, since ι commutes with ϕ,
and s is no longer required).
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