p-adic Modular forms and Arithmetic

Local behavior of automorphic Galois representations

Eknath Ghate

School of Mathematics Tata Institute of Fundamental Research Mumbai

UCLA June 20, 2012

More specifically, we study basic properties such as the

● Irreducibility, over Q,

More specifically, we study basic properties such as the

- Irreducibility, over \mathbb{Q} , and the
- **3** Semisimplicity for n = 2, over totally real fields F,

More specifically, we study basic properties such as the

- Irreducibility, over \mathbb{Q} , and the
- **2** Semisimplicity for n = 2, over totally real fields F,

of these local Galois representations.

Some classical results

Let $f = \sum_{n=1}^{\infty} a_n q^n$ be a primitive classical cusp form of

@ ▶ ∢ ≣ ▶

- weight $k \geq 2$,
- level $N \geq 1$, and,
- character $\psi : (\mathbb{Z}/N)^{\times} \to \mathbb{C}^{\times}$.

Some classical results

Let $f = \sum_{n=1}^{\infty} a_n q^n$ be a primitive classical cusp form of • weight k > 2.

- level $N \ge 1$, and,
- character $\psi : (\mathbb{Z}/N)^{\times} \to \mathbb{C}^{\times}$.

Ribet: The global p-adic Galois repesentation

$$\rho_{f,p}: G_{\mathbb{Q}} \to \mathrm{GL}_2(\bar{\mathbb{Q}}_p)$$

attached to f is **irreducible**.

Let $f = \sum_{n=1}^{\infty} a_n q^n$ be a primitive classical cusp form of • weight k > 2.

- level $N \geq 1$, and,
- character $\psi : (\mathbb{Z}/N)^{\times} \to \mathbb{C}^{\times}$.

Ribet: The global p-adic Galois repesentation

$$\rho_{f,p}: G_{\mathbb{Q}} \to \mathrm{GL}_2(\bar{\mathbb{Q}}_p)$$

attached to f is **irreducible**. However, the **local** representation

$$\rho_{f,p}|_{G_p}$$

obtained by restricting $\rho_{f,p}$ to a decomposition subgroup G_p at p may be **reducible**.

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○

Mazur-Wiles: If f is p-ordinary (i.e., $v_p(a_p) = 0$), then $\rho_{f,p}|_{G_p} \sim \begin{pmatrix} \lambda(\beta/p^{k-1}) \cdot \psi_p \cdot \nu_p^{k-1} & *\\ 0 & \lambda(\alpha) \end{pmatrix}$

is reducible,

Mazur-Wiles: If f is p-ordinary (i.e., $v_p(a_p) = 0$), then

$$\rho_{f,p}|_{G_p} \sim \begin{pmatrix} \lambda(\beta/p^{k-1}) \cdot \psi_p \cdot \nu_p^{k-1} & * \\ 0 & \lambda(\alpha) \end{pmatrix}$$

is reducible, where

• ν_p is the *p*-adic cycolotomic character

Mazur-Wiles: If f is p-ordinary (i.e., $v_p(a_p) = 0$), then

$$\rho_{f,p}|_{G_p} \sim \begin{pmatrix} \lambda(\beta/p^{k-1}) \cdot \psi_p \cdot \nu_p^{k-1} & * \\ 0 & \lambda(\alpha) \end{pmatrix}$$

is reducible, where

• ν_p is the *p*-adic cycolotomic character

•
$$\psi = \psi_{p} \cdot \psi' = (p$$
-part of $\psi) \cdot (prime$ -to- p part of $\psi)$

Mazur-Wiles: If f is p-ordinary (i.e., $v_p(a_p) = 0$), then

$$\rho_{f,p}|_{G_p} \sim \begin{pmatrix} \lambda(\beta/p^{k-1}) \cdot \psi_p \cdot \nu_p^{k-1} & * \\ 0 & \lambda(\alpha) \end{pmatrix}$$

is reducible, where

- ν_p is the *p*-adic cycolotomic character
- $\psi = \psi_p \cdot \psi' = (p$ -part of ψ) · (prime-to-p part of ψ)
- $\lambda(\alpha)$ is the unramified character of G_p taking Frob_p to α , with

$$\alpha = \begin{cases} \text{unit root of} \\ x^2 - a_p x + p^{k-1} \psi(p), & \text{if } p \nmid N, \\ a_p, & \text{if } p || N, p \nmid \text{cond}(\psi) \& k = 2, \\ a_p, & \text{if } v_p(N) = v_p(\text{cond}(\psi)) \ge 1. \end{cases}$$

Mazur-Wiles: If f is p-ordinary (i.e., $v_p(a_p) = 0$), then

$$\rho_{f,p}|_{G_p} \sim \begin{pmatrix} \lambda(\beta/p^{k-1}) \cdot \psi_p \cdot \nu_p^{k-1} & * \\ 0 & \lambda(\alpha) \end{pmatrix}$$

is reducible, where

- ν_p is the *p*-adic cycolotomic character
- $\psi = \psi_p \cdot \psi' = (p$ -part of ψ) · (prime-to-p part of ψ)
- $\lambda(\alpha)$ is the unramified character of G_p taking Frob_p to α , with

$$\alpha = \begin{cases} \text{unit root of} \\ x^2 - a_p x + p^{k-1} \psi(p), & \text{if } p \nmid N, \\ a_p, & \text{if } p || N, p \nmid \operatorname{cond}(\psi) \& k = 2, \\ a_p, & \text{if } v_p(N) = v_p(\operatorname{cond}(\psi)) \ge 1. \end{cases}$$

•
$$\beta = \psi'(p)p^{k-1}/\alpha$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 → のへの

Converse?

▲□→ ▲□→ ▲目→ ▲目→ 目 めんの

```
\rho_{f,p}|_{G_p} is reducbile \implies f is p-ordinary
```

個 ト く ヨ ト く ヨ ト

is false

```
\rho_{f,p}|_{G_p} is reducbile \implies f is p-ordinary
```

is **false** (e.g., consider the twist $f \otimes \chi$ of a *p*-ordinary form *f* of level *N* by a character χ of conductor *p*, with $p \nmid N$).

 $\rho_{f,p}|_{G_p}$ is reducbile \implies f is p-ordinary

is **false** (e.g., consider the twist $f \otimes \chi$ of a *p*-ordinary form *f* of level *N* by a character χ of conductor *p*, with $p \nmid N$). However, sometimes it is true:

 $\rho_{f,p}|_{G_p}$ is reducbile \implies f is p-ordinary

is **false** (e.g., consider the twist $f \otimes \chi$ of a *p*-ordinary form *f* of level *N* by a character χ of conductor *p*, with $p \nmid N$). However, sometimes it is true: If $p || N, p \nmid cond(\psi)$ and k > 2,

 $\rho_{f,p}|_{G_p}$ is reducbile $\implies f$ is *p*-ordinary

is **false** (e.g., consider the twist $f \otimes \chi$ of a *p*-ordinary form f of level N by a character χ of conductor p, with $p \nmid N$).

However, sometimes it is true:

If $p||N, p \nmid \text{cond}(\psi)$ and k > 2, then f is **not** p-ordinary and $\rho_{f,p}|_{G_p}$ is **irreducible**.

 $\rho_{f,p}|_{G_p}$ is reducbile $\implies f$ is *p*-ordinary

is **false** (e.g., consider the twist $f \otimes \chi$ of a *p*-ordinary form *f* of level *N* by a character χ of conductor *p*, with $p \nmid N$).

However, sometimes it is true:

If $p||N, p \nmid \text{cond}(\psi)$ and k > 2, then f is **not** p-ordinary and $\rho_{f,p}|_{G_p}$ is **irreducible**.

Can we generalize these results about irreducibility to GL_n ?

 $\rho_{f,p}|_{G_p}$ is reducbile $\implies f$ is *p*-ordinary

is **false** (e.g., consider the twist $f \otimes \chi$ of a *p*-ordinary form *f* of level *N* by a character χ of conductor *p*, with $p \nmid N$). However, sometimes it is true:

If $p||N, p \nmid \text{cond}(\psi)$ and k > 2, then f is **not** p-ordinary and $\rho_{f,p}|_{G_p}$ is **irreducible**.

Can we generalize these results about irreducibility to GL_n ? Furthermore, even when n = 2, can we specify when the local reducible representation above is semi-simple?

They are either **completely reducible** (with Galois image in a Borel of GL_n)

They are either **completely reducible** (with Galois image in a Borel of GL_n) or **irreducible**.

They are either **completely reducible** (with Galois image in a Borel of GL_n) or **irreducible**.

We work under a technical assumption from p-adic Hodge theory.

Motivation from GSp_4

Let π be a cuspidal automorphic form on $\mathrm{GSp}_4(\mathbb{A}_{\mathbb{Q}})$ with π_{∞} in the discrete series of weight (a, b; a + b) with $a \ge b \ge 0$.

Motivation from GSp_4

Let π be a cuspidal automorphic form on $\mathrm{GSp}_4(\mathbb{A}_{\mathbb{Q}})$ with π_{∞} in the discrete series of weight (a, b; a + b) with $a \ge b \ge 0$. Let

$$o_{\pi,p}: G_{\mathbb{Q}} \to \mathrm{GL}_4(\bar{\mathbb{Q}}_p)$$

be the Galois representation attached to π by Taylor, Laumon, Weissauer.

Motivation from GSp_4

Let π be a cuspidal automorphic form on $\mathrm{GSp}_4(\mathbb{A}_{\mathbb{Q}})$ with π_{∞} in the discrete series of weight (a, b; a + b) with $a \ge b \ge 0$. Let

$$o_{\pi,p}: G_{\mathbb{Q}} \to \mathrm{GL}_4(\bar{\mathbb{Q}}_p)$$

be the Galois representation attached to π by Taylor, Laumon, Weissauer.

Tilouine-Urban: There exist various notions of ordinariness of π at p, e.g., if π_p is unramified, then π_p may be Borel or Siegel or Klingen ordinary.

Motivation from GSp_4

Let π be a cuspidal automorphic form on $\mathrm{GSp}_4(\mathbb{A}_{\mathbb{Q}})$ with π_{∞} in the discrete series of weight (a, b; a + b) with $a \ge b \ge 0$. Let

$$o_{\pi,p}: G_{\mathbb{Q}} \to \mathrm{GL}_4(\bar{\mathbb{Q}}_p)$$

be the Galois representation attached to π by Taylor, Laumon, Weissauer.

Tilouine-Urban: There exist various notions of ordinariness of π at p, e.g., if π_p is unramified, then π_p may be Borel or Siegel or Klingen ordinary. For instance, if π is **Borel** p-**ordinary**, so that

$$v_p(\alpha) = 0, v_p(\beta) = b+1, v_p(\gamma) = a+2, v_p(\delta) = a+b+3$$

where $(x - \alpha)(x - \beta)(x - \gamma)(x - \delta)$ is the Hecke polynomial at p,

Motivation from GSp_4

Let π be a cuspidal automorphic form on $\mathrm{GSp}_4(\mathbb{A}_{\mathbb{Q}})$ with π_{∞} in the discrete series of weight (a, b; a + b) with $a \ge b \ge 0$. Let

$$\rho_{\pi,p}: G_{\mathbb{Q}} \to \mathrm{GL}_4(\bar{\mathbb{Q}}_p)$$

be the Galois representation attached to π by Taylor, Laumon, Weissauer.

Tilouine-Urban: There exist various notions of ordinariness of π at p, e.g., if π_p is unramified, then π_p may be Borel or Siegel or Klingen ordinary. For instance, if π is **Borel** p-**ordinary**, so that

$$v_p(\alpha) = 0, v_p(\beta) = b+1, v_p(\gamma) = a+2, v_p(\delta) = a+b+3$$

where $(x - \alpha)(x - \beta)(x - \gamma)(x - \delta)$ is the Hecke polynomial at p, then

$$\rho_{\pi,p}|_{\mathcal{G}_p} \sim \begin{pmatrix} \lambda(\delta/p^{a+b+3}) \cdot \nu_p^{a+b+3} & * & * & * \\ 0 & \lambda(\gamma/p^{a+2}) \cdot \nu_p^{a+2} & * & * \\ 0 & 0 & \lambda(\beta/p^{b+1}) \cdot \nu_p^{b+1} & * \\ 0 & 0 & 0 & \lambda(\alpha) \end{pmatrix}$$

Towards GL_n

Let π be a cuspidal automorphic representation on $GL_n(\mathbb{A}_{\mathbb{Q}})$ with infinitesimal character

$$\chi_H: \mathcal{Z}_n = \mathbb{C}[X_1, \dots, X_n] \to \mathbb{C}$$
$$X_i \mapsto x_i$$

個 と く ヨ と く ヨ と

where $H = \{x_1, \ldots, x_n\}$ is a multiset of complex numbers.

Towards GL_n

Let π be a cuspidal automorphic representation on $\operatorname{GL}_n(\mathbb{A}_{\mathbb{Q}})$ with infinitesimal character

$$\chi_{H}: \mathcal{Z}_{n} = \mathbb{C}[X_{1}, \dots, X_{n}] \to \mathbb{C}$$
$$X_{i} \mapsto x_{i}$$

where $H = \{x_1, \ldots, x_n\}$ is a multiset of complex numbers.

Conjecture

If H consists of n distinct integers $-\beta_1 > \cdots > -\beta_n$, then there exists a strictly compatible system of Galois representations

$$\rho_{\pi,\ell}: \mathcal{G}_{\mathbb{Q}} \to \mathrm{GL}_n(\bar{\mathbb{Q}}_\ell)$$

with Hodge-Tate weights H, and such that Local-Global compatibility holds.

Towards GL_n

Let π be a cuspidal automorphic representation on $\operatorname{GL}_n(\mathbb{A}_{\mathbb{Q}})$ with infinitesimal character

$$\chi_{H}: \mathcal{Z}_{n} = \mathbb{C}[X_{1}, \dots, X_{n}] \to \mathbb{C}$$
$$X_{i} \mapsto x_{i}$$

where $H = \{x_1, \ldots, x_n\}$ is a multiset of complex numbers.

Conjecture

If H consists of n distinct integers $-\beta_1 > \cdots > -\beta_n$, then there exists a strictly compatible system of Galois representations

$$\rho_{\pi,\ell}: \mathcal{G}_{\mathbb{Q}} \to \mathrm{GL}_n(\bar{\mathbb{Q}}_\ell)$$

with Hodge-Tate weights H, and such that Local-Global compatibility holds.

Since $\rho_{\pi,p}$ is geometric (potentially semistable at p), there is a Weil-Deligne representation WD($\rho_{\pi,p}|_{G_p}$), attached to $\rho_{\pi,p}|_{G_p}$.

Since $\rho_{\pi,p}$ is geometric (potentially semistable at p), there is a Weil-Deligne representation WD($\rho_{\pi,p}|_{G_p}$), attached to $\rho_{\pi,p}|_{G_p}$.

Deligne: Every admissible Weil-Deligne representation has the form:

$$\bigoplus_{i=1}^{d} \tau_{m_i} \otimes \operatorname{Sp}(n_i)$$
Since $\rho_{\pi,p}$ is geometric (potentially semistable at p), there is a Weil-Deligne representation WD($\rho_{\pi,p}|_{G_p}$), attached to $\rho_{\pi,p}|_{G_p}$.

Deligne: Every admissible Weil-Deligne representation has the form:

$$\bigoplus_{i=1}^{d} \tau_{m_i} \otimes \operatorname{Sp}(n_i)$$

where

• τ_i is an irreducible representation of the Weil group of \mathbb{Q}_p of dimension $m_i \geq 1$,

Since $\rho_{\pi,p}$ is geometric (potentially semistable at p), there is a Weil-Deligne representation WD($\rho_{\pi,p}|_{G_p}$), attached to $\rho_{\pi,p}|_{G_p}$.

Deligne: Every admissible Weil-Deligne representation has the form:

$$\bigoplus_{i=1}^{d} \tau_{m_i} \otimes \operatorname{Sp}(n_i)$$

where

- τ_i is an irreducible representation of the Weil group of \mathbb{Q}_p of dimension $m_i \geq 1$,
- $\operatorname{Sp}(n_i)$ is the special representation of dimension $n_i \geq 1$.

The Weil-Deligne rep. at p is indecomposable if there is only one summand in the decomposition above, i.e., d = 1.

個 と く ヨ と く ヨ と

The Weil-Deligne rep. at p is indecomposable if there is only one summand in the decomposition above, i.e., d = 1.

Note: The corresponding local automorphic representation π_p is the unique irreducible essentially square-integrable quotient $Q(\Delta)$ of $\operatorname{Ind}_{P}^{G}(\Delta)$,

The Weil-Deligne rep. at p is indecomposable if there is only one summand in the decomposition above, i.e., d = 1.

Note: The corresponding local automorphic representation π_p is the unique irreducible essentially square-integrable quotient $Q(\Delta)$ of $\operatorname{Ind}_P^G(\Delta)$, where $G = \operatorname{GL}_{mn}$, $P = P_m$ is the parabolic with Levi $\operatorname{GL}_m \times \cdots \times \operatorname{GL}_m$, Δ is the segment $[\sigma, \sigma(n-1)]$, and σ is a supercuspidal on GL_m corresponding to τ .

The Weil-Deligne rep. at p is indecomposable if there is only one summand in the decomposition above, i.e., d = 1.

Note: The corresponding local automorphic representation π_p is the unique irreducible essentially square-integrable quotient $Q(\Delta)$ of $\operatorname{Ind}_P^G(\Delta)$, where $G = \operatorname{GL}_{mn}$, $P = P_m$ is the parabolic with Levi $\operatorname{GL}_m \times \cdots \times \operatorname{GL}_m$, Δ is the segment $[\sigma, \sigma(n-1)]$, and σ is a supercuspidal on GL_m corresponding to τ .

Remark: The general WD representation for $d \ge 1$ arises as the unique irreducible quotient (Langlands quotient) of the double induction: $\operatorname{Ind}_{P}^{G}(Q(\Delta_{1}) \otimes \cdots \otimes Q(\Delta_{d}))$.

Indecomposable case

Theorem (G-Kumar)

Let π be a cuspidal automorphic representation of $GL_n(\mathbb{A}_Q)$ with infinitesimal character χ_H , with $H = \{-\beta_1 > \ldots > -\beta_n\}$ distinct integers.

Let π be a cuspidal automorphic representation of $\operatorname{GL}_n(\mathbb{A}_{\mathbb{Q}})$ with infinitesimal character χ_H , with $H = \{-\beta_1 > \ldots > -\beta_n\}$ distinct integers. Assume $WD(\rho_{\pi,p}|_{G_p}) = \tau_m \otimes \operatorname{Sp}(n)$ is indecomposable.

Let π be a cuspidal automorphic representation of $\operatorname{GL}_n(\mathbb{A}_{\mathbb{Q}})$ with infinitesimal character χ_H , with $H = \{-\beta_1 > \ldots > -\beta_n\}$ distinct integers. Assume $WD(\rho_{\pi,p}|_{G_p}) = \tau_m \otimes \operatorname{Sp}(n)$ is indecomposable.

• m = 1, $\tau = \chi = \chi_p \cdot \chi'$, with $\alpha := \chi'(\operatorname{Frob}_p)$.

Let π be a cuspidal automorphic representation of $\operatorname{GL}_n(\mathbb{A}_{\mathbb{Q}})$ with infinitesimal character χ_H , with $H = \{-\beta_1 > \ldots > -\beta_n\}$ distinct integers. Assume $WD(\rho_{\pi,p}|_{G_p}) = \tau_m \otimes \operatorname{Sp}(n)$ is indecomposable.

•
$$m = 1$$
, $\tau = \chi = \chi_p \cdot \chi'$, with $\alpha := \chi'(\operatorname{Frob}_p)$.

Let π be a cuspidal automorphic representation of $\operatorname{GL}_n(\mathbb{A}_{\mathbb{Q}})$ with infinitesimal character χ_H , with $H = \{-\beta_1 > \ldots > -\beta_n\}$ distinct integers. Assume $WD(\rho_{\pi,p}|_{G_p}) = \tau_m \otimes \operatorname{Sp}(n)$ is indecomposable.

•
$$m = 1, \tau = \chi = \chi_p \cdot \chi'$$
, with $\alpha := \chi'(\operatorname{Frob}_p)$.

$$\begin{pmatrix} \nu_{p}^{-\beta_{1}} & * & \cdots & * \\ 0 & \nu_{p}^{-\beta_{1}-1} & \cdots & * \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \nu_{p}^{-\beta_{1}-(n-1)} \end{pmatrix} \otimes \lambda(\alpha/p^{\mathsf{v}_{p}(\alpha)}) \cdot \chi_{p}.$$

Let π be a cuspidal automorphic representation of $\operatorname{GL}_n(\mathbb{A}_{\mathbb{Q}})$ with infinitesimal character χ_H , with $H = \{-\beta_1 > \ldots > -\beta_n\}$ distinct integers. Assume $WD(\rho_{\pi,p}|_{G_p}) = \tau_m \otimes \operatorname{Sp}(n)$ is indecomposable.

•
$$m = 1, \tau = \chi = \chi_p \cdot \chi'$$
, with $\alpha := \chi'(\operatorname{Frob}_p)$.

If π is p-ordinary (⇔ v_p(α) = −β₁), then the β_i are necessarily CONSECUTIVE integers and ρ_{π,p}|_{G_p} ~

$$\begin{pmatrix} \nu_p^{-\beta_1} & * & \cdots & * \\ 0 & \nu_p^{-\beta_1 - 1} & \cdots & * \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \nu_p^{-\beta_1 - (n-1)} \end{pmatrix} \otimes \lambda(\alpha/p^{\nu_p(\alpha)}) \cdot \chi_p.$$

• If π is not p-ordinary, then $\rho_{\pi,p}|_G$ is irreducible.

Let π be a cuspidal automorphic representation of $\operatorname{GL}_n(\mathbb{A}_{\mathbb{Q}})$ with infinitesimal character χ_H , with $H = \{-\beta_1 > \ldots > -\beta_n\}$ distinct integers. Assume $WD(\rho_{\pi,p}|_{G_p}) = \tau_m \otimes \operatorname{Sp}(n)$ is indecomposable.

•
$$m = 1, \tau = \chi = \chi_p \cdot \chi'$$
, with $\alpha := \chi'(\operatorname{Frob}_p)$.

If π is p-ordinary (⇔ v_p(α) = −β₁), then the β_i are necessarily CONSECUTIVE integers and ρ_{π,p}|_{G_p} ~

$$\begin{pmatrix} \nu_p^{-\beta_1} & * & \cdots & * \\ 0 & \nu_p^{-\beta_1 - 1} & \cdots & * \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \nu_p^{-\beta_1 - (n-1)} \end{pmatrix} \otimes \lambda(\alpha/p^{\nu_p(\alpha)}) \cdot \chi_p.$$

2 If $m \ge 2$, then $\rho_{\pi,p}|_{G_p}$ is always irreducible.

Let F/\mathbb{Q}_p be finite, Galois and let E/\mathbb{Q}_p be finite.

▲圖▶ ▲屋▶ ▲屋≯

Let F/\mathbb{Q}_p be finite, Galois and let E/\mathbb{Q}_p be finite. Colmez-Fontaine: There is an equivalence of categories $D_{st,F}: \{F\text{-semistable } \rho: G_p \to \operatorname{GL}_n(E)\} \longrightarrow$ $\{\text{admissible filtered } (\varphi, N, F, E) - \text{modules of rank } n\}.$

Let F/\mathbb{Q}_p be finite, Galois and let E/\mathbb{Q}_p be finite. Colmez-Fontaine: There is an equivalence of categories $D_{st,F} : \{F\text{-semistable } \rho : G_p \to \operatorname{GL}_n(E)\} \longrightarrow$ $\{\text{admissible filtered } (\varphi, N, F, E) - \text{modules of rank } n\}.$ Moreover, the HT weights $\{-\beta_n \leq \cdots \leq -\beta_1\} \leftrightarrow \text{jumps in}$ the Hodge filtration $\{\beta_1 < \cdots < \beta_n\}.$

Let F/\mathbb{Q}_p be finite, Galois and let E/\mathbb{Q}_p be finite.

Colmez-Fontaine: There is an equivalence of categories

$$\mathcal{D}_{st,\mathcal{F}}: \{F ext{-semistable }
ho: \mathcal{G}_p
ightarrow \operatorname{GL}_n(\mathcal{E}) \} \longrightarrow$$

{admissible filtered (φ, N, F, E) – modules of rank n}.

Moreover, the HT weights $\{-\beta_n \leq \cdots \leq -\beta_1\} \leftrightarrow$ jumps in the Hodge filtration $\{\beta_1 \leq \cdots \leq \beta_n\}$.

Example: for n = 1:

$$\begin{cases} \chi = \chi_p \, \lambda(\mathbf{a}) \, \nu_p^{-\beta} \end{cases}$$

Let F/\mathbb{Q}_p be finite, Galois and let E/\mathbb{Q}_p be finite.

Colmez-Fontaine: There is an equivalence of categories

$$\mathcal{D}_{st,\mathcal{F}}: \{\mathcal{F} ext{-semistable }
ho: \mathcal{G}_{p}
ightarrow \operatorname{GL}_{n}(\mathcal{E})\} \longrightarrow$$

{admissible filtered (φ, N, F, E) – modules of rank n}.

Moreover, the HT weights $\{-\beta_n \leq \cdots \leq -\beta_1\} \leftrightarrow$ jumps in the Hodge filtration $\{\beta_1 \leq \cdots \leq \beta_n\}$.

Example: for n = 1:

 $\begin{cases} \chi = \chi_{p} \, \lambda(a) \, \nu_{p}^{-\beta} \\ \text{with} \\ \chi_{p} \text{ fin., tot. ram.,} \end{cases}$

Let F/\mathbb{Q}_p be finite, Galois and let E/\mathbb{Q}_p be finite.

Colmez-Fontaine: There is an equivalence of categories

$$\mathcal{D}_{st,\mathcal{F}}: \{\mathcal{F} ext{-semistable }
ho: \mathcal{G}_{p}
ightarrow \operatorname{GL}_{n}(\mathcal{E})\} \longrightarrow$$

{admissible filtered (φ, N, F, E) – modules of rank n}.

Moreover, the HT weights $\{-\beta_n \leq \cdots \leq -\beta_1\} \leftrightarrow$ jumps in the Hodge filtration $\{\beta_1 \leq \cdots \leq \beta_n\}$.

Example: for n = 1:

$$\begin{cases} \chi = \chi_p \ \lambda(a) \ \nu_p^{-\beta} \\ \text{with} \\ \chi_p \text{ fin., tot. ram.,} \\ a \in \mathcal{O}_E^{\times}, \end{cases}$$

Let F/\mathbb{Q}_p be finite, Galois and let E/\mathbb{Q}_p be finite.

Colmez-Fontaine: There is an equivalence of categories

$$\mathcal{D}_{st,\mathcal{F}}: \{\mathcal{F} ext{-semistable }
ho: \mathcal{G}_{p}
ightarrow \operatorname{GL}_{n}(\mathcal{E})\} \longrightarrow$$

{admissible filtered (φ, N, F, E) – modules of rank n}.

Moreover, the HT weights $\{-\beta_n \leq \cdots \leq -\beta_1\} \leftrightarrow$ jumps in the Hodge filtration $\{\beta_1 \leq \cdots \leq \beta_n\}$.

Example: for n = 1:

$$\begin{cases} \chi = \chi_p \, \lambda(\mathbf{a}) \, \nu_p^{-\beta} \\ \text{with} \\ \chi_p \text{ fin., tot. ram.,} \\ \mathbf{a} \in \mathcal{O}_E^{\times}, \\ \beta \in \mathbb{Z} \end{cases}$$

Let F/\mathbb{Q}_p be finite, Galois and let E/\mathbb{Q}_p be finite.

Colmez-Fontaine: There is an equivalence of categories

$$\mathcal{D}_{st,\mathcal{F}}: \{\mathcal{F} ext{-semistable }
ho: \mathcal{G}_{p}
ightarrow \operatorname{GL}_{n}(\mathcal{E})\} \longrightarrow$$

{admissible filtered (φ, N, F, E) – modules of rank n}.

Moreover, the HT weights $\{-\beta_n \leq \cdots \leq -\beta_1\} \leftrightarrow$ jumps in the Hodge filtration $\{\beta_1 \leq \cdots \leq \beta_n\}$.

Example: for n = 1:

4

$$\begin{cases} \chi = \chi_{p} \lambda(a) \nu_{p}^{-\beta} \\ \text{with} \\ \chi_{p} \text{ fin., tot. ram.,} & \leftrightarrow \\ a \in \mathcal{O}_{E}^{\times}, \\ \beta \in \mathbb{Z} \end{cases}$$

$$D = D_{st,F}(\chi) = E \cdot e,$$

Let F/\mathbb{Q}_p be finite, Galois and let E/\mathbb{Q}_p be finite.

Colmez-Fontaine: There is an equivalence of categories

$$\mathcal{D}_{st,\mathcal{F}}: \{\mathcal{F} ext{-semistable }
ho: \mathcal{G}_{p}
ightarrow \operatorname{GL}_{n}(\mathcal{E})\} \longrightarrow$$

{admissible filtered (φ, N, F, E) – modules of rank n}.

Moreover, the HT weights $\{-\beta_n \leq \cdots \leq -\beta_1\} \leftrightarrow$ jumps in the Hodge filtration $\{\beta_1 \leq \cdots \leq \beta_n\}$.

Example: for n = 1:

$$\begin{cases} \chi = \chi_{p} \lambda(a) \nu_{p}^{-\beta} \\ \text{with} \\ \chi_{p} \text{ fin., tot. ram.,} & \leftrightarrow \\ a \in \mathcal{O}_{E}^{\times}, \\ \beta \in \mathbb{Z} \end{cases}$$

$$egin{array}{ll} D = D_{st,F}(\chi) = E \cdot e, \ ext{with} \ arphi(e) = p^eta/a \cdot e, \end{array}$$

ロト (日) (王) (王) (王) (の)

Let F/\mathbb{Q}_p be finite, Galois and let E/\mathbb{Q}_p be finite.

Colmez-Fontaine: There is an equivalence of categories

$$\mathcal{D}_{st,F}: \{F ext{-semistable }
ho: \mathcal{G}_p o \operatorname{GL}_n(E) \} \longrightarrow$$

{admissible filtered (φ, N, F, E) – modules of rank n}.

Moreover, the HT weights $\{-\beta_n \leq \cdots \leq -\beta_1\} \leftrightarrow$ jumps in the Hodge filtration $\{\beta_1 \leq \cdots \leq \beta_n\}$.

Example: for n = 1:

$$\begin{cases} \chi = \chi_{p} \lambda(a) \nu_{p}^{-\beta} \\ \text{with} \\ \chi_{p} \text{ fin., tot. ram.,} & \leftrightarrow \\ a \in \mathcal{O}_{E}^{\times}, \\ \beta \in \mathbb{Z} \end{cases}$$

(ロト (部) (注) (主) (主) のへ(

Let F/\mathbb{Q}_p be finite, Galois and let E/\mathbb{Q}_p be finite.

Colmez-Fontaine: There is an equivalence of categories

$$\mathcal{D}_{st,F}: \{F ext{-semistable }
ho: \mathcal{G}_p o \operatorname{GL}_n(E) \} \longrightarrow$$

{admissible filtered (φ, N, F, E) – modules of rank n}.

Moreover, the HT weights $\{-\beta_n \leq \cdots \leq -\beta_1\} \leftrightarrow$ jumps in the Hodge filtration $\{\beta_1 \leq \cdots \leq \beta_n\}$.

Example: for n = 1:

$$\begin{cases} \chi = \chi_p \ \lambda(a) \ \nu_p^{-\beta} \\ \text{with} \\ \chi_p \text{ fin., tot. ram.,} & \leftrightarrow \\ a \in \mathcal{O}_E^{\times}, \\ \beta \in \mathbb{Z} \end{cases}$$

$$\begin{cases} D = D_{st,F}(\chi) = E \cdot e, \\ \text{with} \\ \varphi(e) = p^{\beta}/a \cdot e, \\ N = 0, \\ g(e) = \chi_{p}(g) \cdot e, \ g \in \text{Gal}(F_{\chi_{p}}/\mathbb{Q}_{p}), \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = •○�(

Let F/\mathbb{Q}_p be finite, Galois and let E/\mathbb{Q}_p be finite.

Colmez-Fontaine: There is an equivalence of categories

$$\mathcal{D}_{st,F}: \{F ext{-semistable }
ho: \mathcal{G}_p o \operatorname{GL}_n(E) \} \longrightarrow$$

{admissible filtered (φ, N, F, E) – modules of rank n}.

Moreover, the HT weights $\{-\beta_n \leq \cdots \leq -\beta_1\} \leftrightarrow$ jumps in the Hodge filtration $\{\beta_1 \leq \cdots \leq \beta_n\}$.

Example: for n = 1:

$$\begin{cases} \chi = \chi_{p} \lambda(a) \nu_{p}^{-\beta} \\ \text{with} \\ \chi_{p} \text{ fin., tot. ram.,} & \leftrightarrow \\ a \in \mathcal{O}_{E}^{\times}, \\ \beta \in \mathbb{Z} \end{cases}$$

$$\begin{cases} D = D_{st,F}(\chi) = E \cdot e, \\ \text{with} \\ \varphi(e) = p^{\beta}/a \cdot e, \\ N = 0, \\ g(e) = \chi_{\rho}(g) \cdot e, \ g \in \operatorname{Gal}(F_{\chi_{\rho}}/\mathbb{Q}_{\rho}), \\ \operatorname{Fil}^{i}(D) = D, \ i \leq \beta; \end{cases}$$

Let F/\mathbb{Q}_p be finite, Galois and let E/\mathbb{Q}_p be finite.

Colmez-Fontaine: There is an equivalence of categories

$$\mathcal{D}_{st,F}: \{F ext{-semistable }
ho: \mathcal{G}_p o \operatorname{GL}_n(E) \} \longrightarrow$$

{admissible filtered (φ, N, F, E) – modules of rank n}.

Moreover, the HT weights $\{-\beta_n \leq \cdots \leq -\beta_1\} \leftrightarrow$ jumps in the Hodge filtration $\{\beta_1 \leq \cdots \leq \beta_n\}$.

Example: for n = 1:

$$\begin{cases} \chi = \chi_{p} \lambda(a) \nu_{p}^{-\beta} \\ \text{with} \\ \chi_{p} \text{ fin., tot. ram.,} & \leftrightarrow \\ a \in \mathcal{O}_{E}^{\times}, \\ \beta \in \mathbb{Z} \end{cases}$$

$$\begin{cases} D = D_{st,F}(\chi) = E \cdot e, \\ \text{with} \\ \varphi(e) = p^{\beta}/a \cdot e, \\ N = 0, \\ g(e) = \chi_{p}(g) \cdot e, \ g \in \operatorname{Gal}(F_{\chi_{p}}/\mathbb{Q}_{p}), \\ \operatorname{Fil}^{i}(D) = D, \ i \leq \beta; = 0, \ i \geq \beta + 1. \end{cases}$$

We sketch the proof when m = 1 and $\tau = \chi$ is an unramified character taking Frob_p to α .

We sketch the proof when m = 1 and $\tau = \chi$ is an unramified character taking Frob_p to α .

Let $D = D_{st,F}(\rho_{\pi,p}|_{G_p})$ be the corresponding filtered module.

We sketch the proof when m = 1 and $\tau = \chi$ is an unramified character taking Frob_p to α .

Let $D = D_{st,F}(\rho_{\pi,p}|_{G_p})$ be the corresponding filtered module. By assumption,

$$WD(D) = D_{\tau} \otimes D_{\mathrm{S}p(n)} = D_{\chi} \otimes D_{\mathrm{S}p(n)},$$

We sketch the proof when m = 1 and $\tau = \chi$ is an unramified character taking Frob_p to α .

Let $D = D_{st,F}(\rho_{\pi,p}|_{G_p})$ be the corresponding filtered module. By assumption,

$$WD(D) = D_{\tau} \otimes D_{\mathrm{S}p(n)} = D_{\chi} \otimes D_{\mathrm{S}p(n)},$$

i.e.,

$$D = E \cdot e_1 \oplus \cdots \oplus E \cdot e_n$$

(4回) (4回) (日)

with $N: e_n \mapsto e_{n-1} \mapsto \cdots e_1 \mapsto 0$ and $\varphi(e_i) = p^{i-1}/\alpha \cdot e_i$.

We sketch the proof when m = 1 and $\tau = \chi$ is an unramified character taking Frob_p to α .

Let $D = D_{st,F}(\rho_{\pi,p}|_{G_p})$ be the corresponding filtered module. By assumption,

$$WD(D) = D_{\tau} \otimes D_{\mathrm{S}p(n)} = D_{\chi} \otimes D_{\mathrm{S}p(n)},$$

i.e.,

$$D = E \cdot e_1 \oplus \cdots \oplus E \cdot e_n$$

with $N : e_n \mapsto e_{n-1} \mapsto \cdots e_1 \mapsto 0$ and $\varphi(e_i) = p^{i-1}/\alpha \cdot e_i$. Jumps in the Hodge filtration $= -H = \{\beta_1 < \cdots < \beta_n\}.$

We sketch the proof when m = 1 and $\tau = \chi$ is an unramified character taking Frob_p to α .

Let $D = D_{st,F}(\rho_{\pi,p}|_{G_p})$ be the corresponding filtered module. By assumption,

$$WD(D) = D_{\tau} \otimes D_{\mathrm{S}p(n)} = D_{\chi} \otimes D_{\mathrm{S}p(n)},$$

i.e.,

$$D = E \cdot e_1 \oplus \cdots \oplus E \cdot e_n$$

with $N: e_n \mapsto e_{n-1} \mapsto \cdots e_1 \mapsto 0$ and $\varphi(e_i) = p^{i-1}/\alpha \cdot e_i$.

Jumps in the Hodge filtration $= -H = \{\beta_1 < \cdots < \beta_n\}.$

Assume: the Hodge filtration on *D* is in general position with respect to the Newton filtration.

Proof continued

Lemma

Let $a_1 < \cdots < a_n$ and $b_1 < \cdots < b_n$ be two increasing sequences of integers s.t.

$$\sum_i a_i = \sum_i b_i.$$

<ロ> (四) (四) (三) (三) (三) (三)

Proof continued

Lemma

Let $a_1 < \cdots < a_n$ and $b_1 < \cdots < b_n$ be two increasing sequences of integers s.t.

$$\sum_i a_i = \sum_i b_i.$$

イロン イ部ン イヨン イヨン 三日

Say $a_{i+1} - a_i = 1$ and $b_{i+1} - b_i \ge 1$.

Proof continued

Lemma

Let $a_1 < \cdots < a_n$ and $b_1 < \cdots < b_n$ be two increasing sequences of integers s.t.

$$\sum_i a_i = \sum_i b_i.$$

Say $a_{i+1} - a_i = 1$ and $b_{i+1} - b_i \ge 1$. If $a_n = b_n$ or $a_1 = b_1$, then $a_i = b_i$ for all i.
Let $a_1 < \cdots < a_n$ and $b_1 < \cdots < b_n$ be two increasing sequences of integers s.t.

$$\sum_i a_i = \sum_i b_i$$

Say $a_{i+1} - a_i = 1$ and $b_{i+1} - b_i \ge 1$. If $a_n = b_n$ or $a_1 = b_1$, then $a_i = b_i$ for all i.

Proof: Assume $a_n = b_n$.

Let $a_1 < \cdots < a_n$ and $b_1 < \cdots < b_n$ be two increasing sequences of integers s.t.

$$\sum_i a_i = \sum_i b_i$$

Say $a_{i+1} - a_i = 1$ and $b_{i+1} - b_i \ge 1$. If $a_n = b_n$ or $a_1 = b_1$, then $a_i = b_i$ for all i.

Proof: Assume $a_n = b_n$. Then

$$(n-1)+(n-2)+\cdots+1 \le \sum_{i}(b_n-b_i)$$

Let $a_1 < \cdots < a_n$ and $b_1 < \cdots < b_n$ be two increasing sequences of integers s.t.

$$\sum_i a_i = \sum_i b_i$$

Say $a_{i+1} - a_i = 1$ and $b_{i+1} - b_i \ge 1$. If $a_n = b_n$ or $a_1 = b_1$, then $a_i = b_i$ for all i.

Proof: Assume $a_n = b_n$. Then

$$(n-1)+(n-2)+\cdots+1 \le \sum_{i}(b_n-b_i)=\sum_{i}(a_n-a_i)$$

Let $a_1 < \cdots < a_n$ and $b_1 < \cdots < b_n$ be two increasing sequences of integers s.t.

$$\sum_i a_i = \sum_i b_i$$

Say $a_{i+1} - a_i = 1$ and $b_{i+1} - b_i \ge 1$. If $a_n = b_n$ or $a_1 = b_1$, then $a_i = b_i$ for all i.

Proof: Assume $a_n = b_n$. Then

$$(n-1) + (n-2) + \cdots + 1 \le \sum_{i} (b_n - b_i) = \sum_{i} (a_n - a_i) \le (n-1) + (n-2) + \cdots + 1.$$

Let $a_1 < \cdots < a_n$ and $b_1 < \cdots < b_n$ be two increasing sequences of integers s.t.

$$\sum_i a_i = \sum_i b_i$$

Say $a_{i+1} - a_i = 1$ and $b_{i+1} - b_i \ge 1$. If $a_n = b_n$ or $a_1 = b_1$, then $a_i = b_i$ for all i.

Proof: Assume $a_n = b_n$. Then

$$(n-1) + (n-2) + \cdots + 1 \le \sum_{i} (b_n - b_i) = \sum_{i} (a_n - a_i) \le (n-1) + (n-2) + \cdots + 1.$$

So equality holds: all $b_n - b_i = a_n - a_i$, and $a_i = b_i$ for all i.

- * ロ > * 御 > * 注 > * 注 > … 注 … の & @

For $1 \leq r \leq n$, let

$$D_r = \langle e_1, \ldots, e_r \rangle,$$

・ロト ・回ト ・ヨト ・ヨト

æ

be the unique (φ, N) -submodule of D of rank r.

For $1 \leq r \leq n$, let

$$D_r = \langle e_1, \ldots, e_r \rangle,$$

be the unique (φ, N) -submodule of D of rank r.

Proposition

If two consecutive D_i and D_{i+1} are admissible, then all D_r are admissible, and the β_j are necessarily consecutive integers.

For $1 \leq r \leq n$, let

$$D_r = \langle e_1, \ldots, e_r \rangle,$$

be the unique (φ, N) -submodule of D of rank r.

Proposition

If two consecutive D_i and D_{i+1} are admissible, then all D_r are admissible, and the β_j are necessarily consecutive integers.

Proof: Let $\alpha_j^{-1} = p^{j-1}/\alpha$. Then:

;

$$t_{H}(D_{i}) = \sum_{j=1}^{\prime} \beta_{j} = -\sum_{j=1}^{\prime} v_{\rho}(\alpha_{j}) = t_{N}(D_{i}), \qquad (1)$$

$$t_{H}(D_{i+1}) = \sum_{j=1}^{i+1} \beta_{j} = -\sum_{j=1}^{i+1} v_{\rho}(\alpha_{j}) = t_{N}(D_{i+1}).$$
(2)

Subtracting, get $-v_p(\alpha_{i+1}) = \beta_{i+1}$.

・ロン ・四と ・日と ・日と

æ

Subtracting, get $-v_p(\alpha_{i+1}) = \beta_{i+1}$. Set $a_j := -v_p(\alpha_j)$ and $b_j := \beta_j$, for $1 \le j \le n$.

Subtracting, get $-v_p(\alpha_{i+1}) = \beta_{i+1}$. Set $a_j := -v_p(\alpha_j)$ and $b_j := \beta_j$, for $1 \le j \le n$. Then $a_n > \cdots > a_{i+1} > \cdots > a_1$, $b_n > \cdots > b_{i+1} > \cdots > b_1$.

(《圖》 《문》 《문》 - 문

Subtracting, get $-v_p(\alpha_{i+1}) = \beta_{i+1}$. Set $a_j := -v_p(\alpha_j)$ and $b_j := \beta_j$, for $1 \le j \le n$. Then $a_n > \cdots > a_{i+1} > \cdots > a_1$, $b_n > \cdots > b_{i+1} > \cdots > b_1$. Lemma $\implies a_j = b_j$, for all $1 \le j \le i+1$.

個 と く ヨ と く ヨ と …

Subtracting, get
$$-v_p(\alpha_{i+1}) = \beta_{i+1}$$
.
Set $a_j := -v_p(\alpha_j)$ and $b_j := \beta_j$, for $1 \le j \le n$. Then
 $a_n > \cdots > a_{i+1} > \cdots > a_1$,
 $b_n > \cdots > b_{i+1} > \cdots > b_1$.

Lemma $\implies a_j = b_j$, for all $1 \le j \le i + 1$. Now D_n is admissible, so

$$t_H(D_n) = \sum_{j=1}^n \beta_j = -\sum_{j=1}^n v_p(\alpha_j) = t_N(D_n),$$

・ロン ・四と ・日と ・日と

3

Subtracting, get
$$-v_p(\alpha_{i+1}) = \beta_{i+1}$$
.
Set $a_j := -v_p(\alpha_j)$ and $b_j := \beta_j$, for $1 \le j \le n$. Then
 $a_n > \cdots > a_{i+1} > \cdots > a_1$,
 $b_n > \cdots > b_{i+1} > \cdots > b_1$.

Lemma $\implies a_j = b_j$, for all $1 \le j \le i + 1$. Now D_n is admissible, so

$$t_H(D_n) = \sum_{j=1}^n \beta_j = -\sum_{j=1}^n v_p(\alpha_j) = t_N(D_n),$$

so subtracting equation (1) from this, get

$$\sum_{j=i+1}^n \beta_j = -\sum_{j=i+1}^n v_p(\alpha_j)$$

Subtracting, get
$$-v_p(\alpha_{i+1}) = \beta_{i+1}$$
.
Set $a_j := -v_p(\alpha_j)$ and $b_j := \beta_j$, for $1 \le j \le n$. Then
 $a_n > \cdots > a_{i+1} > \cdots > a_1$,
 $b_n > \cdots > b_{i+1} > \cdots > b_1$.

Lemma $\implies a_j = b_j$, for all $1 \le j \le i + 1$. Now D_n is admissible, so

$$t_H(D_n) = \sum_{j=1}^n \beta_j = -\sum_{j=1}^n v_p(\alpha_j) = t_N(D_n),$$

so subtracting equation (1) from this, get

$$\sum_{j=i+1}^n \beta_j = -\sum_{j=i+1}^n v_p(\alpha_j)$$

 $\text{Lemma again } \implies a_j = b_j, \text{ for } i+1 \leq j \leq n.$

Subtracting, get
$$-v_p(\alpha_{i+1}) = \beta_{i+1}$$
.
Set $a_j := -v_p(\alpha_j)$ and $b_j := \beta_j$, for $1 \le j \le n$. Then
 $a_n > \cdots > a_{i+1} > \cdots > a_1$,
 $b_n > \cdots > b_{i+1} > \cdots > b_1$.

Lemma $\implies a_j = b_j$, for all $1 \le j \le i + 1$. Now D_n is admissible, so

$$t_H(D_n) = \sum_{j=1}^n \beta_j = -\sum_{j=1}^n v_p(\alpha_j) = t_N(D_n),$$

so subtracting equation (1) from this, get

$$\sum_{j=i+1}^n \beta_j = -\sum_{j=i+1}^n v_p(\alpha_j)$$

Lemma again $\implies a_j = b_j$, for $i + 1 \le j \le n$. This shows $\beta_j = -v_p(\alpha_j)$ for all j, and all D_r $(1 \le r \le n)$ are admissible.

Theorem

The filtered module $D = D_{\tau} \otimes D_{Sp(n)}$ is either irreducible or reducible, in which case all the D_r $(1 \le r \le n)$ are admissible.

Theorem

The filtered module $D = D_{\tau} \otimes D_{Sp(n)}$ is either irreducible or reducible, in which case all the D_r $(1 \le r \le n)$ are admissible.

Proof: If *D* is irreducible, then done.

Theorem

The filtered module $D = D_{\tau} \otimes D_{Sp(n)}$ is either irreducible or reducible, in which case all the D_r $(1 \le r \le n)$ are admissible.

Proof: If *D* is irreducible, then done. Else, there exists *i* such that D_i is admissible. If D_{i-1} or D_{i+1} is admissible, then done by the Proposition.

Theorem

The filtered module $D = D_{\tau} \otimes D_{Sp(n)}$ is either irreducible or reducible, in which case all the D_r $(1 \le r \le n)$ are admissible.

Proof: If *D* is irreducible, then done. Else, there exists *i* such that D_i is admissible. If D_{i-1} or D_{i+1} is admissible, then done by the Proposition. So, assume neither are admissible:

$$\sum_{j=1}^{i-1} \beta_j < -\sum_{j=1}^{i-1} v_p(\alpha_j),$$

$$\sum_{j=1}^i \beta_j = -\sum_{j=1}^i v_p(\alpha_j),$$

$$\sum_{j=1}^{i+1} \beta_j < -\sum_{j=1}^{i+1} v_p(\alpha_j).$$

Second minus First $\implies \beta_i > -v_p(\alpha_i)$,

Proof completed

Second minus First $\implies \beta_i > -v_p(\alpha_i)$, so

 $-\beta_i < \mathbf{v}_p(\alpha_i).$

・ロン ・四と ・日と ・日と

3

Proof completed

Second minus First $\implies \beta_i > -v_p(\alpha_i)$, so

$$-\beta_i < \mathbf{v}_p(\alpha_i).$$

・ロン ・四と ・日と ・日と

æ

Third minus Second $\implies \beta_{i+1} < -v_p(\alpha_{i+1})$,

Proof completed

Second minus First $\implies \beta_i > -v_p(\alpha_i)$, so

$$-\beta_i < \mathbf{v}_p(\alpha_i).$$

Third minus Second $\implies \beta_{i+1} < -v_p(\alpha_{i+1})$, so

$$\beta_{i+1} < -\mathbf{v}_p(\alpha_i) + 1.$$

▶ ▲圖▶ ▲圖▶ ▲圖▶ -

æ

Second minus First $\implies \beta_i > -v_p(\alpha_i)$, so

$$-\beta_i < \mathbf{v}_p(\alpha_i).$$

Third minus Second $\implies \beta_{i+1} < -v_p(\alpha_{i+1})$, so

$$\beta_{i+1} < -\mathbf{v}_p(\alpha_i) + 1.$$

Adding, get:

$$1\leq\beta_{i+1}-\beta_i<1,$$

a contradiction to the fact that the Hodge-Tate weights were distinct.

Second minus First $\implies \beta_i > -v_p(\alpha_i)$, so

$$-\beta_i < \mathbf{v}_p(\alpha_i).$$

Third minus Second $\implies \beta_{i+1} < -v_p(\alpha_{i+1})$, so

$$\beta_{i+1} < -\mathbf{v}_p(\alpha_i) + 1.$$

Adding, get:

$$1\leq\beta_{i+1}-\beta_i<1,$$

a contradiction to the fact that the Hodge-Tate weights were distinct. This proves the theorem.

2. Semisimplicty

Recall: if f is p-ordinary, then the local Galois representation

$$ho_{f,p}|_{G_p} \sim \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$$

/⊒ ▶ < ≣ ▶

- ∢ ≣ ▶

is reducible.

Recall: if f is p-ordinary, then the local Galois representation

$$\rho_{f,p}|_{G_p} \sim \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$$

個 と く ヨ と く ヨ と

is reducible.

Greenberg: Is it semi-simple?

Recall: if f is p-ordinary, then the local Galois representation

$$\rho_{f,p}|_{G_p} \sim \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$$

is reducible.

Greenberg: Is it semi-simple?

Short Answer: Yes for CM forms, and almost always not, for non-CM forms.

Recall: if f is p-ordinary, then the local Galois representation

$$\rho_{f,p}|_{G_p} \sim \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$$

is reducible.

Greenberg: Is it semi-simple?

Short Answer: Yes for CM forms, and almost always not, for non-CM forms.

We will, in fact, prove results more generally for Hilbert modular cusp forms.

Let

- F be a totally real field
- p be an odd prime, that splits completely in F.

A∎ ▶ < ≣

Let

- F be a totally real field
- p be an odd prime, that splits completely in F.

Let $f \leftrightarrow \pi$ be a primitive Hilbert modular cusp form of

- parallel weight $(k,k,\cdots k)$, for $k\geq 2$,
- level $\mathfrak{N} \subset \mathcal{O}_F$, and,
- character $\psi : \operatorname{Cl}_{F,+}(\mathfrak{N}) \to \mathbb{C}^{\times}$.

Let

- F be a totally real field
- p be an odd prime, that splits completely in F.

Let $f \leftrightarrow \pi$ be a primitive Hilbert modular cusp form of

- parallel weight $(k,k,\cdots k)$, for $k\geq 2$,
- level $\mathfrak{N} \subset \mathcal{O}_F$, and,
- character $\psi : \operatorname{Cl}_{F,+}(\mathfrak{N}) \to \mathbb{C}^{\times}$.

Let

$$\rho_{f,p}: G_F \to \mathrm{GL}_2(\bar{\mathbb{Q}}_p)$$

be the Galois representation attached to f by Wiles, Taylor, Ohta, Carayol, Blasius-Rogawksi.

Let

- F be a totally real field
- p be an odd prime, that splits completely in F.

Let $f \leftrightarrow \pi$ be a primitive Hilbert modular cusp form of

• parallel weight $(k,k,\cdots k)$, for $k\geq 2$,

• level
$$\mathfrak{N} \subset \mathcal{O}_F$$
, and,

• character
$$\psi : \operatorname{Cl}_{F,+}(\mathfrak{N}) \to \mathbb{C}^{\times}.$$

Let

$$\rho_{f,p}: G_F \to \mathrm{GL}_2(\bar{\mathbb{Q}}_p)$$

be the Galois representation attached to f by Wiles, Taylor, Ohta, Carayol, Blasius-Rogawksi. Thus, for all primes $q \nmid \mathfrak{N}p$,

 $\operatorname{tr}(\rho_{f,\rho}(\operatorname{Frob}_{\mathfrak{q}})) = c(\mathfrak{q}, f) \text{ and } \operatorname{det}(\rho_{f,\rho}(\operatorname{Frob}_{\mathfrak{q}})) = \psi(\mathfrak{q}) \operatorname{N}(\mathfrak{q})^{k-1}.$

Split and CM

Wiles: If f is p-ordinary (i.e., $v_p(c(\mathfrak{p}, f)) = 0$, for all $\mathfrak{p}|p$), then $\rho_{f,p}|_{G_\mathfrak{p}} \sim \begin{pmatrix} \delta_\mathfrak{p} & u_\mathfrak{p} \\ 0 & \epsilon_\mathfrak{p} \end{pmatrix}$

is reducible, with $\epsilon_{\mathfrak{p}}$ unramified, for all \mathfrak{p} of F lying over p.
is reducible, with ϵ_p unramified, for all p of F lying over p.

Definition

Say f is p-split if $u_p = 0$ (in some basis), for all $\mathfrak{p}|p$.

is reducible, with $\epsilon_{\mathfrak{p}}$ unramified, for all \mathfrak{p} of F lying over p.

Definition

Say f is p-split if $u_p = 0$ (in some basis), for all $\mathfrak{p}|p$.

Say f has **CM**,

is reducible, with $\epsilon_{\mathfrak{p}}$ unramified, for all \mathfrak{p} of F lying over p.

Definition

Say f is p-split if $u_p = 0$ (in some basis), for all $\mathfrak{p}|p$.

Say f has **CM**, if there exits:

• a CM field K/F, a CM type Σ , and

is reducible, with ϵ_p unramified, for all p of F lying over p.

Definition

Say f is p-split if $u_p = 0$ (in some basis), for all $\mathfrak{p}|p$.

Say f has **CM**, if there exits:

- a CM field K/F, a CM type Σ , and
- a Hecke character $\lambda : I_{\mathcal{K}}(M) \to \mathbb{C}^{\times}$, satsifying

$$\lambda((lpha)) = \prod_{\sigma \in \Sigma} \sigma(lpha)^{k-1}, ext{ for all } lpha \equiv 1 \mod M, ext{ and } k \geq 2,$$

is reducible, with $\epsilon_{\mathfrak{p}}$ unramified, for all \mathfrak{p} of F lying over p.

Definition

Say f is p-split if $u_p = 0$ (in some basis), for all $\mathfrak{p}|p$.

Say f has **CM**, if there exits:

- a CM field K/F, a CM type Σ , and
- a Hecke character $\lambda : I_{\mathcal{K}}(M) \to \mathbb{C}^{\times}$, satsifying

$$\lambda((lpha)) = \prod_{\sigma \in \Sigma} \sigma(lpha)^{k-1}$$
, for all $lpha \equiv 1 \mod M$, and $k \geq 2$,

such that $f = \theta(\lambda)$ is the theta-series attached to λ .

is reducible, with $\epsilon_{\mathfrak{p}}$ unramified, for all \mathfrak{p} of F lying over p.

Definition

Say f is p-split if $u_p = 0$ (in some basis), for all $\mathfrak{p}|p$.

Say f has **CM**, if there exits:

- \bullet a CM field K/F, a CM type $\Sigma,$ and
- a Hecke character $\lambda : I_{\mathcal{K}}(M) \to \mathbb{C}^{\times}$, satsifying

$$\lambda((\alpha)) = \prod_{\sigma \in \Sigma} \sigma(\alpha)^{k-1}$$
, for all $\alpha \equiv 1 \mod M$, and $k \ge 2$,

such that $f = \theta(\lambda)$ is the theta-series attached to λ . Then $f \in S_k(N_{K/F}(M) \cdot D_{K/F}, \lambda|_{\mathbb{A}_F^{\times}} \cdot \omega_{K/F})$.

If f has CM, then $\rho_{f,p}$ is induced:

$$\rho_{f,p} \sim \operatorname{Ind}_{G_K}^{G_F} \lambda,$$

A ►

so is globally semi-simple on G_K .

If f has CM, then $\rho_{f,p}$ is induced:

$$\mathcal{D}_{f,p} \sim \mathrm{Ind}_{G_K}^{G_F} \lambda,$$

so is globally semi-simple on G_K .

But f is p-ordinary $\implies \mathfrak{p} = P\bar{P}$ splits in K and $G_{\mathfrak{p}} \subset G_{K}$, for all $\mathfrak{p}|p \implies f$ is p-split.

If f has CM, then $\rho_{f,p}$ is induced:

$$p_{f,p} \sim \operatorname{Ind}_{G_K}^{G_F} \lambda,$$

so is globally semi-simple on G_K .

But f is p-ordinary $\implies \mathfrak{p} = P\bar{P}$ splits in K and $G_{\mathfrak{p}} \subset G_{K}$, for all $\mathfrak{p}|p \implies f$ is p-split.

Remarks:

• There are CM forms in weight 1 (and also of non-|| wts).

If f has CM, then $\rho_{f,p}$ is induced:

$$p_{f,p} \sim \operatorname{Ind}_{G_K}^{G_F} \lambda,$$

so is globally semi-simple on G_K .

But f is p-ordinary $\implies \mathfrak{p} = P\bar{P}$ splits in K and $G_{\mathfrak{p}} \subset G_{K}$, for all $\mathfrak{p}|p \implies f$ is p-split.

Remarks:

- There are CM forms in weight 1 (and also of non-|| wts).
- **2** There are other 'exotic' dihedral forms in weight 1.

If f has CM, then $\rho_{f,p}$ is induced:

$$\mathcal{D}_{f,p} \sim \mathrm{Ind}_{G_K}^{G_F} \lambda,$$

so is globally semi-simple on G_K .

But f is p-ordinary $\implies \mathfrak{p} = P\bar{P}$ splits in K and $G_{\mathfrak{p}} \subset G_{K}$, for all $\mathfrak{p}|p \implies f$ is p-split.

Remarks:

- There are CM forms in weight 1 (and also of non-|| wts).
 There are other 'exotic' dihedral forms in weight 1. Take K/F arbitrary and λ of finite order such that for each real
 - place v of F that splits into two real places $v = v_1 v_2$ in

K, we have $\lambda_{v_1} = \operatorname{sgn}, \ \lambda_{v_2} = 1$, or vice-versa.

If f has CM, then $\rho_{f,p}$ is induced:

$$\mathcal{D}_{f,p} \sim \mathrm{Ind}_{G_K}^{G_F} \lambda,$$

so is globally semi-simple on G_K .

But f is p-ordinary $\implies \mathfrak{p} = P\bar{P}$ splits in K and $G_{\mathfrak{p}} \subset G_{K}$, for all $\mathfrak{p}|p \implies f$ is p-split.

Remarks:

There are CM forms in weight 1 (and also of non-|| wts).
There are other 'exotic' dihedral forms in weight 1. Take K/F arbitrary and λ of finite order such that for each real place v of F that splits into two real places v = v₁v₂ in K, we have λ_{v1} = sgn, λ_{v2} = 1, or vice-versa. Then f = θ(λ) is a non-CM dihedral weight 1 form.

If f has CM, then $\rho_{f,p}$ is induced:

$$\mathcal{D}_{f,p} \sim \mathrm{Ind}_{G_K}^{G_F} \lambda,$$

so is globally semi-simple on G_K .

But f is p-ordinary $\implies \mathfrak{p} = P\bar{P}$ splits in K and $G_{\mathfrak{p}} \subset G_{K}$, for all $\mathfrak{p}|p \implies f$ is p-split.

Remarks:

There are CM forms in weight 1 (and also of non-|| wts).
 There are other 'exotic' dihedral forms in weight 1. Take K/F arbitrary and λ of finite order such that for each real place v of F that splits into two real places v = v₁v₂ in K, we have λ_{v1} = sgn, λ_{v2} = 1, or vice-versa. Then f = θ(λ) is a non-CM dihedral weight 1 form.
 These exotic forms do not occur for weight k ≥ 2 (since π_v cannot be both discrete series and principal series).

Are the CM forms the only *p*-split forms in weights $k \ge 2$?

Are the CM forms the only *p*-split forms in weights $k \ge 2$?

Theorem (Serre)

Let E be an elliptic curve over \mathbb{Q} with ordinary reduction at p. Then $\rho_{E,p}$ is p-split $\iff E$ has CM.

/⊒ ▶ ∢ ≣ ▶

Are the CM forms the only *p*-split forms in weights $k \ge 2$?

Theorem (Serre)

Let E be an elliptic curve over \mathbb{Q} with ordinary reduction at p. Then $\rho_{E,p}$ is p-split $\iff E$ has CM.

Proposition (G-Vatsal, 2011)

Let Δ be the Ramanujan Delta function and p ordinary for Δ . Then Δ is NOT p-split, for all p < 10,000.

Are the CM forms the only *p*-split forms in weights $k \ge 2$?

Theorem (Serre)

Let E be an elliptic curve over \mathbb{Q} with ordinary reduction at p. Then $\rho_{E,p}$ is p-split $\iff E$ has CM.

Proposition (G-Vatsal, 2011)

Let Δ be the Ramanujan Delta function and p ordinary for Δ . Then Δ is NOT p-split, for all p < 10,000.

個 と く ヨ と く ヨ と

Proof: The proof shows that in the cases of interest the universal locally split deformation ring R_{split} for $\bar{\rho}_{\Delta,p}$, has vanishing tangent space, and so has very few split points.

Are the CM forms the only *p*-split forms in weights $k \ge 2$?

Theorem (Serre)

Let E be an elliptic curve over \mathbb{Q} with ordinary reduction at p. Then $\rho_{E,p}$ is p-split $\iff E$ has CM.

Proposition (G-Vatsal, 2011)

Let Δ be the Ramanujan Delta function and p ordinary for Δ . Then Δ is NOT p-split, for all p < 10,000.

Proof: The proof shows that in the cases of interest the universal locally split deformation ring R_{split} for $\bar{\rho}_{\Delta,p}$, has vanishing tangent space, and so has very few split points.

In general, it is HARD to check whether a given form is *p*-split!

Are the CM forms the only *p*-split forms in weights $k \ge 2$?

Theorem (Serre)

Let E be an elliptic curve over \mathbb{Q} with ordinary reduction at p. Then $\rho_{E,p}$ is p-split $\iff E$ has CM.

Proposition (G-Vatsal, 2011)

Let Δ be the Ramanujan Delta function and p ordinary for Δ . Then Δ is NOT p-split, for all p < 10,000.

Proof: The proof shows that in the cases of interest the universal locally split deformation ring R_{split} for $\bar{\rho}_{\Delta,\rho}$, has vanishing tangent space, and so has very few split points.

In general, it is HARD to check whether a given form is *p*-split!

Today: We show that 'most' forms in 'most' non-CM Hilbert modular Hida families are NOT *p*-split.

Main Theorem

Let
$$(\mathfrak{n}_0, p) = 1$$
.

- * 中 > * 御 > * 注 > * 注 > - 注 - のへ(

Main Theorem

Let $(\mathfrak{n}_0, p) = 1$.

Theorem (Balasubramanyam-G-Vatsal, 2012)

Suppose p > 2 split completely in F.

Let $(\mathfrak{n}_0, p) = 1$.

Theorem (Balasubramanyam-G-Vatsal, 2012)

Suppose p > 2 split completely in F. Let $S(n_0) = set$ of all primitive p-ordinary Hilbert modular cusp forms of weight $k \ge 2$ and prime-to-p level n_0 ,

Let $(\mathfrak{n}_0, p) = 1$.

Theorem (Balasubramanyam-G-Vatsal, 2012)

Suppose p > 2 split completely in F. Let $S(\mathfrak{n}_0) =$ set of all primitive p-ordinary Hilbert modular cusp forms of weight $k \ge 2$ and prime-to-p level \mathfrak{n}_0 , satisfying **1** f is p-distinguished $(\overline{\delta}_\mathfrak{p} \neq \overline{\epsilon}_\mathfrak{p}, \text{ for all } \mathfrak{p}|p)$. **2** $\overline{\rho}_{f,p}$ is abs. irr. on $G_{F(\zeta_p)}$. Let $(\mathfrak{n}_0, p) = 1$.

Theorem (Balasubramanyam-G-Vatsal, 2012)

Suppose p > 2 split completely in F. Let $S(\mathfrak{n}_0) =$ set of all primitive p-ordinary Hilbert modular cusp forms of weight $k \ge 2$ and prime-to-p level \mathfrak{n}_0 , satisfying **1** f is p-distinguished $(\bar{\delta}_{\mathfrak{p}} \neq \bar{\epsilon}_{\mathfrak{p}}, \text{ for all } \mathfrak{p}|p)$. **2** $\bar{\rho}_{f,p}$ is abs. irr. on $G_{F(\zeta_p)}$. Then except for a 'Zariski small' subset of $S(\mathfrak{n}_0)$

f is p-spilt
$$\iff$$
 f has CM.

Remarks

1. The set $S(n_0)$ is parametrized by a power series ring

$$\Lambda = \mathbb{Z}_p[[X_0, X_1, \ldots, X_{\delta}]]$$

in $1+\delta$ variables where δ is the defect to Leopoldt's conjecture.

Remarks

1. The set $S(n_0)$ is parametrized by a power series ring

$$\Lambda = \mathbb{Z}_{p}[[X_0, X_1, \ldots, X_{\delta}]]$$

in $1+\delta$ variables where δ is the defect to Leopoldt's conjecture. Zariski small means that the exceptional parameters form a Zariski closed subset of $\operatorname{Spec}(\Lambda)$ of positive codimension.

Remarks

1. The set $S(n_0)$ is parametrized by a power series ring

$$\Lambda = \mathbb{Z}_{p}[[X_0, X_1, \ldots, X_{\delta}]]$$

in $1 + \delta$ variables where δ is the defect to Leopoldt's conjecture. **Zariski small** means that the exceptional parameters form a Zariski closed subset of Spec(Λ) of positive codimension. If Leopoldt holds, e.g., if F/\mathbb{Q} is abelian, then $\delta = 0$ and **Zariski small = finite**.

1. The set $S(\mathfrak{n}_0)$ is parametrized by a power series ring

$$\Lambda = \mathbb{Z}_p[[X_0, X_1, \ldots, X_{\delta}]]$$

in $1 + \delta$ variables where δ is the defect to Leopoldt's conjecture. **Zariski small** means that the exceptional parameters form a Zariski closed subset of Spec(Λ) of positive codimension. If Leopoldt holds, e.g., if F/\mathbb{Q} is abelian, then $\delta = 0$ and **Zariski small = finite**.

2. We assume p splits completely in F. This is because we are using a result of Sasaki which assumes this. However, recent work of Kassaei, Pilloni and others on glueing overconvergent eigenforms is expected to remove this hypothesis.

1. The set $S(\mathfrak{n}_0)$ is parametrized by a power series ring

 $\Lambda = \mathbb{Z}_p[[X_0, X_1, \ldots, X_{\delta}]]$

in $1 + \delta$ variables where δ is the defect to Leopoldt's conjecture. **Zariski small** means that the exceptional parameters form a Zariski closed subset of Spec(Λ) of positive codimension. If Leopoldt holds, e.g., if F/\mathbb{Q} is abelian, then $\delta = 0$ and **Zariski small = finite**.

2. We assume p splits completely in F. This is because we are using a result of Sasaki which assumes this. However, recent work of Kassaei, Pilloni and others on glueing overconvergent eigenforms is expected to remove this hypothesis.

3. This generalizes a result of Ghate-Vatsal (2004) for $F = \mathbb{Q}$.

1. The set $S(\mathfrak{n}_0)$ is parametrized by a power series ring

$$\Lambda = \mathbb{Z}_p[[X_0, X_1, \ldots, X_{\delta}]]$$

in $1 + \delta$ variables where δ is the defect to Leopoldt's conjecture. **Zariski small** means that the exceptional parameters form a Zariski closed subset of Spec(Λ) of positive codimension. If Leopoldt holds, e.g., if F/\mathbb{Q} is abelian, then $\delta = 0$ and **Zariski small = finite**.

2. We assume p splits completely in F. This is because we are using a result of Sasaki which assumes this. However, recent work of Kassaei, Pilloni and others on glueing overconvergent eigenforms is expected to remove this hypothesis.

3. This generalizes a result of Ghate-Vatsal (2004) for $F = \mathbb{Q}$.

4. When k = 2, see also B. Zhao's forthcoming UCLA thesis.

Let $\mathbf{G} = \mathbb{Z}_p^{1+\delta}$ be the \mathbb{Z}_p -free part of the Galois group of the maximal abelian, unramified-outside-p extension of F.

Let $\mathbf{G} = \mathbb{Z}_{p}^{1+\delta}$ be the \mathbb{Z}_{p} -free part of the Galois group of the maximal abelian, unramified-outside-*p* extension of *F*. Let $\Lambda = \mathcal{O}[[\mathbf{G}]]$, for $\mathcal{O}/\mathbb{Z}_{p}$ finite.

Let $\mathbf{G} = \mathbb{Z}_p^{1+\delta}$ be the \mathbb{Z}_p -free part of the Galois group of the maximal abelian, unramified-outside-p extension of F. Let $\Lambda = \mathcal{O}[[\mathbf{G}]]$, for \mathcal{O}/\mathbb{Z}_p finite. Let L be the integral closure of Λ in a finite extension of the quotient field of Λ .

Let $\mathbf{G} = \mathbb{Z}_p^{1+\delta}$ be the \mathbb{Z}_p -free part of the Galois group of the maximal abelian, unramified-outside-p extension of F. Let $\Lambda = \mathcal{O}[[\mathbf{G}]]$, for \mathcal{O}/\mathbb{Z}_p finite. Let L be the integral closure of Λ in a finite extension of the quotient field of Λ . Let N be the cyclotomic character of G_F , thought of as a character $N : \mathbf{G} \to \mathbb{Z}_p^{\times}$.

Let $\mathbf{G} = \mathbb{Z}_p^{1+\delta}$ be the \mathbb{Z}_p -free part of the Galois group of the maximal abelian, unramified-outside-p extension of F. Let $\Lambda = \mathcal{O}[[\mathbf{G}]]$, for \mathcal{O}/\mathbb{Z}_p finite. Let L be the integral closure of Λ in a finite extension of the quotient field of Λ . Let N be the cyclotomic character of G_F , thought of as a character $N : \mathbf{G} \to \mathbb{Z}_p^{\times}$. Let $\epsilon : \mathbf{G} \to \overline{\mathbb{Q}}_p^{\times}$ be of finite order.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Let $\mathbf{G} = \mathbb{Z}_p^{1+\delta}$ be the \mathbb{Z}_p -free part of the Galois group of the maximal abelian, unramified-outside-p extension of F. Let $\Lambda = \mathcal{O}[[\mathbf{G}]]$, for \mathcal{O}/\mathbb{Z}_p finite. Let L be the integral closure of Λ in a finite extension of the quotient field of Λ . Let N be the cyclotomic character of G_F , thought of as a character $N : \mathbf{G} \to \mathbb{Z}_p^{\times}$. Let $\epsilon : \mathbf{G} \to \mathbb{Q}_p^{\times}$ be of finite order. Let

$$P_{k,\epsilon}: L \to \mathbb{Q}_p$$

be an extension of the alg. homo. $\Lambda \to \overline{\mathbb{Q}}_p$ induced by the gp. homo. $\mathbf{G} \to \overline{\mathbb{Q}}_p^{\times}$ given by $a \mapsto \epsilon(a)N(a)^{k-1}$.
Some notation

Let $\mathbf{G} = \mathbb{Z}_p^{1+\delta}$ be the \mathbb{Z}_p -free part of the Galois group of the maximal abelian, unramified-outside-*p* extension of *F*. Let $\Lambda = \mathcal{O}[[\mathbf{G}]]$, for \mathcal{O}/\mathbb{Z}_p finite. Let *L* be the integral closure of Λ in a finite extension of the quotient field of Λ . Let *N* be the cyclotomic character of G_F , thought of as a character $N : \mathbf{G} \to \mathbb{Z}_p^{\times}$. Let $\epsilon : \mathbf{G} \to \mathbb{Q}_p^{\times}$ be of finite order. Let

$$P_{k,\epsilon}: L \to \mathbb{Q}_p$$

be an extension of the alg. homo. $\Lambda \to \overline{\mathbb{Q}}_p$ induced by the gp. homo. $\mathbf{G} \to \overline{\mathbb{Q}}_p^{\times}$ given by $a \mapsto \epsilon(a)N(a)^{k-1}$. For $k \ge 2$, these are the **arithemetic points** of *L*. For k = 1, the gp. homos. have finite order.

Some notation

Let $\mathbf{G} = \mathbb{Z}_p^{1+\delta}$ be the \mathbb{Z}_p -free part of the Galois group of the maximal abelian, unramified-outside-p extension of F. Let $\Lambda = \mathcal{O}[[\mathbf{G}]]$, for \mathcal{O}/\mathbb{Z}_p finite. Let L be the integral closure of Λ in a finite extension of the quotient field of Λ . Let N be the cyclotomic character of G_F , thought of as a character $N : \mathbf{G} \to \mathbb{Z}_p^{\times}$. Let $\epsilon : \mathbf{G} \to \overline{\mathbb{Q}}_p^{\times}$ be of finite order. Let

$$P_{k,\epsilon}: L \to \mathbb{Q}_p$$

be an extension of the alg. homo. $\Lambda \to \overline{\mathbb{Q}}_p$ induced by the gp. homo. $\mathbf{G} \to \overline{\mathbb{Q}}_p^{\times}$ given by $a \mapsto \epsilon(a)N(a)^{k-1}$. For $k \ge 2$, these are the **arithemetic points** of *L*. For k = 1, the gp. homos. have finite order.

Let $\chi: G_F \to \Lambda^{\times}$ be the character induced by

$$G_F \twoheadrightarrow \mathbf{G} \hookrightarrow \Lambda^{\times} = \mathcal{O}[[\mathbf{G}]]^{\times}.$$

Some notation

Let $\mathbf{G} = \mathbb{Z}_p^{1+\delta}$ be the \mathbb{Z}_p -free part of the Galois group of the maximal abelian, unramified-outside-*p* extension of *F*. Let $\Lambda = \mathcal{O}[[\mathbf{G}]]$, for \mathcal{O}/\mathbb{Z}_p finite. Let *L* be the integral closure of Λ in a finite extension of the quotient field of Λ . Let *N* be the cyclotomic character of G_F , thought of as a character $N : \mathbf{G} \to \mathbb{Z}_p^{\times}$. Let $\epsilon : \mathbf{G} \to \mathbb{Q}_p^{\times}$ be of finite order. Let

$$P_{k,\epsilon}: L \to \mathbb{Q}_p$$

be an extension of the alg. homo. $\Lambda \to \overline{\mathbb{Q}}_p$ induced by the gp. homo. $\mathbf{G} \to \overline{\mathbb{Q}}_p^{\times}$ given by $a \mapsto \epsilon(a)N(a)^{k-1}$. For $k \ge 2$, these are the **arithemetic points** of *L*. For k = 1, the gp. homos. have finite order.

Let $\chi: G_F \to \Lambda^{\times}$ be the character induced by

$$G_F \twoheadrightarrow \mathbf{G} \hookrightarrow \Lambda^{\times} = \mathcal{O}[[\mathbf{G}]]^{\times}.$$

Let $\psi : \mathcal{G}_F \twoheadrightarrow \operatorname{Cl}_{F,+}(\mathfrak{n}_0 p) \to \mathcal{O}^{\times}$ be of finite order and set $\Psi = \psi \cdot \chi.$

Let
$$(\mathfrak{n}_0, p) = 1$$
.

<ロ> < 部> < E> < E> < E < のQC</p>

Let
$$(\mathfrak{n}_0, p) = 1$$
.

Definition

A $\Lambda\text{-adic}$ Hilbert modular cusp form $\mathcal F$ of tame level $\mathfrak n_0$ and character Ψ

3

- ∢ ≣ ▶

<ロ> <同> <同> <三> <

Let
$$(\mathfrak{n}_0, p) = 1$$
.

Definition

A Λ -adic Hilbert modular cusp form ${\cal F}$ of tame level ${\mathfrak n}_0$ and character Ψ is a collection of elements

 $c(\mathfrak{a},\mathcal{F})\in L$ for $\mathfrak{a}\subset\mathcal{O}_F$

⊡ ▶ < ≣ ▶

Let
$$(\mathfrak{n}_0, p) = 1$$
.

Definition

A Λ -adic Hilbert modular cusp form ${\cal F}$ of tame level ${\mathfrak n}_0$ and character Ψ is a collection of elements

 $c(\mathfrak{a},\mathcal{F})\in L$ for $\mathfrak{a}\subset \mathcal{O}_F$

such that for all arithmetic primes $P_{k,\epsilon}: L \to \overline{\mathbb{Q}}_p^{\times}$ as above, the

 $P_{k,\epsilon}(c(\mathfrak{a},\mathcal{F}))$

are the Fourier coefficients of a classical p-ordinary Hilbert modular cusp form

Let
$$(\mathfrak{n}_0, p) = 1$$
.

Definition

A Λ -adic Hilbert modular cusp form ${\cal F}$ of tame level ${\mathfrak n}_0$ and character Ψ is a collection of elements

 $c(\mathfrak{a},\mathcal{F})\in L$ for $\mathfrak{a}\subset\mathcal{O}_F$

such that for all arithmetic primes $P_{k,\epsilon}: L \to \overline{\mathbb{Q}}_p^{\times}$ as above, the

 $P_{k,\epsilon}(c(\mathfrak{a},\mathcal{F}))$

are the Fourier coefficients of a classical p-ordinary Hilbert modular cusp form of weight $k \ge 2$, level $\mathfrak{n}_0 p^{\infty}$, and (finite order) character $P_{k,\epsilon}(\Psi) \cdot N^{1-k}$.

Let
$$(\mathfrak{n}_0, p) = 1$$
.

Definition

A Λ -adic Hilbert modular cusp form ${\cal F}$ of tame level ${\mathfrak n}_0$ and character Ψ is a collection of elements

 $c(\mathfrak{a},\mathcal{F})\in L$ for $\mathfrak{a}\subset\mathcal{O}_F$

such that for all arithmetic primes $P_{k,\epsilon}: L \to \overline{\mathbb{Q}}_p^{\times}$ as above, the

 $P_{k,\epsilon}(c(\mathfrak{a},\mathcal{F}))$

are the Fourier coefficients of a classical p-ordinary Hilbert modular cusp form of weight $k \ge 2$, level $\mathfrak{n}_0 p^{\infty}$, and (finite order) character $P_{k,\epsilon}(\Psi) \cdot N^{1-k}$.

Define primitive forms \mathcal{F} (eigen + new + normalized forms) appropriately.

• There are finitely many primitive $\Lambda\text{-adic}$ forms ${\mathcal F}$ of tame level ${\mathfrak n}_0.$

- There are finitely many primitive Λ-adic forms F of tame level n₀.
- $S(\mathfrak{n}_0) = \bigcup_{\mathcal{F}} S_{\mathcal{F}}(\mathfrak{n}_0)$ is a finite disjoint union.

- There are finitely many primitive Λ-adic forms F of tame level n₀.
- $S(\mathfrak{n}_0) = \bigcup_{\mathcal{F}} S_{\mathcal{F}}(\mathfrak{n}_0)$ is a finite disjoint union.
- Each \mathcal{F} is of CM type or not of CM type.

- There are finitely many primitive Λ-adic forms F of tame level n₀.
- $S(\mathfrak{n}_0) = \bigcup_{\mathcal{F}} S_{\mathcal{F}}(\mathfrak{n}_0)$ is a finite disjoint union.
- Each $\mathcal F$ is of CM type or not of CM type.
- There is a Galois representation ρ_F : G_F → GL₂(L) attached to F, such that

$$\operatorname{tr}(\rho_{\mathcal{F}}(\operatorname{Frob}_{\mathfrak{q}})) = c(\mathfrak{q}, \mathcal{F})$$
 and $\operatorname{det}(\rho_{\mathcal{F}}(\operatorname{Frob}_{\mathfrak{q}})) = \Psi(\mathfrak{q})$

for all primes $\mathfrak{q} \nmid \mathfrak{n}_0 p$,

- There are finitely many primitive Λ-adic forms F of tame level n₀.
- $S(\mathfrak{n}_0) = \bigcup_{\mathcal{F}} S_{\mathcal{F}}(\mathfrak{n}_0)$ is a finite disjoint union.
- Each \mathcal{F} is of CM type or not of CM type.
- There is a Galois representation ρ_F : G_F → GL₂(L) attached to F, such that

$$\operatorname{tr}(\rho_{\mathcal{F}}(\operatorname{Frob}_{\mathfrak{q}})) = c(\mathfrak{q}, \mathcal{F})$$
 and $\operatorname{det}(\rho_{\mathcal{F}}(\operatorname{Frob}_{\mathfrak{q}})) = \Psi(\mathfrak{q})$

for all primes $q \nmid \mathfrak{n}_0 p$, and such that, for all primes $\mathfrak{p}|p$,

$$\rho_{\mathcal{F}}|_{G_{\mathfrak{p}}} \sim \begin{pmatrix} \delta_{\mathcal{F},\mathfrak{p}} & u_{\mathcal{F},\mathfrak{p}} \\ 0 & \epsilon_{\mathcal{F},\mathfrak{p}} \end{pmatrix}$$

Local semisimplicity for families

Definition

${\mathcal F}$ is p-split if $u_{{\mathcal F},{\mathfrak p}}=0$ (in some basis), for all ${\mathfrak p}|p$.

Local semisimplicity for families

Definition

$${\mathcal F}$$
 is p-split if $u_{{\mathcal F},{\mathfrak p}}=0$ (in some basis), for all ${\mathfrak p}|p$.

Theorem (Λ)

If ${\mathcal F}$ is a primitive $\Lambda\text{-}adic$ family, such that

1 \mathcal{F} is p-distinguished

2
$$\bar{\rho}_{\mathcal{F}}$$
 is abs. irr. on $G_{F(\zeta_p)}$.

Then

$$\mathcal{F}$$
 is p-split $\iff \mathcal{F}$ is of CM type.

Definition

$${\mathcal F}$$
 is p-split if $u_{{\mathcal F},{\mathfrak p}}=0$ (in some basis), for all ${\mathfrak p}|p$.

Theorem (Λ)

If ${\mathcal F}$ is a primitive $\Lambda\text{-}adic$ family, such that

● *F* is *p*-distinguished

2
$$\bar{\rho}_{\mathcal{F}}$$
 is abs. irr. on $G_{F(\zeta_p)}$.

Then

$\mathcal{F} \text{ is p-split } \iff \mathcal{F} \text{ is of CM type.}$

Theorem Λ implies the main Theorem, by descent to the classical world.

One direction is clear.

・ロト ・団ト ・ヨト ・ヨト

æ

One direction is clear. The proof of the other direction studies the weight 1 members of the family \mathcal{F} , and is similar to the proof for the case $F = \mathbb{Q}$, except that Buzzard's theorem gets replaced by the following:

One direction is clear. The proof of the other direction studies the weight 1 members of the family \mathcal{F} , and is similar to the proof for the case $F = \mathbb{Q}$, except that Buzzard's theorem gets replaced by the following:

Theorem (Sasaki)

Say p > 2 splits completely in F.

One direction is clear. The proof of the other direction studies the weight 1 members of the family \mathcal{F} , and is similar to the proof for the case $F = \mathbb{Q}$, except that Buzzard's theorem gets replaced by the following:

Theorem (Sasaki)

One direction is clear. The proof of the other direction studies the weight 1 members of the family \mathcal{F} , and is similar to the proof for the case $F = \mathbb{Q}$, except that Buzzard's theorem gets replaced by the following:

Theorem (Sasaki)

$$\ \, \bullet |_{G_p} \sim \begin{pmatrix} \alpha_{\mathfrak{p}} & \mathbf{0} \\ \mathbf{0} & \beta_{\mathfrak{p}} \end{pmatrix} \text{ is split}$$

One direction is clear. The proof of the other direction studies the weight 1 members of the family \mathcal{F} , and is similar to the proof for the case $F = \mathbb{Q}$, except that Buzzard's theorem gets replaced by the following:

Theorem (Sasaki)

$$\ \, \bullet |_{\mathcal{G}_{p}} \sim \begin{pmatrix} \alpha_{\mathfrak{p}} & 0 \\ 0 & \beta_{\mathfrak{p}} \end{pmatrix} \text{ is split, with } \bar{\alpha}_{\mathfrak{p}} \neq \bar{\beta}_{\mathfrak{p}}$$

One direction is clear. The proof of the other direction studies the weight 1 members of the family \mathcal{F} , and is similar to the proof for the case $F = \mathbb{Q}$, except that Buzzard's theorem gets replaced by the following:

Theorem (Sasaki)

•
$$\rho|_{G_p} \sim \begin{pmatrix} \alpha_{\mathfrak{p}} & 0\\ 0 & \beta_{\mathfrak{p}} \end{pmatrix}$$
 is split, with $\bar{\alpha}_{\mathfrak{p}} \neq \bar{\beta}_{\mathfrak{p}}$, and $|\alpha(I_{\mathfrak{p}})|$ and $|\beta_{\mathfrak{p}}(I_{\mathfrak{p}})|$ are finite, for all $\mathfrak{p}|p$,

One direction is clear. The proof of the other direction studies the weight 1 members of the family \mathcal{F} , and is similar to the proof for the case $F = \mathbb{Q}$, except that Buzzard's theorem gets replaced by the following:

Theorem (Sasaki)

•
$$\rho|_{G_p} \sim \begin{pmatrix} \alpha_p & 0 \\ 0 & \beta_p \end{pmatrix}$$
 is split, with $\bar{\alpha}_p \neq \bar{\beta}_p$, and $|\alpha(I_p)|$ and $|\beta_p(I_p)|$ are finite, for all $p|p$,

2
$$\bar{\rho}$$
 is abs. irr. on $G_{F(\zeta_p)}$.

One direction is clear. The proof of the other direction studies the weight 1 members of the family \mathcal{F} , and is similar to the proof for the case $F = \mathbb{Q}$, except that Buzzard's theorem gets replaced by the following:

Theorem (Sasaki)

Say p > 2 splits completely in F. Let $\rho : G_F \to \operatorname{GL}_2(\mathcal{O})$ be a finitely ramified, residually modular, continuous p-adic Galois representation such that

$$\begin{array}{l} \bullet \ \rho|_{\mathcal{G}_p} \sim \begin{pmatrix} \alpha_{\mathfrak{p}} & 0 \\ 0 & \beta_{\mathfrak{p}} \end{pmatrix} \text{ is split, with } \bar{\alpha}_{\mathfrak{p}} \neq \bar{\beta}_{\mathfrak{p}}, \text{ and } |\alpha(I_{\mathfrak{p}})| \text{ and } \\ |\beta_{\mathfrak{p}}(I_{\mathfrak{p}})| \text{ are finite, for all } \mathfrak{p}|p, \end{array}$$

2 $\bar{\rho}$ is abs. irr. on $G_{F(\zeta_p)}$.

Then, there is a Hilbert cusp form f of weight 1 such that $\rho \sim \rho_{\rm f}$, the Rogawski-Tunnel representation attached to f.

Now assume $\rho_{\mathcal{F}}$ is *p*-split.

Now assume $\rho_{\mathcal{F}}$ is *p*-split. Apply Saskai's theorem to the weight 1 specialization of $\rho_{\mathcal{F}}$:

 $\rho := P_{1,\epsilon}(\rho_{\mathcal{F}}).$

⊡ ▶ < ≣ ▶

< ≣ >

Now assume $\rho_{\mathcal{F}}$ is *p*-split. Apply Saskai's theorem to the weight 1 specialization of $\rho_{\mathcal{F}}$:

$$\rho := P_{1,\epsilon}(\rho_{\mathcal{F}}).$$

Note ρ is *p*-split.

Now assume $\rho_{\mathcal{F}}$ is *p*-split. Apply Saskai's theorem to the weight 1 specialization of $\rho_{\mathcal{F}}$:

$$\rho := P_{1,\epsilon}(\rho_{\mathcal{F}}).$$

Note ρ is *p*-split. ρ is also *p*-distinguished by hypothesis.

Now assume $\rho_{\mathcal{F}}$ is *p*-split. Apply Saskai's theorem to the weight 1 specialization of $\rho_{\mathcal{F}}$:

 $\rho := P_{1,\epsilon}(\rho_{\mathcal{F}}).$

Note ρ is *p*-split. ρ is also *p*-distinguished by hypothesis. Moreover, the local diagonal characters of ρ are finite on inertia, since one is unramified, and the other is just $P_{1,\epsilon}(\det \rho_{\mathcal{F}}) = P_{1,\epsilon}(\Psi)$ which has finite order. Now assume $\rho_{\mathcal{F}}$ is *p*-split. Apply Saskai's theorem to the weight 1 specialization of $\rho_{\mathcal{F}}$:

 $\rho := P_{1,\epsilon}(\rho_{\mathcal{F}}).$

Note ρ is *p*-split. ρ is also *p*-distinguished by hypothesis. Moreover, the local diagonal characters of ρ are finite on inertia, since one is unramified, and the other is just $P_{1,\epsilon}(\det \rho_{\mathcal{F}}) = P_{1,\epsilon}(\Psi)$ which has finite order. So

 $\rho \sim \rho_f,$

for a classical Hilbert modular weight 1 cusp form f.

Now assume $\rho_{\mathcal{F}}$ is *p*-split. Apply Saskai's theorem to the weight 1 specialization of $\rho_{\mathcal{F}}$:

 $\rho := P_{1,\epsilon}(\rho_{\mathcal{F}}).$

Note ρ is *p*-split. ρ is also *p*-distinguished by hypothesis. Moreover, the local diagonal characters of ρ are finite on inertia, since one is unramified, and the other is just $P_{1,\epsilon}(\det \rho_{\mathcal{F}}) = P_{1,\epsilon}(\Psi)$ which has finite order. So

 $\rho \sim \rho_f$,

for a classical Hilbert modular weight 1 cusp form f.

As ϵ varies, we see \mathcal{F} has a Zariski dense set of classical weight 1 specializations.

All but finitely many of these must be **dihedral**.

All but finitely many of these must be **dihedral**.

Since there are only finitely many choices for the associated quadratic extension K/F, one K must occur for a Zariski dense set of specializations.

All but finitely many of these must be **dihedral**.

Since there are only finitely many choices for the associated quadratic extension K/F, one K must occur for a Zariski dense set of specializations.

This implies

 $\rho_{\mathcal{F}} \sim \operatorname{Ind}_{\mathcal{G}_{\mathcal{K}}}^{\mathcal{G}_{\mathcal{F}}} \lambda,$

for a Λ -adic Hecke character λ of this K.
All but finitely many of these must be **dihedral**.

Since there are only finitely many choices for the associated quadratic extension K/F, one K must occur for a Zariski dense set of specializations.

This implies

$$\rho_{\mathcal{F}} \sim \operatorname{Ind}_{\mathcal{G}_{\mathcal{K}}}^{\mathcal{G}_{\mathcal{F}}} \lambda,$$

for a Λ -adic Hecke character λ of this K. By the earlier remark (regarding non-existence of 'exotic' dihedral forms in weights 2 or more), this K/F must also be a CM field.

All but finitely many of these must be **dihedral**.

Since there are only finitely many choices for the associated quadratic extension K/F, one K must occur for a Zariski dense set of specializations.

This implies

$$\rho_{\mathcal{F}} \sim \operatorname{Ind}_{\mathcal{G}_{\mathcal{K}}}^{\mathcal{G}_{\mathcal{F}}} \lambda,$$

for a Λ -adic Hecke character λ of this K. By the earlier remark (regarding non-existence of 'exotic' dihedral forms in weights 2 or more), this K/F must also be a CM field.

Thus \mathcal{F} is a CM form, and we are done.

Corollary

If $F = \mathbb{Q}$ (or Leopoldt holds for F), then the number of weight 1 forms in a primitive non-CM family \mathcal{F} is finite.

@ ▶ 《 注 ▶ 《 注

Corollary

If $F = \mathbb{Q}$ (or Leopoldt holds for F), then the number of weight 1 forms in a primitive non-CM family \mathcal{F} is finite.

Question (Sarnak)

Can one give effective bounds on the number of classical weight 1 forms in a non-CM \mathcal{F} , when $F = \mathbb{Q}$?

Corollary

If $F = \mathbb{Q}$ (or Leopoldt holds for F), then the number of weight 1 forms in a primitive non-CM family \mathcal{F} is finite.

Question (Sarnak)

Can one give effective bounds on the number of classical weight 1 forms in a non-CM \mathcal{F} , when $F = \mathbb{Q}$?

E.g.: Greenberg-Vatsal have remarked that if there is Steinberg-type prime in the prime-to-p level N_0 of \mathcal{F} , then \mathcal{F} has **no** classical weight 1 specializations.

If there is a weight 1 form in \mathcal{F} , then it must be of

- exceptional type (A_4, S_4, A_5) or
- dihedral type (RM or CM),

If there is a weight 1 form in \mathcal{F} , then it must be of

- exceptional type (A_4, S_4, A_5) or
- dihedral type (RM or CM),

and then, the residual representation $\bar{\rho}_{\mathcal{F}}$ is of the same type.

If there is a weight 1 form in \mathcal{F} , then it must be of

- exceptional type (A_4, S_4, A_5) or
- dihedral type (RM or CM),

and then, the residual representation $\bar{\rho}_{\mathcal{F}}$ is of the same type.

Exceptional weight 1 forms are rare.

If there is a weight 1 form in \mathcal{F} , then it must be of

- exceptional type (A_4, S_4, A_5) or
- dihedral type (RM or CM),

and then, the residual representation $\bar{\rho}_{\mathcal{F}}$ is of the same type.

Exceptional weight 1 forms are rare. For example:

Theorem (Bhargava-G, 2009)

The number of octahedral forms of prime level is, on average, bounded by a constant.

If there is a weight 1 form in \mathcal{F} , then it must be of

- exceptional type (A_4, S_4, A_5) or
- dihedral type (RM or CM),

and then, the residual representation $\bar{\rho}_{\mathcal{F}}$ is of the same type.

Exceptional weight 1 forms are rare. For example:

Theorem (Bhargava-G, 2009)

The number of octahedral forms of prime level is, on average, bounded by a constant.

In the context of families, we have:

Theorem (G-Dimitrov, 2012)

If \mathcal{F} is residually exceptional and $p \ge 7$, then there is at most ONE exceptional form in \mathcal{F} .

If there is a weight 1 form in \mathcal{F} , then it must be of

- exceptional type (A_4, S_4, A_5) or
- dihedral type (RM or CM),

and then, the residual representation $\bar{\rho}_{\mathcal{F}}$ is of the same type.

Exceptional weight 1 forms are rare. For example:

Theorem (Bhargava-G, 2009)

The number of octahedral forms of prime level is, on average, bounded by a constant.

In the context of families, we have:

Theorem (G-Dimitrov, 2012)

If \mathcal{F} is residually exceptional and $p \ge 7$, then there is at most ONE exceptional form in \mathcal{F} .

Also: if p = 3 or 5, there are at most 4 such forms in \mathcal{F}_{+}^{1} ,

Now assume $\ensuremath{\mathcal{F}}$ is a primitive non-CM family, residually of dihedral type.

Now assume ${\cal F}$ is a primitive non-CM family, residually of dihedral type. Then ${\cal F}$ is residually of

個 ト く ヨ ト く ヨ ト

- RM type, or
- CM type.

Now assume ${\cal F}$ is a primitive non-CM family, residually of dihedral type. Then ${\cal F}$ is residually of

- RM type, or
- CM type.

Say K/\mathbb{Q} is the corresponding quadratic field, and $p \nmid D_K$.

/⊒ ▶ < ≣ ▶

Now assume ${\cal F}$ is a primitive non-CM family, residually of dihedral type. Then ${\cal F}$ is residually of

- RM type, or
- CM type.

Say K/\mathbb{Q} is the corresponding quadratic field, and $p \nmid D_K$.

Proposition

Say $p \ge 3$ and \mathcal{F} is residually RM, with $p \nmid D_{\mathcal{K}}$. Then the number of classical wt 1 (RM) forms in \mathcal{F} is bounded

Now assume ${\cal F}$ is a primitive non-CM family, residually of dihedral type. Then ${\cal F}$ is residually of

- RM type, or
- CM type.

Say K/\mathbb{Q} is the corresponding quadratic field, and $p \nmid D_K$.

Proposition

Say $p \ge 3$ and \mathcal{F} is residually RM, with $p \nmid D_{\mathcal{K}}$. Then the number of classical wt 1 (RM) forms in \mathcal{F} is bounded by the *p*-part of

$$\prod_{\ell \mid N_0} (\ell^2 - 1) \cdot h_{\mathcal{K}} \cdot N_{\mathcal{K}/\mathbb{Q}} (\epsilon_{\mathcal{K}}^{p-1} - 1),$$

Now assume ${\cal F}$ is a primitive non-CM family, residually of dihedral type. Then ${\cal F}$ is residually of

- RM type, or
- CM type.

Say K/\mathbb{Q} is the corresponding quadratic field, and $p \nmid D_K$.

Proposition

Say $p \ge 3$ and \mathcal{F} is residually RM, with $p \nmid D_{\mathcal{K}}$. Then the number of classical wt 1 (RM) forms in \mathcal{F} is bounded by the *p*-part of

$$\prod_{\ell \mid N_0} (\ell^2 - 1) \cdot h_{\mathcal{K}} \cdot N_{\mathcal{K}/\mathbb{Q}}(\epsilon_{\mathcal{K}}^{p-1} - 1),$$

where h_K is the class number of K and ϵ_K is a fundamental unit of K.

In the residually CM case, can only give a non-effective bound!

In the residually CM case, can only give a non-effective bound! **Remarks**:

• However, we do not know of an example of a non-CM, but residually CM (and not RM) family \mathcal{F} with a classical weight 1 CM point, with $p \nmid D_{\mathcal{K}}$.

In the residually CM case, can only give a non-effective bound! **Remarks**:

However, we do not know of an example of a non-CM, but residually CM (and not RM) family *F* with a classical weight 1 CM point, with p ∤ D_K. There are plenty of examples of such *F* without classical weight 1 points

In the residually CM case, can only give a non-effective bound! **Remarks**:

However, we do not know of an example of a non-CM, but residually CM (and not RM) family *F* with a classical weight 1 CM point, with p ∤ D_K. There are plenty of examples of such *F* without classical weight 1 points Take a p-ordinary CM form g of wt 2 on Γ₀(M), with p ∤ M. By Ribet's level raising criterion, there will be Steinberg-at-ℓ forms f (for ℓ ∤ Mp) of level N₀ = Mℓ, with f ≡ g mod p.

In the residually CM case, can only give a non-effective bound! **Remarks**:

• However, we do not know of an example of a non-CM, but residually CM (and not RM) family \mathcal{F} with a classical weight 1 CM point, with $p \nmid D_K$. There are plenty of examples of such \mathcal{F} without classical weight 1 points Take a *p*-ordinary CM form g of wt 2 on $\Gamma_0(M)$, with $p \nmid M$. By Ribet's level raising criterion, there will be Steinberg-at- ℓ forms f (for $\ell \nmid Mp$) of level $N_0 = M\ell$. with $f \equiv g \mod p$. The \mathcal{F} 's passing through these f's are non-CM and residually CM, but as remarked earlier, have **no** weight 1 points.

In the residually CM case, can only give a non-effective bound! **Remarks**:

- However, we do not know of an example of a non-CM, but residually CM (and not RM) family \mathcal{F} with a classical weight 1 CM point, with $p \nmid D_K$. There are plenty of examples of such \mathcal{F} without classical weight 1 points Take a *p*-ordinary CM form g of wt 2 on $\Gamma_0(M)$, with $p \nmid M$. By Ribet's level raising criterion, there will be Steinberg-at- ℓ forms f (for $\ell \nmid Mp$) of level $N_0 = M\ell$. with $f \equiv g \mod p$. The \mathcal{F} 's passing through these f's are non-CM and residually CM, but as remarked earlier. have **no** weight 1 points.
- On the other hand, there are examples of non-CM and residually CM families \mathcal{F} with classical weight 1 CM points, with $p|D_{K}$.

・回 ・ ・ ヨ ・ ・ ヨ ・

Then we get an immediate contradiction to uniqueness for families with respect to weight 1 members: f would also live in a CM family \mathcal{G} , since $p \nmid D_{\mathcal{K}}$.

Then we get an immediate contradiction to uniqueness for families with respect to weight 1 members: f would also live in a CM family \mathcal{G} , since $p \nmid D_{\mathcal{K}}$.

NB: If $p \mid D_K$, get no violation to uniqueness, since f cannot live in a CM family G.

Then we get an immediate contradiction to uniqueness for families with respect to weight 1 members: f would also live in a CM family \mathcal{G} , since $p \nmid D_{\mathcal{K}}$.

NB: If $p \mid D_K$, get no violation to uniqueness, since f cannot live in a CM family \mathcal{G} .

Recall for $p \ge 3$, Hida's control theorem for $k \ge 2$ \implies étaleness of Hida's Hecke algebra at wt $k \ge 2$ points

Then we get an immediate contradiction to uniqueness for families with respect to weight 1 members: f would also live in a CM family \mathcal{G} , since $p \nmid D_{\mathcal{K}}$.

NB: If $p \mid D_K$, get no violation to uniqueness, since f cannot live in a CM family G.

Recall for $p \ge 3$, Hida's control theorem for $k \ge 2$ \implies étaleness of Hida's Hecke algebra at wt $k \ge 2$ points \implies each arithmetic point live is a unique family, up to Galois conjugacy.

Then we get an immediate contradiction to uniqueness for families with respect to weight 1 members: f would also live in a CM family \mathcal{G} , since $p \nmid D_{\mathcal{K}}$.

NB: If $p \mid D_K$, get no violation to uniqueness, since f cannot live in a CM family \mathcal{G} .

Recall for $p \ge 3$, Hida's control theorem for $k \ge 2$

⇒ étaleness of Hida's Hecke algebra at wt $k \ge 2$ points ⇒ each arithmetic point live is a unique family, up to Galois conjugacy.

So, in view of the above remarks, is uniqueness *trying to hold* in weight 1?

Then we get an immediate contradiction to uniqueness for families with respect to weight 1 members: f would also live in a CM family \mathcal{G} , since $p \nmid D_{\mathcal{K}}$.

NB: If $p \mid D_K$, get no violation to uniqueness, since f cannot live in a CM family \mathcal{G} .

Recall for $p \ge 3$, Hida's control theorem for $k \ge 2$

⇒ étaleness of Hida's Hecke algebra at wt $k \ge 2$ points ⇒ each arithmetic point live is a unique family, up to Galois conjugacy.

So, in view of the above remarks, is uniqueness *trying to hold* in weight 1? This is our next question.

Aside: Uniqueness in Weight 1

Question

Does a classical weight 1 form live in a unique family \mathcal{F} ?

Aside: Uniqueness in Weight 1

Question

Does a classical weight 1 form live in a unique family \mathcal{F} ?

Answer: Apparently not.

Question

Does a classical weight 1 form live in a unique family \mathcal{F} ?

Answer: Apparently not. Take an RM wt 1 form $f = f \otimes \chi_D$. Then f lives in some \mathcal{F} , but it also lives in $\mathcal{G} = \mathcal{F} \otimes \chi_D$.

Question

Does a classical weight 1 form live in a unique family \mathcal{F} ?

Answer: Apparently not. Take an RM wt 1 form $f = f \otimes \chi_D$. Then f lives in some \mathcal{F} , but it also lives in $\mathcal{G} = \mathcal{F} \otimes \chi_D$.

However: numerically, \mathcal{F} and \mathcal{G} are always Galois conjugates!

Question

Does a classical weight 1 form live in a unique family \mathcal{F} ?

Answer: Apparently not. Take an RM wt 1 form $f = f \otimes \chi_D$. Then f lives in some \mathcal{F} , but it also lives in $\mathcal{G} = \mathcal{F} \otimes \chi_D$.

However: numerically, \mathcal{F} and \mathcal{G} are always Galois conjugates!

Typical example: Threre is a 3-adic \mathcal{F} with $N_0 = 13$ and $\psi = \chi_{-39}$ with Fourier coefficients in

$$L = \mathbb{Z}_3[[X]][Y]/(Y^2 + X)$$

having a weight 1 form with with RM by $\mathbb{Q}(\sqrt{13})$. If $\sigma: Y \mapsto -Y$, then $\mathcal{F} \otimes \chi_{13} = \mathcal{F}^{\sigma}$ is a Galois conjugate form.
Question

Does a classical weight 1 form live in a unique family \mathcal{F} ?

Answer: Apparently not. Take an RM wt 1 form $f = f \otimes \chi_D$. Then f lives in some \mathcal{F} , but it also lives in $\mathcal{G} = \mathcal{F} \otimes \chi_D$.

However: numerically, \mathcal{F} and \mathcal{G} are always Galois conjugates!

Typical example: Threre is a 3-adic \mathcal{F} with $N_0 = 13$ and $\psi = \chi_{-39}$ with Fourier coefficients in

$$L = \mathbb{Z}_3[[X]][Y]/(Y^2 + X)$$

having a weight 1 form with with RM by $\mathbb{Q}(\sqrt{13})$. If $\sigma: Y \mapsto -Y$, then $\mathcal{F} \otimes \chi_{13} = \mathcal{F}^{\sigma}$ is a Galois conjugate form.

Thus Hida's Hecke algebra is not étale at weight 1 points, but is there still a chance that uniqueness (up to conjugacy) holds?

We have:

Proposition (G-Dimitrov)

Uniqueness fails for classical weight 1 points.

・ロン ・四と ・日と ・日と

æ

We have:

Proposition (G-Dimitrov)

Uniqueness fails for classical weight 1 points.

Proof: Let $f = f \otimes \chi_{D_1}$, with $D_1 > 0$, be an RM wt 1 form s.t. ρ_f has projective image the **Klein-4 group**.

⊡ ▶ < ≣ ▶

We have:

Proposition (G-Dimitrov)

Uniqueness fails for classical weight 1 points.

Proof: Let $f = f \otimes \chi_{D_1}$, with $D_1 > 0$, be an RM wt 1 form s.t. ρ_f has projective image the **Klein-4 group**. Then

$$f = f \otimes \chi_{D_2} = f \otimes \chi_{D_3}$$

for two imaginary fields K_2 and K_3 .

We have:

Proposition (G-Dimitrov)

Uniqueness fails for classical weight 1 points.

Proof: Let $f = f \otimes \chi_{D_1}$, with $D_1 > 0$, be an RM wt 1 form s.t. ρ_f has projective image the **Klein-4 group**. Then

$$f = f \otimes \chi_{D_2} = f \otimes \chi_{D_3}$$

for two imaginary fields K_2 and K_3 . Say $p \nmid D_{K_i}$, for i = 2, 3.

We have:

Proposition (G-Dimitrov)

Uniqueness fails for classical weight 1 points.

Proof: Let $f = f \otimes \chi_{D_1}$, with $D_1 > 0$, be an RM wt 1 form s.t. ρ_f has projective image the **Klein-4 group**. Then

$$f = f \otimes \chi_{D_2} = f \otimes \chi_{D_3}$$

for two imaginary fields K_2 and K_3 . Say $p \nmid D_{K_i}$, for i = 2, 3. Let \mathcal{F} and \mathcal{G} have CM by K_2 and K_3 and pass through f.

We have:

Proposition (G-Dimitrov)

Uniqueness fails for classical weight 1 points.

Proof: Let $f = f \otimes \chi_{D_1}$, with $D_1 > 0$, be an RM wt 1 form s.t. ρ_f has projective image the **Klein-4 group**. Then

$$f = f \otimes \chi_{D_2} = f \otimes \chi_{D_3}$$

for two imaginary fields K_2 and K_3 . Say $p \nmid D_{K_i}$, for i = 2, 3. Let \mathcal{F} and \mathcal{G} have CM by K_2 and K_3 and pass through f. Then \mathcal{F} and \mathcal{G} are not Galois conjugates.

We have:

Proposition (G-Dimitrov)

Uniqueness fails for classical weight 1 points.

Proof: Let $f = f \otimes \chi_{D_1}$, with $D_1 > 0$, be an RM wt 1 form s.t. ρ_f has projective image the **Klein-4 group**. Then

$$f = f \otimes \chi_{D_2} = f \otimes \chi_{D_3}$$

for two imaginary fields K_2 and K_3 . Say $p \nmid D_{K_i}$, for i = 2, 3. Let \mathcal{F} and \mathcal{G} have CM by K_2 and K_3 and pass through f. Then \mathcal{F} and \mathcal{G} are not Galois conjugates. Indeed if $\mathcal{F} = \mathcal{G}^{\sigma}$,

We have:

Proposition (G-Dimitrov)

Uniqueness fails for classical weight 1 points.

Proof: Let $f = f \otimes \chi_{D_1}$, with $D_1 > 0$, be an RM wt 1 form s.t. ρ_f has projective image the **Klein-4 group**. Then

$$f = f \otimes \chi_{D_2} = f \otimes \chi_{D_3}$$

for two imaginary fields K_2 and K_3 . Say $p \nmid D_{K_i}$, for i = 2, 3. Let \mathcal{F} and \mathcal{G} have CM by K_2 and K_3 and pass through f. Then \mathcal{F} and \mathcal{G} are not Galois conjugates. Indeed if $\mathcal{F} = \mathcal{G}^{\sigma}$, then

$$\mathcal{F} = \mathcal{F} \otimes \chi_{D_2} = (\mathcal{G} \otimes \chi_{D_2})^{\sigma}$$

We have:

Proposition (G-Dimitrov)

Uniqueness fails for classical weight 1 points.

Proof: Let $f = f \otimes \chi_{D_1}$, with $D_1 > 0$, be an RM wt 1 form s.t. ρ_f has projective image the **Klein-4 group**. Then

$$f = f \otimes \chi_{D_2} = f \otimes \chi_{D_3}$$

for two imaginary fields K_2 and K_3 . Say $p \nmid D_{K_i}$, for i = 2, 3. Let \mathcal{F} and \mathcal{G} have CM by K_2 and K_3 and pass through f. Then \mathcal{F} and \mathcal{G} are not Galois conjugates. Indeed if $\mathcal{F} = \mathcal{G}^{\sigma}$, then

$$\mathcal{F} = \mathcal{F} \otimes \chi_{D_2} = (\mathcal{G} \otimes \chi_{D_2})^{\sigma} = (\mathcal{G} \otimes \chi_{D_3} \chi_{D_1})^{\sigma}$$

We have:

Proposition (G-Dimitrov)

Uniqueness fails for classical weight 1 points.

Proof: Let $f = f \otimes \chi_{D_1}$, with $D_1 > 0$, be an RM wt 1 form s.t. ρ_f has projective image the **Klein-4 group**. Then

$$f = f \otimes \chi_{D_2} = f \otimes \chi_{D_3}$$

for two imaginary fields K_2 and K_3 . Say $p \nmid D_{K_i}$, for i = 2, 3. Let \mathcal{F} and \mathcal{G} have CM by K_2 and K_3 and pass through f. Then \mathcal{F} and \mathcal{G} are not Galois conjugates. Indeed if $\mathcal{F} = \mathcal{G}^{\sigma}$, then

$$\mathcal{F} = \mathcal{F} \otimes \chi_{D_2} = (\mathcal{G} \otimes \chi_{D_2})^{\sigma} = (\mathcal{G} \otimes \chi_{D_3} \chi_{D_1})^{\sigma} = (\mathcal{G} \otimes \chi_{D_1})^{\sigma}$$

We have:

Proposition (G-Dimitrov)

Uniqueness fails for classical weight 1 points.

Proof: Let $f = f \otimes \chi_{D_1}$, with $D_1 > 0$, be an RM wt 1 form s.t. ρ_f has projective image the **Klein-4 group**. Then

$$f = f \otimes \chi_{D_2} = f \otimes \chi_{D_3}$$

for two imaginary fields K_2 and K_3 . Say $p \nmid D_{K_i}$, for i = 2, 3. Let \mathcal{F} and \mathcal{G} have CM by K_2 and K_3 and pass through f. Then \mathcal{F} and \mathcal{G} are not Galois conjugates. Indeed if $\mathcal{F} = \mathcal{G}^{\sigma}$, then

$$\mathcal{F} = \mathcal{F} \otimes \chi_{D_2} = (\mathcal{G} \otimes \chi_{D_2})^{\sigma} = (\mathcal{G} \otimes \chi_{D_3} \chi_{D_1})^{\sigma} = (\mathcal{G} \otimes \chi_{D_1})^{\sigma}$$

= $\mathcal{F} \otimes \chi_{D_1},$

a contradiction, since ${\cal F}$ cannot have RM forms in wts \geq 2.

Question

i) In the dihedral case, does uniqueness hold outside the Klein-4 case?

Question

- i) In the dihedral case, does uniqueness hold outside the Klein-4 case?
- ii) Does uniqueness always hold at exceptional weight 1 points?

Question

- i) In the dihedral case, does uniqueness hold outside the Klein-4 case?
- ii) Does uniqueness always hold at exceptional weight 1 points?

Answers to these questions have implications for the geometry of the eigencurve at classical weight 1 points.

What about local semisimplicity for Hilbert modular forms of non-parallel weight?

What about local semisimplicity for Hilbert modular forms of non-parallel weight? Let:

/⊒ ▶ < ≣ ▶

_∢ ≣ ≯

• *I* be the set of embeddings of *F* into \mathbb{R}

What about local semisimplicity for Hilbert modular forms of non-parallel weight?

/⊒ ▶ < ≣ ▶

_∢ ≣ ≯

Let:

• *I* be the set of embeddings of *F* into \mathbb{R}

•
$$t = (1, 1, \dots, 1) \in \mathbb{Z}[I]$$

What about local semisimplicity for Hilbert modular forms of non-parallel weight?

/⊒ ▶ < ≣ ▶

_∢ ≣ ≯

Let:

• I be the set of embeddings of F into $\mathbb R$

•
$$t = (1, 1, \dots, 1) \in \mathbb{Z}[I]$$

•
$$k = (k_{\sigma})$$
 and $n = (n_{\sigma}) \in \mathbb{Z}[I]$ with $n = k - 2t$

What about local semisimplicity for Hilbert modular forms of non-parallel weight?

個 と く ヨ と く ヨ と

Let:

• I be the set of embeddings of F into $\mathbb R$

What about local semisimplicity for Hilbert modular forms of non-parallel weight?

Let:

• I be the set of embeddings of F into $\mathbb R$

•
$$t = (1, 1, ..., 1) \in \mathbb{Z}[I]$$

• $k = (k_{\sigma})$ and $n = (n_{\sigma}) \in \mathbb{Z}[I]$ with $n = k - 2t$
• $v = (v_{\sigma}) \ge 0$, some $v_{\sigma} = 0$, $n + 2v = \mu t$ parallel
• $w = v + k - t \in \mathbb{Z}[I]$.

/⊒ ▶ < ≣ ▶

_∢ ≣ ≯

What about local semisimplicity for Hilbert modular forms of non-parallel weight?

Let:

• I be the set of embeddings of F into $\mathbb R$

•
$$t = (1, 1, ..., 1) \in \mathbb{Z}[I]$$

• $k = (k_{\sigma})$ and $n = (n_{\sigma}) \in \mathbb{Z}[I]$ with $n = k - 2t$
• $v = (v_{\sigma}) \ge 0$, some $v_{\sigma} = 0$, $n + 2v = \mu t$ parallel
• $w = v + k - t \in \mathbb{Z}[I]$.

Let $S_{k,w}(\mathfrak{n},\mathbb{C})$ be the space of Hilbert modular forms of weight (k, w).

For $\mathfrak{a} \subset \mathcal{O}_F$, let

$$T_0(\mathfrak{a}) = \{\mathfrak{a}^v\}^{-1}T(\mathfrak{a})$$

be Hida's modified Hecke operator.

Hida: An eigenform $f \in S_{k,w}(\mathfrak{n}, \mathbb{C})$ is **nearly** *p*-ordinary if it's $T_0(\mathfrak{p})$ -eigenvalue is a *p*-adic unit for all $\mathfrak{p}|p$. In this case

$$\rho_{f,p}|_{G_{\mathfrak{p}}} \sim \begin{pmatrix} \delta_{\mathfrak{p}} & u_{\mathfrak{p}} \\ 0 & \epsilon_{\mathfrak{p}} \end{pmatrix}$$

for all $\mathfrak{p}|p$, but $\epsilon_{\mathfrak{p}}$ is not necessarily unramified.

Hida: An eigenform $f \in S_{k,w}(\mathfrak{n}, \mathbb{C})$ is **nearly** *p*-ordinary if it's $T_0(\mathfrak{p})$ -eigenvalue is a *p*-adic unit for all $\mathfrak{p}|p$. In this case

$$\rho_{f,p}|_{G_p} \sim \begin{pmatrix} \delta_p & u_p \\ 0 & \epsilon_p \end{pmatrix}$$

for all $\mathfrak{p}|p$, but $\epsilon_{\mathfrak{p}}$ is not necessarily unramified.

NB: Sasaki's theorem (and it's refinements) allow $\alpha_{\mathfrak{p}}$ and $\beta_{\mathfrak{p}}$ to have arbitrary finite ramification on inertia.

So one might expect that all the proofs go through in the n.ord setting.

Hida: An eigenform $f \in S_{k,w}(\mathfrak{n}, \mathbb{C})$ is **nearly** *p*-ordinary if it's $T_0(\mathfrak{p})$ -eigenvalue is a *p*-adic unit for all $\mathfrak{p}|p$. In this case

$$\rho_{f,p}|_{G_p} \sim \begin{pmatrix} \delta_p & u_p \\ 0 & \epsilon_p \end{pmatrix}$$

for all $\mathfrak{p}|p$, but $\epsilon_{\mathfrak{p}}$ is not necessarily unramified.

NB: Sasaki's theorem (and it's refinements) allow $\alpha_{\mathfrak{p}}$ and $\beta_{\mathfrak{p}}$ to have arbitrary finite ramification on inertia.

So one might expect that all the proofs go through in the n.ord setting. This is indeed true.

For instance, there is a theory of nearly ordinary families.

For instance, there is a theory of nearly ordinary families. Let $\mathbf{C}' := \mathbf{C}$ from before

• **G**' := **G** from before

For instance, there is a theory of nearly ordinary families. Let

⊡ ▶ < ≣ ▶

- G' := G from before
- $U_{1,F} =$ torsion-free part of $(\mathcal{O}_F \otimes \mathbb{Z}_p)^{ imes}$

For instance, there is a theory of nearly ordinary families. Let

- G' := G from before
- $U_{1,F} =$ torsion-free part of $(\mathcal{O}_F \otimes \mathbb{Z}_p)^{ imes}$
- \mathbf{H}' be the torsion-free part of $U_{1,F}/\bar{\mathcal{O}}_F^{\times} \subset \mathbf{G}'$,

For instance, there is a theory of nearly ordinary families. Let

- $\mathbf{G}' := \mathbf{G}$ from before
- $U_{1,F} =$ torsion-free part of $(\mathcal{O}_F \otimes \mathbb{Z}_p)^{ imes}$
- \mathbf{H}' be the torsion-free part of $U_{1,F}/\bar{\mathcal{O}}_F^{\times} \subset \mathbf{G}'$, and set

$$\mathbf{G} := U_{1,F} imes \mathbf{G}' = \mathbb{Z}_{p}^{[F:\mathbb{Q}]+1+\delta}$$

For instance, there is a theory of nearly ordinary families. Let

- $\mathbf{G}' := \mathbf{G}$ from before
- $U_{1,F} =$ torsion-free part of $(\mathcal{O}_F \otimes \mathbb{Z}_p)^{ imes}$
- \mathbf{H}' be the torsion-free part of $U_{1,F}/\bar{\mathcal{O}}_F^{\times} \subset \mathbf{G}'$, and set

$$\begin{aligned} \mathbf{G} &:= & U_{1,F} \times \mathbf{G}' = \mathbb{Z}_p^{[F:\mathbb{Q}]+1+\delta} \\ \mathbf{H} &:= & U_{1,F} \times \mathbf{H}'. \end{aligned}$$

For instance, there is a theory of nearly ordinary families. Let

- $\mathbf{G}' := \mathbf{G}$ from before
- $U_{1,F} =$ torsion-free part of $(\mathcal{O}_F \otimes \mathbb{Z}_p)^{ imes}$
- \mathbf{H}' be the torsion-free part of $U_{1,F}/\bar{\mathcal{O}}_F^{\times} \subset \mathbf{G}'$, and set

$$\begin{aligned} \mathbf{G} &:= & U_{1,F} \times \mathbf{G}' = \mathbb{Z}_p^{[F:\mathbb{Q}]+1+\delta} \\ \mathbf{H} &:= & U_{1,F} \times \mathbf{H}'. \end{aligned}$$

Finally, let $\Lambda = \mathcal{O}[[\mathbf{G}]]$.

For instance, there is a theory of nearly ordinary families. Let

- $\mathbf{G}' := \mathbf{G}$ from before
- $U_{1,F} =$ torsion-free part of $(\mathcal{O}_F \otimes \mathbb{Z}_p)^{ imes}$
- \mathbf{H}' be the torsion-free part of $U_{1,F}/\bar{\mathcal{O}}_F^{\times} \subset \mathbf{G}'$, and set

$$\mathbf{G} := U_{1,F} \times \mathbf{G}' = \mathbb{Z}_p^{[F:\mathbb{Q}]+1+\delta}$$

$$\mathbf{H} := U_{1,F} \times \mathbf{H}'.$$

Finally, let $\Lambda = \mathcal{O}[[\mathbf{G}]]$. This time arithmetic points

$$P_{n,v,\epsilon_1,\epsilon_2}: L \to \bar{\mathbb{Q}}_p$$

extend homomorphisms $\mathcal{O}[[\textbf{H}]] \to \bar{\mathbb{Q}}_p$ which on H are given by

$$(a,d)\mapsto \epsilon_1(a)\epsilon_2(d)d^{\mu t}a^{\nu},$$

with $k \ge 2t$.

For instance, there is a theory of nearly ordinary families. Let

- $\mathbf{G}' := \mathbf{G}$ from before
- $U_{1,F} =$ torsion-free part of $(\mathcal{O}_F \otimes \mathbb{Z}_p)^{ imes}$
- \mathbf{H}' be the torsion-free part of $U_{1,F}/\bar{\mathcal{O}}_F^{\times} \subset \mathbf{G}'$, and set

$$\mathbf{G} := U_{1,F} \times \mathbf{G}' = \mathbb{Z}_p^{[F:\mathbb{Q}]+1+\delta}$$

$$\mathbf{H} := U_{1,F} \times \mathbf{H}'.$$

Finally, let $\Lambda = \mathcal{O}[[\mathbf{G}]]$. This time arithmetic points

$$P_{n,v,\epsilon_1,\epsilon_2}: L \to \bar{\mathbb{Q}}_p$$

extend homomorphisms $\mathcal{O}[[\textbf{H}]] \to \bar{\mathbb{Q}}_p$ which on H are given by

$$(a, d) \mapsto \epsilon_1(a) \epsilon_2(d) d^{\mu t} a^{\nu},$$

with $k \ge 2t$. ETC....

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

For instance, there is a theory of nearly ordinary families. Let

- $\mathbf{G}' := \mathbf{G}$ from before
- $U_{1,F} = ext{torsion-free part of } (\mathcal{O}_F \otimes \mathbb{Z}_p)^{ imes}$
- \mathbf{H}' be the torsion-free part of $U_{1,F}/\bar{\mathcal{O}}_F^{\times} \subset \mathbf{G}'$, and set

$$\begin{aligned} \mathbf{G} &:= & U_{1,F} \times \mathbf{G}' = \mathbb{Z}_p^{[F:\mathbb{Q}]+1+\delta} \\ \mathbf{H} &:= & U_{1,F} \times \mathbf{H}'. \end{aligned}$$

Finally, let $\Lambda = \mathcal{O}[[\mathbf{G}]]$. This time arithmetic points

$$P_{n,\nu,\epsilon_1,\epsilon_2}: L \to \bar{\mathbb{Q}}_p$$

extend homomorphisms $\mathcal{O}[[\textbf{H}]] \to \bar{\mathbb{Q}}_p$ which on H are given by

$$(a, d) \mapsto \epsilon_1(a) \epsilon_2(d) d^{\mu t} a^{\nu},$$

with $k \geq 2t$. ETC.... The results and proofs are similar.
伺 と く き と く き と

Theorem (G-Kumar)

Hida's control theorem holds for $F = \mathbb{Q}$ and p = 2.

Theorem (G-Kumar)

Hida's control theorem holds for $F = \mathbb{Q}$ and p = 2.

In particular, we may speak of CM and non-CM 2-adic families.

Theorem (G-Kumar)

Hida's control theorem holds for $F = \mathbb{Q}$ and p = 2.

In particular, we may speak of CM and non-CM 2-adic families.

However, the analog of Buzzard/Sasaski's theorem is **not yet** available for p = 2, when the residual image of ρ is **dihedral**.

Theorem (G-Kumar)

Hida's control theorem holds for $F = \mathbb{Q}$ and p = 2.

In particular, we may speak of CM and non-CM 2-adic families.

However, the analog of Buzzard/Sasaski's theorem is **not yet** available for p = 2, when the residual image of ρ is **dihedral**.

This may come out of methods from P. Allen's recent UCLA thesis.

Thank you!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □