p-adic Modular forms and Arithmetic

Local behavior of automorphic Galois representations

Eknath Ghate

School of Mathematics
Tata Institute of Fundamental Research Mumbai

UCLA
June 20, 2012

Goal of today's talk

To study the local behaviour of Galois representations $\rho_{\pi, p}$ attached to cuspidal automorphic forms on GL_{n}.

Goal of today's talk

To study the local behaviour of Galois representations $\rho_{\pi, p}$ attached to cuspidal automorphic forms on GL_{n}.

More specifically, we study basic properties such as the
(c) Irreducibility, over \mathbb{Q},

Goal of today's talk

To study the local behaviour of Galois representations $\rho_{\pi, p}$ attached to cuspidal automorphic forms on GL_{n}.

More specifically, we study basic properties such as the
(1) Irreducibility, over \mathbb{Q}, and the
(2) Semisimplicity for $n=2$, over totally real fields F,

Goal of today's talk

To study the local behaviour of Galois representations $\rho_{\pi, p}$ attached to cuspidal automorphic forms on GL_{n}.

More specifically, we study basic properties such as the
(1) Irreducibility, over \mathbb{Q}, and the
(2) Semisimplicity for $n=2$, over totally real fields F, of these local Galois representations.

Some classical results

Let $f=\sum_{n=1}^{\infty} a_{n} q^{n}$ be a primitive classical cusp form of

- weight $k \geq 2$,
- level $N \geq 1$, and,
- character $\psi:(\mathbb{Z} / N)^{\times} \rightarrow \mathbb{C}^{\times}$.

Some classical results

Let $f=\sum_{n=1}^{\infty} a_{n} q^{n}$ be a primitive classical cusp form of

- weight $k \geq 2$,
- level $N \geq 1$, and,
- character $\psi:(\mathbb{Z} / N)^{\times} \rightarrow \mathbb{C}^{\times}$.

Ribet: The global p-adic Galois repesentation

$$
\rho_{f, p}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{p}\right)
$$

attached to f is irreducible.

Let $f=\sum_{n=1}^{\infty} a_{n} q^{n}$ be a primitive classical cusp form of

- weight $k \geq 2$,
- level $N \geq 1$, and,
- character $\psi:(\mathbb{Z} / N)^{\times} \rightarrow \mathbb{C}^{\times}$.

Ribet: The global p-adic Galois repesentation

$$
\rho_{f, p}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{p}\right)
$$

attached to f is irreducible. However, the local representation

$$
\left.\rho_{f, p}\right|_{G_{p}}
$$

obtained by restricting $\rho_{f, p}$ to a decomposition subgroup G_{p} at p may be reducible.

Ordinary implies reducible

Ordinary implies reducible

Mazur-Wiles: If f is p-ordinary (i.e., $v_{p}\left(a_{p}\right)=0$), then

$$
\left.\rho_{f, p}\right|_{G_{p}} \sim\left(\begin{array}{cc}
\lambda\left(\beta / p^{k-1}\right) \cdot \psi_{p} \cdot \nu_{p}^{k-1} & * \\
0 & \lambda(\alpha)
\end{array}\right)
$$

is reducible,

Ordinary implies reducible

Mazur-Wiles: If f is p-ordinary (i.e., $v_{p}\left(a_{p}\right)=0$), then

$$
\left.\rho_{f, p}\right|_{G_{p}} \sim\left(\begin{array}{cc}
\lambda\left(\beta / p^{k-1}\right) \cdot \psi_{p} \cdot \nu_{p}^{k-1} & * \\
0 & \lambda(\alpha)
\end{array}\right)
$$

is reducible, where

- ν_{p} is the p-adic cycolotomic character

Ordinary implies reducible

Mazur-Wiles: If f is p-ordinary (i.e., $v_{p}\left(a_{p}\right)=0$), then

$$
\left.\rho_{f, p}\right|_{G_{p}} \sim\left(\begin{array}{cc}
\lambda\left(\beta / p^{k-1}\right) \cdot \psi_{p} \cdot \nu_{p}^{k-1} & * \\
0 & \lambda(\alpha)
\end{array}\right)
$$

is reducible, where

- ν_{p} is the p-adic cycolotomic character
- $\psi=\psi_{p} \cdot \psi^{\prime}=(p$-part of $\psi) \cdot($ prime-to- p part of $\psi)$

Ordinary implies reducible

Mazur-Wiles: If f is p-ordinary (i.e., $v_{p}\left(a_{p}\right)=0$), then

$$
\rho_{f, p} \left\lvert\, G_{p} \sim\left(\begin{array}{cc}
\lambda\left(\beta / p^{k-1}\right) \cdot \psi_{p} \cdot \nu_{p}^{k-1} & * \\
0 & \lambda(\alpha)
\end{array}\right)\right.
$$

is reducible, where

- ν_{p} is the p-adic cycolotomic character
- $\psi=\psi_{p} \cdot \psi^{\prime}=(p$-part of $\psi) \cdot($ prime-to- p part of ψ)
- $\lambda(\alpha)$ is the unramified character of G_{p} taking Frob $_{p}$ to α, with

$$
\alpha= \begin{cases}\text { unit root of } & \\ x^{2}-a_{p} x+p^{k-1} \psi(p), & \text { if } p \nmid N, \\ a_{p}, & \text { if } p \| N, p \nmid \operatorname{cond}(\psi) \& k=2, \\ a_{p}, & \text { if } v_{p}(N)=v_{p}(\operatorname{cond}(\psi)) \geq 1 .\end{cases}
$$

Ordinary implies reducible

Mazur-Wiles: If f is p-ordinary (i.e., $v_{p}\left(a_{p}\right)=0$), then

$$
\rho_{f, p} \left\lvert\, G_{p} \sim\left(\begin{array}{cc}
\lambda\left(\beta / p^{k-1}\right) \cdot \psi_{p} \cdot \nu_{p}^{k-1} & * \\
0 & \lambda(\alpha)
\end{array}\right)\right.
$$

is reducible, where

- ν_{p} is the p-adic cycolotomic character
- $\psi=\psi_{p} \cdot \psi^{\prime}=(p$-part of $\psi) \cdot($ prime-to- p part of ψ)
- $\lambda(\alpha)$ is the unramified character of G_{p} taking Frob $_{p}$ to α, with

$$
\alpha= \begin{cases}\text { unit root of } & \\ x^{2}-a_{p} x+p^{k-1} \psi(p), & \text { if } p \nmid N, \\ a_{p}, & \text { if } p \| N, p \nmid \operatorname{cond}(\psi) \& k=2, \\ a_{p}, & \text { if } v_{p}(N)=v_{p}(\operatorname{cond}(\psi)) \geq 1 .\end{cases}
$$

- $\beta=\psi^{\prime}(p) p^{k-1} / \alpha$.

Converse?

Converse?

In general, the converse implication

$$
\rho_{f, p} \mid G_{p} \text { is reducbile } \Longrightarrow f \text { is } p \text {-ordinary }
$$

is false

Converse?

In general, the converse implication

$$
\rho_{f, p} \mid G_{p} \text { is reducbile } \Longrightarrow f \text { is } p \text {-ordinary }
$$

is false (e.g., consider the twist $f \otimes \chi$ of a p-ordinary form f of level N by a character χ of conductor p, with $p \nmid N$).

Converse?

In general, the converse implication

$$
\rho_{f, p} \mid G_{p} \text { is reducbile } \Longrightarrow f \text { is } p \text {-ordinary }
$$

is false (e.g., consider the twist $f \otimes \chi$ of a p-ordinary form f of level N by a character χ of conductor p, with $p \nmid N$).

However, sometimes it is true:

Converse?

In general, the converse implication

$$
\rho_{f, p} \mid G_{p} \text { is reducbile } \Longrightarrow f \text { is } p \text {-ordinary }
$$

is false (e.g., consider the twist $f \otimes \chi$ of a p-ordinary form f of level N by a character χ of conductor p, with $p \nmid N$).

However, sometimes it is true:
If $p \| N, p \nmid \operatorname{cond}(\psi)$ and $k>2$,

Converse?

In general, the converse implication

$$
\rho_{f, p} \mid G_{p} \text { is reducbile } \Longrightarrow f \text { is } p \text {-ordinary }
$$

is false (e.g., consider the twist $f \otimes \chi$ of a p-ordinary form f of level N by a character χ of conductor p, with $p \nmid N$).

However, sometimes it is true:
If $p \| N, p \nmid \operatorname{cond}(\psi)$ and $k>2$, then f is not p-ordinary and $\rho_{f, p} \mid G_{p}$ is irreducible.

Converse?

In general, the converse implication

$$
\rho_{f, p} \mid G_{p} \text { is reducbile } \Longrightarrow f \text { is } p \text {-ordinary }
$$

is false (e.g., consider the twist $f \otimes \chi$ of a p-ordinary form f of level N by a character χ of conductor p, with $p \nmid N$).

However, sometimes it is true:
If $p \| N, p \nmid \operatorname{cond}(\psi)$ and $k>2$, then f is not p-ordinary and $\rho_{f, p} \mid G_{p}$ is irreducible.

Can we generalize these results about irreducibility to GL_{n} ?

Converse?

In general, the converse implication

$$
\rho_{f, p} \mid G_{p} \text { is reducbile } \Longrightarrow f \text { is } p \text {-ordinary }
$$

is false (e.g., consider the twist $f \otimes \chi$ of a p-ordinary form f of level N by a character χ of conductor p, with $p \nmid N$).

However, sometimes it is true:
If $p \| N, p \nmid \operatorname{cond}(\psi)$ and $k>2$, then f is not p-ordinary and $\rho_{f, p} \mid G_{p}$ is irreducible.

Can we generalize these results about irreducibility to GL_{n} ?
Furthermore, even when $n=2$, can we specify when the local reducible representation above is semi-simple?

1. Irreducibility

We show that the local Galois representations coming from automorphic representations of $\mathrm{GL}_{n}\left(\mathbb{A}_{\mathbb{Q}}\right)$ have a particularly simple behaviour, if the underlying Weil-Deligne representation is indecomposable.

1. Irreducibility

We show that the local Galois representations coming from automorphic representations of $\mathrm{GL}_{n}\left(\mathbb{A}_{\mathbb{Q}}\right)$ have a particularly simple behaviour, if the underlying Weil-Deligne representation is indecomposable.
They are either completely reducible (with Galois image in a Borel of GL_{n})

1. Irreducibility

We show that the local Galois representations coming from automorphic representations of $\mathrm{GL}_{n}\left(\mathbb{A}_{\mathbb{Q}}\right)$ have a particularly simple behaviour, if the underlying Weil-Deligne representation is indecomposable.
They are either completely reducible (with Galois image in a Borel of GL_{n}) or irreducible.

1. Irreducibility

We show that the local Galois representations coming from automorphic representations of $\mathrm{GL}_{n}\left(\mathbb{A}_{\mathbb{Q}}\right)$ have a particularly simple behaviour, if the underlying Weil-Deligne representation is indecomposable.
They are either completely reducible (with Galois image in a Borel of GL_{n}) or irreducible.
We work under a technical assumption from p-adic Hodge theory.

Motivation from GSp_{4}

Let π be a cuspidal automorphic form on $\operatorname{GSp}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right)$ with π_{∞} in the discrete series of weight $(a, b ; a+b)$ with $a \geq b \geq 0$.

Motivation from GSp 4

Let π be a cuspidal automorphic form on $\mathrm{GSp}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right)$ with π_{∞} in the discrete series of weight $(a, b ; a+b)$ with $a \geq b \geq 0$. Let

$$
\rho_{\pi, p}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{4}\left(\overline{\mathbb{Q}}_{p}\right)
$$

be the Galois representation attached to π by Taylor, Laumon, Weissauer.

Motivation from GSp_{4}

Let π be a cuspidal automorphic form on $\mathrm{GSp}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right)$ with π_{∞} in the discrete series of weight $(a, b ; a+b)$ with $a \geq b \geq 0$. Let

$$
\rho_{\pi, p}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{4}\left(\overline{\mathbb{Q}}_{p}\right)
$$

be the Galois representation attached to π by Taylor, Laumon, Weissauer.

Tilouine-Urban: There exist various notions of ordinariness of π at p, e.g., if π_{p} is unramified, then π_{p} may be Borel or Siegel or Klingen ordinary.

Motivation from GSp_{4}

Let π be a cuspidal automorphic form on $\mathrm{GSp}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right)$ with π_{∞} in the discrete series of weight $(a, b ; a+b)$ with $a \geq b \geq 0$. Let

$$
\rho_{\pi, p}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{4}\left(\overline{\mathbb{Q}}_{p}\right)
$$

be the Galois representation attached to π by Taylor, Laumon, Weissauer.

Tilouine-Urban: There exist various notions of ordinariness of π at p, e.g., if π_{p} is unramified, then π_{p} may be Borel or Siegel or Klingen ordinary. For instance, if π is Borel p-ordinary, so that

$$
v_{p}(\alpha)=0, v_{p}(\beta)=b+1, v_{p}(\gamma)=a+2, v_{p}(\delta)=a+b+3
$$

where $(x-\alpha)(x-\beta)(x-\gamma)(x-\delta)$ is the Hecke polynomial at p,

Motivation from GSp $_{4}$

Let π be a cuspidal automorphic form on $\mathrm{GSp}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right)$ with π_{∞} in the discrete series of weight $(a, b ; a+b)$ with $a \geq b \geq 0$. Let

$$
\rho_{\pi, p}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{4}\left(\overline{\mathbb{Q}}_{p}\right)
$$

be the Galois representation attached to π by Taylor, Laumon, Weissauer.

Tilouine-Urban: There exist various notions of ordinariness of π at p, e.g., if π_{p} is unramified, then π_{p} may be Borel or Siegel or Klingen ordinary. For instance, if π is Borel p-ordinary, so that

$$
v_{p}(\alpha)=0, v_{p}(\beta)=b+1, v_{p}(\gamma)=a+2, v_{p}(\delta)=a+b+3
$$

where $(x-\alpha)(x-\beta)(x-\gamma)(x-\delta)$ is the Hecke polynomial at p, then

$$
\rho_{\pi, p} \left\lvert\, G_{p} \sim\left(\begin{array}{ccc}
\lambda\left(\delta / p^{a+b+3}\right) \cdot \nu_{p}^{a+b+3} & * & * \\
0 & \lambda\left(\gamma / p^{a+2}\right) \cdot \nu_{p}^{a+2} & * \\
0 & 0 & \lambda\left(\beta / p^{b+1}\right) \cdot \nu_{p}^{b+1} \\
0 & 0 & 0
\end{array}\right.\right.
$$

Towards GL n

Let π be a cuspidal automorphic representation on $\mathrm{GL}_{n}\left(\mathbb{A}_{\mathbb{Q}}\right)$ with infinitesimal character

$$
\begin{aligned}
\chi_{H}: \mathcal{Z}_{n}=\mathbb{C}\left[X_{1}, \ldots, X_{n}\right] & \rightarrow \mathbb{C} \\
X_{i} & \mapsto x_{i}
\end{aligned}
$$

where $H=\left\{x_{1}, \ldots, x_{n}\right\}$ is a multiset of complex numbers.

Towards GL ${ }_{n}$

Let π be a cuspidal automorphic representation on $\mathrm{GL}_{n}\left(\mathbb{A}_{\mathbb{Q}}\right)$ with infinitesimal character

$$
\begin{aligned}
\chi_{H}: \mathcal{Z}_{n}=\mathbb{C}\left[X_{1}, \ldots, X_{n}\right] & \rightarrow \mathbb{C} \\
X_{i} & \mapsto x_{i}
\end{aligned}
$$

where $H=\left\{x_{1}, \ldots, x_{n}\right\}$ is a multiset of complex numbers.

Conjecture

If H consists of n distinct integers $-\beta_{1}>\cdots>-\beta_{n}$, then there exists a strictly compatible system of Galois representations

$$
\rho_{\pi, \ell}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{Q}}_{\ell}\right)
$$

with Hodge-Tate weights H, and such that Local-Global compatibility holds.

Towards GL ${ }_{n}$

Let π be a cuspidal automorphic representation on $\mathrm{GL}_{n}\left(\mathbb{A}_{\mathbb{Q}}\right)$ with infinitesimal character

$$
\begin{aligned}
\chi_{H}: \mathcal{Z}_{n}=\mathbb{C}\left[X_{1}, \ldots, X_{n}\right] & \rightarrow \mathbb{C} \\
X_{i} & \mapsto x_{i}
\end{aligned}
$$

where $H=\left\{x_{1}, \ldots, x_{n}\right\}$ is a multiset of complex numbers.

Conjecture

If H consists of n distinct integers $-\beta_{1}>\cdots>-\beta_{n}$, then there exists a strictly compatible system of Galois representations

$$
\rho_{\pi, \ell}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{Q}}_{\ell}\right)
$$

with Hodge-Tate weights H, and such that Local-Global compatibility holds.

Much progress had been made on this by Clozel, Harris, Taylor,

Weil-Deligne representations

Since $\rho_{\pi, p}$ is geometric (potentially semistable at p), there is a Weil-Deligne representation $\mathrm{WD}\left(\rho_{\pi, p} \mid G_{p}\right)$, attached to $\rho_{\pi, p} \mid G_{p}$.

Weil-Deligne representations

Since $\rho_{\pi, p}$ is geometric (potentially semistable at p), there is a Weil-Deligne representation $\mathrm{WD}\left(\rho_{\pi, p} \mid G_{p}\right)$, attached to $\rho_{\pi, p} \mid G_{p}$. Deligne: Every admissible Weil-Deligne representation has the form:

$$
\bigoplus_{i=1}^{d} \tau_{m_{i}} \otimes \operatorname{Sp}\left(n_{i}\right)
$$

Weil-Deligne representations

Since $\rho_{\pi, p}$ is geometric (potentially semistable at p), there is a Weil-Deligne representation $\mathrm{WD}\left(\rho_{\pi, p} \mid G_{p}\right)$, attached to $\rho_{\pi, p} \mid G_{p}$. Deligne: Every admissible Weil-Deligne representation has the form:

$$
\bigoplus_{i=1}^{d} \tau_{m_{i}} \otimes \operatorname{Sp}\left(n_{i}\right)
$$

where

- τ_{i} is an irreducible representation of the Weil group of \mathbb{Q}_{p} of dimension $m_{i} \geq 1$,

Weil-Deligne representations

Since $\rho_{\pi, p}$ is geometric (potentially semistable at p), there is a Weil-Deligne representation $\mathrm{WD}\left(\rho_{\pi, p} \mid G_{p}\right)$, attached to $\rho_{\pi, p} \mid G_{p}$. Deligne: Every admissible Weil-Deligne representation has the form:

$$
\bigoplus_{i=1}^{d} \tau_{m_{i}} \otimes \operatorname{Sp}\left(n_{i}\right)
$$

where

- τ_{i} is an irreducible representation of the Weil group of \mathbb{Q}_{p} of dimension $m_{i} \geq 1$,
- $\operatorname{Sp}\left(n_{i}\right)$ is the special representation of dimension $n_{i} \geq 1$.

Indecomposable WD representations

Definition

The Weil-Deligne rep. at p is indecomposable if there is only one summand in the decomposition above, i.e., $d=1$.

Indecomposable WD representations

Definition

The Weil-Deligne rep. at p is indecomposable if there is only one summand in the decomposition above, i.e., $d=1$.

Note: The corresponding local automorphic representation π_{p} is the unique irreducible essentially square-integrable quotient $Q(\Delta)$ of $\operatorname{Ind}_{P}^{G}(\Delta)$,

Indecomposable WD representations

Definition

The Weil-Deligne rep. at p is indecomposable if there is only one summand in the decomposition above, i.e., $d=1$.

Note: The corresponding local automorphic representation π_{p} is the unique irreducible essentially square-integrable quotient $Q(\Delta)$ of $\operatorname{Ind}_{P}^{G}(\Delta)$, where $G=\mathrm{GL}_{m n}, P=P_{m}$ is the parabolic with Levi $\mathrm{GL}_{m} \times \cdots \times \mathrm{GL}_{m}, \Delta$ is the segment $[\sigma, \sigma(n-1)]$, and σ is a supercuspidal on GL_{m} corresponding to τ.

Indecomposable WD representations

Definition

The Weil-Deligne rep. at p is indecomposable if there is only one summand in the decomposition above, i.e., $d=1$.

Note: The corresponding local automorphic representation π_{p} is the unique irreducible essentially square-integrable quotient $Q(\Delta)$ of $\operatorname{Ind}_{P}^{G}(\Delta)$, where $G=\mathrm{GL}_{m n}, P=P_{m}$ is the parabolic with Levi $\mathrm{GL}_{m} \times \cdots \times \mathrm{GL}_{m}, \Delta$ is the segment $[\sigma, \sigma(n-1)]$, and σ is a supercuspidal on GL_{m} corresponding to τ.
Remark: The general WD representation for $d \geq 1$ arises as the unique irreducible quotient (Langlands quotient) of the double induction: $\operatorname{Ind}_{P}^{G}\left(Q\left(\Delta_{1}\right) \otimes \cdots \otimes Q\left(\Delta_{d}\right)\right)$.

Indecomposable case

Theorem (G-Kumar)

Indecomposable case

Theorem（G－Kumar）

Let π be a cuspidal automorphic representation of $\mathrm{GL}_{n}\left(\mathbb{A}_{\mathbb{Q}}\right)$ with infinitesimal character χ_{H} ，with $H=\left\{-\beta_{1}>\ldots>-\beta_{n}\right\}$ distinct integers．

Indecomposable case

Theorem（G－Kumar）

Let π be a cuspidal automorphic representation of $\mathrm{GL}_{n}\left(\mathbb{A}_{\mathbb{Q}}\right)$ with infinitesimal character χ_{H} ，with $H=\left\{-\beta_{1}>\ldots>-\beta_{n}\right\}$ distinct integers．Assume $W D\left(\rho_{\pi, p} \mid G_{p}\right)=\tau_{m} \otimes \operatorname{Sp}(n)$ is indecomposable．

Indecomposable case

Theorem (G-Kumar)

Let π be a cuspidal automorphic representation of $\mathrm{GL}_{n}\left(\mathbb{A}_{\mathbb{Q}}\right)$ with infinitesimal character χ_{H}, with $H=\left\{-\beta_{1}>\ldots>-\beta_{n}\right\}$ distinct integers. Assume $W D\left(\rho_{\pi, p} \mid G_{p}\right)=\tau_{m} \otimes \operatorname{Sp}(n)$ is indecomposable.
(1) $m=1, \tau=\chi=\chi_{p} \cdot \chi^{\prime}$, with $\alpha:=\chi^{\prime}\left(\right.$ Frob $\left._{p}\right)$.

Indecomposable case

Theorem (G-Kumar)

Let π be a cuspidal automorphic representation of $\mathrm{GL}_{n}\left(\mathbb{A}_{\mathbb{Q}}\right)$ with infinitesimal character χ_{H}, with $H=\left\{-\beta_{1}>\ldots>-\beta_{n}\right\}$ distinct integers. Assume $W D\left(\rho_{\pi, p} \mid G_{p}\right)=\tau_{m} \otimes \operatorname{Sp}(n)$ is indecomposable.
(1) $m=1, \tau=\chi=\chi_{p} \cdot \chi^{\prime}$, with $\alpha:=\chi^{\prime}\left(\right.$ Frob $\left._{p}\right)$.

- If π is p-ordinary $\left(\Longleftrightarrow v_{p}(\alpha)=-\beta_{1}\right)$, then the β_{i} are necessarily CONSECUTIVE integers

Indecomposable case

Theorem (G-Kumar)

Let π be a cuspidal automorphic representation of $\mathrm{GL}_{n}\left(\mathbb{A}_{\mathbb{Q}}\right)$ with infinitesimal character χ_{H}, with $H=\left\{-\beta_{1}>\ldots>-\beta_{n}\right\}$ distinct integers. Assume $W D\left(\rho_{\pi, p} \mid G_{p}\right)=\tau_{m} \otimes \operatorname{Sp}(n)$ is indecomposable.
(1) $m=1, \tau=\chi=\chi_{p} \cdot \chi^{\prime}$, with $\alpha:=\chi^{\prime}\left(\right.$ Frob $\left._{p}\right)$.

- If π is p-ordinary $\left(\Longleftrightarrow v_{p}(\alpha)=-\beta_{1}\right)$, then the β_{i} are necessarily CONSECUTIVE integers and $\rho_{\pi, p} \mid G_{p} \sim$

$$
\left(\begin{array}{cccc}
\nu_{p}^{-\beta_{1}} & * & \cdots & * \\
0 & \nu_{p}^{-\beta_{1}-1} & \cdots & * \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & \nu_{p}^{-\beta_{1}-(n-1)}
\end{array}\right) \otimes \lambda\left(\alpha / p^{v_{p}(\alpha)}\right) \cdot \chi_{p} .
$$

Indecomposable case

Theorem (G-Kumar)

Let π be a cuspidal automorphic representation of $\mathrm{GL}_{n}\left(\mathbb{A}_{\mathbb{Q}}\right)$ with infinitesimal character χ_{H}, with $H=\left\{-\beta_{1}>\ldots>-\beta_{n}\right\}$ distinct integers. Assume $W D\left(\rho_{\pi, p} \mid G_{p}\right)=\tau_{m} \otimes \operatorname{Sp}(n)$ is indecomposable.
(1) $m=1, \tau=\chi=\chi_{p} \cdot \chi^{\prime}$, with $\alpha:=\chi^{\prime}\left(\right.$ Frob $\left._{p}\right)$.

- If π is p-ordinary $\left(\Longleftrightarrow v_{p}(\alpha)=-\beta_{1}\right)$, then the β_{i} are necessarily CONSECUTIVE integers and $\left.\rho_{\pi, p}\right|_{G_{p}} \sim$

$$
\left(\begin{array}{cccc}
\nu_{p}^{-\beta_{1}} & * & \cdots & * \\
0 & \nu_{p}^{-\beta_{1}-1} & \cdots & * \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & \nu_{p}^{-\beta_{1}-(n-1)}
\end{array}\right) \otimes \lambda\left(\alpha / p^{v_{p}(\alpha)}\right) \cdot \chi_{p}
$$

- If π is not p-ordinary, then $\left.\rho_{\pi, p}\right|_{G_{p}}$ is irreducible.

Indecomposable case

Theorem (G-Kumar)

Let π be a cuspidal automorphic representation of $\mathrm{GL}_{n}\left(\mathbb{A}_{\mathbb{Q}}\right)$ with infinitesimal character χ_{H}, with $H=\left\{-\beta_{1}>\ldots>-\beta_{n}\right\}$ distinct integers. Assume $W D\left(\rho_{\pi, p} \mid G_{p}\right)=\tau_{m} \otimes \operatorname{Sp}(n)$ is indecomposable.
(1) $m=1, \tau=\chi=\chi_{p} \cdot \chi^{\prime}$, with $\alpha:=\chi^{\prime}\left(\right.$ Frob $\left._{p}\right)$.

- If π is p-ordinary $\left(\Longleftrightarrow v_{p}(\alpha)=-\beta_{1}\right)$, then the β_{i} are necessarily CONSECUTIVE integers and $\rho_{\pi, p} \mid G_{p} \sim$

$$
\left(\begin{array}{cccc}
\nu_{p}^{-\beta_{1}} & * & \cdots & * \\
0 & \nu_{p}^{-\beta_{1}-1} & \cdots & * \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & \nu_{p}^{-\beta_{1}-(n-1)}
\end{array}\right) \otimes \lambda\left(\alpha / p^{v_{p}(\alpha)}\right) \cdot \chi_{p}
$$

- If π is not p-ordinary, then $\left.\rho_{\pi, p}\right|_{G_{p}}$ is irreducible.
(2) If $m \geq 2$, then $\left.\rho_{\pi, p}\right|_{G_{p}}$ is always irreducible.

Recall: p-adic Hodge theory

Let F / \mathbb{Q}_{p} be finite, Galois and let E / \mathbb{Q}_{p} be finite.

Recall: p-adic Hodge theory

Let F / \mathbb{Q}_{p} be finite, Galois and let E / \mathbb{Q}_{p} be finite.
Colmez-Fontaine: There is an equivalence of categories

$$
D_{s t, F}:\left\{F \text {-semistable } \rho: G_{\rho} \rightarrow \mathrm{GL}_{n}(E)\right\} \longrightarrow
$$

\{admissible filtered (φ, N, F, E) - modules of rank $n\}$.

Recall: p-adic Hodge theory

Let F / \mathbb{Q}_{p} be finite, Galois and let E / \mathbb{Q}_{p} be finite.
Colmez-Fontaine: There is an equivalence of categories

$$
D_{s t, F}:\left\{F \text {-semistable } \rho: G_{p} \rightarrow \mathrm{GL}_{n}(E)\right\} \longrightarrow
$$

\{admissible filtered (φ, N, F, E) - modules of rank $n\}$. Moreover, the HT weights $\left\{-\beta_{n} \leq \cdots \leq-\beta_{1}\right\} \leftrightarrow$ jumps in the Hodge filtration $\left\{\beta_{1} \leq \cdots \leq \beta_{n}\right\}$.

Recall: p-adic Hodge theory

Let F / \mathbb{Q}_{p} be finite, Galois and let E / \mathbb{Q}_{p} be finite.
Colmez-Fontaine: There is an equivalence of categories

$$
D_{s t, F}:\left\{F \text {-semistable } \rho: G_{\rho} \rightarrow \mathrm{GL}_{n}(E)\right\} \longrightarrow
$$

\{admissible filtered (φ, N, F, E) - modules of rank $n\}$. Moreover, the HT weights $\left\{-\beta_{n} \leq \cdots \leq-\beta_{1}\right\} \leftrightarrow$ jumps in the Hodge filtration $\left\{\beta_{1} \leq \cdots \leq \beta_{n}\right\}$.
Example: for $n=1$:

$$
\left(\chi=\chi_{p} \lambda(a) \nu_{p}^{-\beta}\right.
$$

Recall: p-adic Hodge theory

Let F / \mathbb{Q}_{p} be finite, Galois and let E / \mathbb{Q}_{p} be finite.
Colmez-Fontaine: There is an equivalence of categories

$$
D_{s t, F}:\left\{F \text {-semistable } \rho: G_{\rho} \rightarrow \mathrm{GL}_{n}(E)\right\} \longrightarrow
$$

\{admissible filtered (φ, N, F, E) - modules of rank $n\}$. Moreover, the HT weights $\left\{-\beta_{n} \leq \cdots \leq-\beta_{1}\right\} \leftrightarrow$ jumps in the Hodge filtration $\left\{\beta_{1} \leq \cdots \leq \beta_{n}\right\}$.
Example: for $n=1$:

$$
\left\{\begin{array}{l}
\chi=\chi_{p} \lambda(a) \nu_{p}^{-\beta} \\
\quad \text { with } \\
\chi_{p} \text { fin., tot. ram. }
\end{array}\right.
$$

Recall: p-adic Hodge theory

Let F / \mathbb{Q}_{p} be finite, Galois and let E / \mathbb{Q}_{p} be finite.
Colmez-Fontaine: There is an equivalence of categories

$$
D_{s t, F}:\left\{F \text {-semistable } \rho: G_{\rho} \rightarrow \mathrm{GL}_{n}(E)\right\} \longrightarrow
$$

\{admissible filtered (φ, N, F, E) - modules of rank $n\}$.
Moreover, the HT weights $\left\{-\beta_{n} \leq \cdots \leq-\beta_{1}\right\} \leftrightarrow$ jumps in the Hodge filtration $\left\{\beta_{1} \leq \cdots \leq \beta_{n}\right\}$.
Example: for $n=1$:

$$
\left\{\begin{array}{l}
\chi=\chi_{p} \lambda(a) \nu_{p}^{-\beta} \\
\quad \text { with } \\
\chi_{p} \text { fin., tot. ram. } \\
a \in \mathcal{O}_{E}^{\times},
\end{array}\right.
$$

Recall: p-adic Hodge theory

Let F / \mathbb{Q}_{p} be finite, Galois and let E / \mathbb{Q}_{p} be finite.
Colmez-Fontaine: There is an equivalence of categories

$$
D_{s t, F}:\left\{F \text {-semistable } \rho: G_{\rho} \rightarrow \mathrm{GL}_{n}(E)\right\} \longrightarrow
$$

\{admissible filtered (φ, N, F, E) - modules of rank $n\}$.
Moreover, the HT weights $\left\{-\beta_{n} \leq \cdots \leq-\beta_{1}\right\} \leftrightarrow$ jumps in the Hodge filtration $\left\{\beta_{1} \leq \cdots \leq \beta_{n}\right\}$.
Example: for $n=1$:

$$
\left\{\begin{array}{l}
\chi=\chi_{p} \lambda(a) \nu_{P}^{-\beta} \\
\quad \text { with } \\
\chi_{p} \text { fin., tot. ram. } \\
a \in \mathcal{O}_{E}^{\times}, \\
\beta \in \mathbb{Z}
\end{array}\right.
$$

Recall: p-adic Hodge theory

Let F / \mathbb{Q}_{p} be finite, Galois and let E / \mathbb{Q}_{p} be finite.
Colmez-Fontaine: There is an equivalence of categories

$$
D_{s t, F}:\left\{F \text {-semistable } \rho: G_{\rho} \rightarrow \mathrm{GL}_{n}(E)\right\} \longrightarrow
$$

\{admissible filtered (φ, N, F, E) - modules of rank $n\}$. Moreover, the HT weights $\left\{-\beta_{n} \leq \cdots \leq-\beta_{1}\right\} \leftrightarrow$ jumps in the Hodge filtration $\left\{\beta_{1} \leq \cdots \leq \beta_{n}\right\}$.
Example: for $n=1$:

$$
\left\{\begin{array}{l}
\chi=\chi_{p} \lambda(a) \nu_{p}^{-\beta} \\
\quad \text { with } \\
\chi_{p} \text { fin., tot. ram. }
\end{array}\right.
$$

$$
\left(D=D_{s t, F}(\chi)=E \cdot e,\right.
$$

Recall: p-adic Hodge theory

Let F / \mathbb{Q}_{p} be finite, Galois and let E / \mathbb{Q}_{p} be finite.
Colmez-Fontaine: There is an equivalence of categories

$$
D_{s t, F}:\left\{F \text {-semistable } \rho: G_{p} \rightarrow \mathrm{GL}_{n}(E)\right\} \longrightarrow
$$

\{admissible filtered (φ, N, F, E) - modules of rank $n\}$. Moreover, the HT weights $\left\{-\beta_{n} \leq \cdots \leq-\beta_{1}\right\} \leftrightarrow$ jumps in the Hodge filtration $\left\{\beta_{1} \leq \cdots \leq \beta_{n}\right\}$.
Example: for $n=1$:

$$
\left\{\begin{array}{l}
\chi=\chi_{p} \lambda(a) \nu_{p}^{-\beta} \\
\quad \text { with } \\
\chi_{p} \text { fin., tot. ram., } \\
a \in \mathcal{O}_{E}^{\times}, \\
\beta \in \mathbb{Z}
\end{array}\right.
$$

$$
\left(D=D_{s t, F}(\chi)=E \cdot e,\right.
$$

with

Recall: p-adic Hodge theory

Let F / \mathbb{Q}_{p} be finite, Galois and let E / \mathbb{Q}_{p} be finite.
Colmez-Fontaine: There is an equivalence of categories

$$
D_{s t, F}:\left\{F \text {-semistable } \rho: G_{p} \rightarrow \mathrm{GL}_{n}(E)\right\} \longrightarrow
$$

\{admissible filtered (φ, N, F, E) - modules of rank $n\}$. Moreover, the HT weights $\left\{-\beta_{n} \leq \cdots \leq-\beta_{1}\right\} \leftrightarrow$ jumps in the Hodge filtration $\left\{\beta_{1} \leq \cdots \leq \beta_{n}\right\}$.
Example: for $n=1$:

$$
\left\{\begin{array}{l}
\chi=\chi_{p} \lambda(a) \nu_{p}^{-\beta} \\
\quad \text { with } \\
\chi_{p} \text { fin., tot. ram. }
\end{array}\right.
$$

$$
\leftrightarrow\left\{\begin{array}{l}
D=D_{s t, F}(\chi)=E \\
\quad \text { with } \\
\varphi(e)=p^{\beta} / a \cdot e, \\
N=0,
\end{array}\right.
$$

Recall: p-adic Hodge theory

Let F / \mathbb{Q}_{p} be finite, Galois and let E / \mathbb{Q}_{p} be finite.
Colmez-Fontaine: There is an equivalence of categories

$$
D_{s t, F}:\left\{F \text {-semistable } \rho: G_{p} \rightarrow \mathrm{GL}_{n}(E)\right\} \longrightarrow
$$

\{admissible filtered (φ, N, F, E) - modules of rank $n\}$. Moreover, the HT weights $\left\{-\beta_{n} \leq \cdots \leq-\beta_{1}\right\} \leftrightarrow$ jumps in the Hodge filtration $\left\{\beta_{1} \leq \cdots \leq \beta_{n}\right\}$.
Example: for $n=1$:

$$
\left\{\begin{array}{l}
\chi=\chi_{p} \lambda(a) \nu_{p}^{-\beta} \\
\quad \text { with } \\
\chi_{p} \text { fin., tot. ram. }
\end{array}\right.
$$

$$
\leftrightarrow\left\{\begin{array}{l}
D=D_{s t, F}(\chi)=E \cdot e, \\
\quad \text { with } \\
\varphi(e)=p^{\beta} / a \cdot e, \\
N=0, \\
g(e)=\chi_{p}(g) \cdot e, g \in \operatorname{Gal}\left(F_{\chi_{p}} / \mathbb{Q}_{p}\right),
\end{array}\right.
$$

Recall: p-adic Hodge theory

Let F / \mathbb{Q}_{p} be finite, Galois and let E / \mathbb{Q}_{p} be finite.
Colmez-Fontaine: There is an equivalence of categories

$$
D_{s t, F}:\left\{F \text {-semistable } \rho: G_{\rho} \rightarrow \mathrm{GL}_{n}(E)\right\} \longrightarrow
$$

\{admissible filtered (φ, N, F, E) - modules of rank $n\}$. Moreover, the HT weights $\left\{-\beta_{n} \leq \cdots \leq-\beta_{1}\right\} \leftrightarrow$ jumps in the Hodge filtration $\left\{\beta_{1} \leq \cdots \leq \beta_{n}\right\}$.
Example: for $n=1$:

$$
\left\{\begin{array}{l}
\chi=\chi_{p} \lambda(a) \nu_{p}^{-\beta} \\
\quad \text { with } \\
\chi_{p} \text { fin., tot. ram., } \\
a \in \mathcal{O}_{E}^{\times}, \\
\beta \in \mathbb{Z}
\end{array}\right.
$$

$$
\leftrightarrow\left\{\begin{array}{l}
D=D_{s t, F}(\chi)=E \cdot e, \\
\quad \text { with } \\
\varphi(e)=p^{\beta} / a \cdot e, \\
N=0, \\
g(e)=\chi_{p}(g) \cdot e, g \in \operatorname{Gal}\left(F_{\chi_{p}} / \mathbb{Q}_{p}\right), \\
\operatorname{Fil}^{i}(D)=D, i \leq \beta ;
\end{array}\right.
$$

Recall: p-adic Hodge theory

Let F / \mathbb{Q}_{p} be finite, Galois and let E / \mathbb{Q}_{p} be finite.
Colmez-Fontaine: There is an equivalence of categories

$$
D_{s t, F}:\left\{F \text {-semistable } \rho: G_{\rho} \rightarrow \mathrm{GL}_{n}(E)\right\} \longrightarrow
$$

\{admissible filtered (φ, N, F, E) - modules of rank $n\}$. Moreover, the HT weights $\left\{-\beta_{n} \leq \cdots \leq-\beta_{1}\right\} \leftrightarrow$ jumps in the Hodge filtration $\left\{\beta_{1} \leq \cdots \leq \beta_{n}\right\}$.
Example: for $n=1$:

$$
\left\{\begin{array}{l}
\chi=\chi_{p} \lambda(a) \nu_{p}^{-\beta} \\
\quad \text { with } \\
\chi_{p} \text { fin., tot. ram., } \\
a \in \mathcal{O}_{E}^{\times}, \\
\beta \in \mathbb{Z}
\end{array}\right.
$$

$$
\leftrightarrow\left\{\begin{array}{l}
D=D_{s t, F}(\chi)=E \cdot e, \\
\quad \text { with } \\
\varphi(e)=p^{\beta} / a \cdot e, \\
N=0, \\
g(e)=\chi_{p}(g) \cdot e, g \in \operatorname{Gal}\left(F_{\chi_{p}} / \mathbb{Q}_{p}\right), \\
\operatorname{Fil}^{i}(D)=D, i \leq \beta ;=0, i \geq \beta+1 .
\end{array}\right.
$$

Proof of theorem

We sketch the proof when $m=1$ and $\tau=\chi$ is an unramified character taking Frob $_{p}$ to α.

We sketch the proof when $m=1$ and $\tau=\chi$ is an unramified character taking Frob $_{p}$ to α.
Let $D=D_{s t, F}\left(\rho_{\pi, p} \mid G_{p}\right)$ be the corresponding filtered module.

We sketch the proof when $m=1$ and $\tau=\chi$ is an unramified character taking Frob $_{p}$ to α.
Let $D=D_{s t, F}\left(\rho_{\pi, p} \mid G_{p}\right)$ be the corresponding filtered module.
By assumption,

$$
W D(D)=D_{\tau} \otimes D_{S p(n)}=D_{\chi} \otimes D_{S p(n)},
$$

We sketch the proof when $m=1$ and $\tau=\chi$ is an unramified character taking Frob_{p} to α.
Let $D=D_{s t, F}\left(\rho_{\pi, p} \mid G_{p}\right)$ be the corresponding filtered module.
By assumption,

$$
W D(D)=D_{\tau} \otimes D_{S p(n)}=D_{\chi} \otimes D_{S p(n)},
$$

i.e.,

$$
D=E \cdot e_{1} \oplus \cdots \oplus E \cdot e_{n}
$$

with $N: e_{n} \mapsto e_{n-1} \mapsto \cdots e_{1} \mapsto 0$ and $\varphi\left(e_{i}\right)=p^{i-1} / \alpha \cdot e_{i}$.

We sketch the proof when $m=1$ and $\tau=\chi$ is an unramified character taking Frob ${ }_{p}$ to α.
Let $D=D_{s t, F}\left(\rho_{\pi, p} \mid G_{p}\right)$ be the corresponding filtered module.
By assumption,

$$
W D(D)=D_{\tau} \otimes D_{S p(n)}=D_{\chi} \otimes D_{S p(n)},
$$

i.e.,

$$
D=E \cdot e_{1} \oplus \cdots \oplus E \cdot e_{n}
$$

with $N: e_{n} \mapsto e_{n-1} \mapsto \cdots e_{1} \mapsto 0$ and $\varphi\left(e_{i}\right)=p^{i-1} / \alpha \cdot e_{i}$.
Jumps in the Hodge filtration $=-H=\left\{\beta_{1}<\cdots<\beta_{n}\right\}$.

We sketch the proof when $m=1$ and $\tau=\chi$ is an unramified character taking Frob ${ }_{p}$ to α.
Let $D=D_{s t, F}\left(\rho_{\pi, p} \mid G_{p}\right)$ be the corresponding filtered module.
By assumption,

$$
W D(D)=D_{\tau} \otimes D_{S p(n)}=D_{\chi} \otimes D_{S p(n)},
$$

i.e.,

$$
D=E \cdot e_{1} \oplus \cdots \oplus E \cdot e_{n}
$$

with $N: e_{n} \mapsto e_{n-1} \mapsto \cdots e_{1} \mapsto 0$ and $\varphi\left(e_{i}\right)=p^{i-1} / \alpha \cdot e_{i}$. Jumps in the Hodge filtration $=-H=\left\{\beta_{1}<\cdots<\beta_{n}\right\}$.
Assume: the Hodge filtration on D is in general position with respect to the Newton filtration.

Proof continued

Lemma

Let $a_{1}<\cdots<a_{n}$ and $b_{1}<\cdots<b_{n}$ be two increasing sequences of integers s.t.

$$
\sum_{i} a_{i}=\sum_{i} b_{i}
$$

Proof continued

Lemma

Let $a_{1}<\cdots<a_{n}$ and $b_{1}<\cdots<b_{n}$ be two increasing sequences of integers s.t.

$$
\sum_{i} a_{i}=\sum_{i} b_{i} .
$$

Say $a_{i+1}-a_{i}=1$ and $b_{i+1}-b_{i} \geq 1$.

Proof continued

Lemma

Let $a_{1}<\cdots<a_{n}$ and $b_{1}<\cdots<b_{n}$ be two increasing sequences of integers s.t.

$$
\sum_{i} a_{i}=\sum_{i} b_{i} .
$$

Say $a_{i+1}-a_{i}=1$ and $b_{i+1}-b_{i} \geq 1$. If $a_{n}=b_{n}$ or $a_{1}=b_{1}$, then $a_{i}=b_{i}$ for all i.

Proof continued

Lemma

Let $a_{1}<\cdots<a_{n}$ and $b_{1}<\cdots<b_{n}$ be two increasing sequences of integers s.t.

$$
\sum_{i} a_{i}=\sum_{i} b_{i}
$$

Say $a_{i+1}-a_{i}=1$ and $b_{i+1}-b_{i} \geq 1$. If $a_{n}=b_{n}$ or $a_{1}=b_{1}$, then $a_{i}=b_{i}$ for all i.

Proof: Assume $a_{n}=b_{n}$.

Proof continued

Lemma

Let $a_{1}<\cdots<a_{n}$ and $b_{1}<\cdots<b_{n}$ be two increasing sequences of integers s.t.

$$
\sum_{i} a_{i}=\sum_{i} b_{i}
$$

Say $a_{i+1}-a_{i}=1$ and $b_{i+1}-b_{i} \geq 1$. If $a_{n}=b_{n}$ or $a_{1}=b_{1}$, then $a_{i}=b_{i}$ for all i.

Proof: Assume $a_{n}=b_{n}$. Then

$$
(n-1)+(n-2)+\cdots+1 \leq \sum_{i}\left(b_{n}-b_{i}\right)
$$

Proof continued

Lemma

Let $a_{1}<\cdots<a_{n}$ and $b_{1}<\cdots<b_{n}$ be two increasing sequences of integers s.t.

$$
\sum_{i} a_{i}=\sum_{i} b_{i}
$$

Say $a_{i+1}-a_{i}=1$ and $b_{i+1}-b_{i} \geq 1$. If $a_{n}=b_{n}$ or $a_{1}=b_{1}$, then $a_{i}=b_{i}$ for all i.

Proof: Assume $a_{n}=b_{n}$. Then

$$
(n-1)+(n-2)+\cdots+1 \leq \sum_{i}\left(b_{n}-b_{i}\right)=\sum_{i}\left(a_{n}-a_{i}\right)
$$

Proof continued

Lemma

Let $a_{1}<\cdots<a_{n}$ and $b_{1}<\cdots<b_{n}$ be two increasing sequences of integers s.t.

$$
\sum_{i} a_{i}=\sum_{i} b_{i}
$$

Say $a_{i+1}-a_{i}=1$ and $b_{i+1}-b_{i} \geq 1$. If $a_{n}=b_{n}$ or $a_{1}=b_{1}$, then $a_{i}=b_{i}$ for all i.

Proof: Assume $a_{n}=b_{n}$. Then

$$
\begin{aligned}
(n-1)+(n-2)+\cdots+1 & \leq \sum_{i}\left(b_{n}-b_{i}\right)=\sum_{i}\left(a_{n}-a_{i}\right) \\
& \leq(n-1)+(n-2)+\cdots+1
\end{aligned}
$$

Proof continued

Lemma

Let $a_{1}<\cdots<a_{n}$ and $b_{1}<\cdots<b_{n}$ be two increasing sequences of integers s.t.

$$
\sum_{i} a_{i}=\sum_{i} b_{i}
$$

Say $a_{i+1}-a_{i}=1$ and $b_{i+1}-b_{i} \geq 1$. If $a_{n}=b_{n}$ or $a_{1}=b_{1}$, then $a_{i}=b_{i}$ for all i.

Proof: Assume $a_{n}=b_{n}$. Then

$$
\begin{aligned}
(n-1)+(n-2)+\cdots+1 & \leq \sum_{i}\left(b_{n}-b_{i}\right)=\sum_{i}\left(a_{n}-a_{i}\right) \\
& \leq(n-1)+(n-2)+\cdots+1
\end{aligned}
$$

So equality holds: all $b_{n}-b_{i}=a_{n}-a_{i}$, and $a_{i}=b_{i}$ for all i.

Proof continued

Proof continued

For $1 \leq r \leq n$, let

$$
D_{r}=\left\langle e_{1}, \ldots, e_{r}\right\rangle
$$

be the unique (φ, N)-submodule of D of rank r.

For $1 \leq r \leq n$, let

$$
D_{r}=\left\langle e_{1}, \ldots, e_{r}\right\rangle
$$

be the unique (φ, N)-submodule of D of rank r.

Proposition

If two consecutive D_{i} and D_{i+1} are admissible, then all D_{r} are admissible, and the β_{j} are necessarily consecutive integers.

Proof continued

For $1 \leq r \leq n$, let

$$
D_{r}=\left\langle e_{1}, \ldots, e_{r}\right\rangle
$$

be the unique (φ, N)-submodule of D of rank r.

Proposition

If two consecutive D_{i} and D_{i+1} are admissible, then all D_{r} are admissible, and the β_{j} are necessarily consecutive integers.

Proof: Let $\alpha_{j}^{-1}=p^{j-1} / \alpha$. Then:

$$
\begin{gather*}
t_{H}\left(D_{i}\right)=\sum_{j=1}^{i} \beta_{j}=-\sum_{j=1}^{i} v_{p}\left(\alpha_{j}\right)=t_{N}\left(D_{i}\right) \tag{1}\\
t_{H}\left(D_{i+1}\right)=\sum_{j=1}^{i+1} \beta_{j}=-\sum_{j=1}^{i+1} v_{p}\left(\alpha_{j}\right)=t_{N}\left(D_{i+1}\right) . \tag{2}
\end{gather*}
$$

Proof continued

Subtracting, get $-v_{p}\left(\alpha_{i+1}\right)=\beta_{i+1}$.

Proof continued

Subtracting, get $-v_{p}\left(\alpha_{i+1}\right)=\beta_{i+1}$.
Set $a_{j}:=-v_{p}\left(\alpha_{j}\right)$ and $b_{j}:=\beta_{j}$, for $1 \leq j \leq n$.

Proof continued

Subtracting, get $-v_{p}\left(\alpha_{i+1}\right)=\beta_{i+1}$.
Set $a_{j}:=-v_{p}\left(\alpha_{j}\right)$ and $b_{j}:=\beta_{j}$, for $1 \leq j \leq n$. Then

$$
\begin{aligned}
& a_{n}>\cdots>a_{i+1}>\cdots>a_{1} \\
& b_{n}>\cdots>b_{i+1}>\cdots>b_{1}
\end{aligned}
$$

Proof continued

Subtracting, get $-v_{p}\left(\alpha_{i+1}\right)=\beta_{i+1}$.
Set $a_{j}:=-v_{p}\left(\alpha_{j}\right)$ and $b_{j}:=\beta_{j}$, for $1 \leq j \leq n$. Then

$$
\begin{aligned}
& a_{n}>\cdots>a_{i+1}>\cdots>a_{1} \\
& b_{n}>\cdots>b_{i+1}>\cdots>b_{1}
\end{aligned}
$$

Lemma $\Longrightarrow a_{j}=b_{j}$, for all $1 \leq j \leq i+1$.

Proof continued

Subtracting, get $-v_{p}\left(\alpha_{i+1}\right)=\beta_{i+1}$.
Set $a_{j}:=-v_{p}\left(\alpha_{j}\right)$ and $b_{j}:=\beta_{j}$, for $1 \leq j \leq n$. Then

$$
\begin{aligned}
a_{n} & >\cdots>a_{i+1}>\cdots>a_{1} \\
b_{n} & >\cdots>b_{i+1}>\cdots>b_{1} .
\end{aligned}
$$

Lemma $\Longrightarrow a_{j}=b_{j}$, for all $1 \leq j \leq i+1$. Now D_{n} is admissible, so

$$
t_{H}\left(D_{n}\right)=\sum_{j=1}^{n} \beta_{j}=-\sum_{j=1}^{n} v_{p}\left(\alpha_{j}\right)=t_{N}\left(D_{n}\right),
$$

Subtracting, get $-v_{p}\left(\alpha_{i+1}\right)=\beta_{i+1}$.
Set $a_{j}:=-v_{p}\left(\alpha_{j}\right)$ and $b_{j}:=\beta_{j}$, for $1 \leq j \leq n$. Then

$$
\begin{aligned}
& a_{n}>\cdots>a_{i+1}>\cdots>a_{1} \\
& b_{n}>\cdots>b_{i+1}>\cdots>b_{1}
\end{aligned}
$$

Lemma $\Longrightarrow a_{j}=b_{j}$, for all $1 \leq j \leq i+1$. Now D_{n} is admissible, so

$$
t_{H}\left(D_{n}\right)=\sum_{j=1}^{n} \beta_{j}=-\sum_{j=1}^{n} v_{p}\left(\alpha_{j}\right)=t_{N}\left(D_{n}\right)
$$

so subtracting equation (1) from this, get

$$
\sum_{j=i+1}^{n} \beta_{j}=-\sum_{j=i+1}^{n} v_{p}\left(\alpha_{j}\right)
$$

Subtracting, get $-v_{p}\left(\alpha_{i+1}\right)=\beta_{i+1}$.
Set $a_{j}:=-v_{p}\left(\alpha_{j}\right)$ and $b_{j}:=\beta_{j}$, for $1 \leq j \leq n$. Then

$$
\begin{aligned}
& a_{n}>\cdots>a_{i+1}>\cdots>a_{1} \\
& b_{n}>\cdots>b_{i+1}>\cdots>b_{1}
\end{aligned}
$$

Lemma $\Longrightarrow a_{j}=b_{j}$, for all $1 \leq j \leq i+1$. Now D_{n} is admissible, so

$$
t_{H}\left(D_{n}\right)=\sum_{j=1}^{n} \beta_{j}=-\sum_{j=1}^{n} v_{p}\left(\alpha_{j}\right)=t_{N}\left(D_{n}\right)
$$

so subtracting equation (1) from this, get

$$
\sum_{j=i+1}^{n} \beta_{j}=-\sum_{j=i+1}^{n} v_{p}\left(\alpha_{j}\right)
$$

Lemma again $\Longrightarrow a_{j}=b_{j}$, for $i+1 \leq j \leq n$.

Subtracting, get $-v_{p}\left(\alpha_{i+1}\right)=\beta_{i+1}$.
Set $a_{j}:=-v_{p}\left(\alpha_{j}\right)$ and $b_{j}:=\beta_{j}$, for $1 \leq j \leq n$. Then

$$
\begin{aligned}
& a_{n}>\cdots>a_{i+1}>\cdots>a_{1}, \\
& b_{n}>\cdots>b_{i+1}>\cdots>b_{1} .
\end{aligned}
$$

Lemma $\Longrightarrow a_{j}=b_{j}$, for all $1 \leq j \leq i+1$. Now D_{n} is admissible, so

$$
t_{H}\left(D_{n}\right)=\sum_{j=1}^{n} \beta_{j}=-\sum_{j=1}^{n} v_{p}\left(\alpha_{j}\right)=t_{N}\left(D_{n}\right),
$$

so subtracting equation (1) from this, get

$$
\sum_{j=i+1}^{n} \beta_{j}=-\sum_{j=i+1}^{n} v_{p}\left(\alpha_{j}\right)
$$

Lemma again $\Longrightarrow a_{j}=b_{j}$, for $i+1 \leq j \leq n$. This shows $\beta_{j}=-v_{p}\left(\alpha_{j}\right)$ for all j, and all $D_{r}(1 \leq r \leq n)$ are admissible. .

Proof continued

Theorem

The filtered module $D=D_{\tau} \otimes D_{\mathrm{Sp(n)}}$ is either irreducible or reducible, in which case all the $D_{r}(1 \leq r \leq n)$ are admissible.

Proof continued

Theorem

The filtered module $D=D_{\tau} \otimes D_{\mathrm{Sp(n)}}$ is either irreducible or reducible, in which case all the $D_{r}(1 \leq r \leq n)$ are admissible.

Proof: If D is irreducible, then done.

Proof continued

Theorem

The filtered module $D=D_{\tau} \otimes D_{S p(n)}$ is either irreducible or reducible, in which case all the $D_{r}(1 \leq r \leq n)$ are admissible.

Proof: If D is irreducible, then done. Else, there exists i such that D_{i} is admissible. If D_{i-1} or D_{i+1} is admissible, then done by the Proposition.

Proof continued

Theorem

The filtered module $D=D_{\tau} \otimes D_{S p(n)}$ is either irreducible or reducible, in which case all the $D_{r}(1 \leq r \leq n)$ are admissible.

Proof: If D is irreducible, then done. Else, there exists i such that D_{i} is admissible. If D_{i-1} or D_{i+1} is admissible, then done by the Proposition. So, assume neither are admissible:

$$
\begin{aligned}
& \sum_{j=1}^{i-1} \beta_{j}<-\sum_{j=1}^{i-1} v_{p}\left(\alpha_{j}\right) \\
& \sum_{j=1}^{i} \beta_{j}=-\sum_{j=1}^{i} v_{p}\left(\alpha_{j}\right) \\
& \sum_{j=1}^{i+1} \beta_{j}<-\sum_{j=1}^{i+1} v_{p}\left(\alpha_{j}\right)
\end{aligned}
$$

Proof completed

Second minus First $\Longrightarrow \beta_{i}>-v_{p}\left(\alpha_{i}\right)$,

Proof completed

Second minus First $\Longrightarrow \beta_{i}>-v_{p}\left(\alpha_{i}\right)$, so

$$
-\beta_{i}<v_{p}\left(\alpha_{i}\right) .
$$

Proof completed

Second minus First $\Longrightarrow \beta_{i}>-v_{p}\left(\alpha_{i}\right)$, so

$$
-\beta_{i}<v_{p}\left(\alpha_{i}\right) .
$$

Third minus Second $\Longrightarrow \beta_{i+1}<-v_{p}\left(\alpha_{i+1}\right)$,

Proof completed

Second minus First $\Longrightarrow \beta_{i}>-v_{p}\left(\alpha_{i}\right)$, so

$$
-\beta_{i}<v_{p}\left(\alpha_{i}\right)
$$

Third minus Second $\Longrightarrow \beta_{i+1}<-v_{p}\left(\alpha_{i+1}\right)$, so

$$
\beta_{i+1}<-v_{p}\left(\alpha_{i}\right)+1 .
$$

Proof completed

Second minus First $\Longrightarrow \beta_{i}>-v_{p}\left(\alpha_{i}\right)$, so

$$
-\beta_{i}<v_{p}\left(\alpha_{i}\right) .
$$

Third minus Second $\Longrightarrow \beta_{i+1}<-v_{p}\left(\alpha_{i+1}\right)$, so

$$
\beta_{i+1}<-v_{p}\left(\alpha_{i}\right)+1 .
$$

Adding, get:

$$
1 \leq \beta_{i+1}-\beta_{i}<1,
$$

a contradiction to the fact that the Hodge-Tate weights were distinct.

Proof completed

Second minus First $\Longrightarrow \beta_{i}>-v_{p}\left(\alpha_{i}\right)$, so

$$
-\beta_{i}<v_{p}\left(\alpha_{i}\right) .
$$

Third minus Second $\Longrightarrow \beta_{i+1}<-v_{p}\left(\alpha_{i+1}\right)$, so

$$
\beta_{i+1}<-v_{p}\left(\alpha_{i}\right)+1 .
$$

Adding, get:

$$
1 \leq \beta_{i+1}-\beta_{i}<1,
$$

a contradiction to the fact that the Hodge-Tate weights were distinct. This proves the theorem.

2. Semisimplicty

Recall: if f is p-ordinary, then the local Galois representation

$$
\left.\rho_{f, p}\right|_{G_{p}} \sim\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right)
$$

is reducible.

2. Semisimplicty

Recall: if f is p-ordinary, then the local Galois representation

$$
\left.\rho_{f, p}\right|_{G_{p}} \sim\left(\begin{array}{cc}
* & * \\
0 & *
\end{array}\right)
$$

is reducible.
Greenberg: Is it semi-simple?

2. Semisimplicty

Recall: if f is p-ordinary, then the local Galois representation

$$
\left.\rho_{f, p}\right|_{G_{p}} \sim\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right)
$$

is reducible.
Greenberg: Is it semi-simple?
Short Answer: Yes for CM forms, and almost always not, for non-CM forms.

2. Semisimplicty

Recall: if f is p-ordinary, then the local Galois representation

$$
\left.\rho_{f, p}\right|_{G_{p}} \sim\left(\begin{array}{cc}
* & * \\
0 & *
\end{array}\right)
$$

is reducible.
Greenberg: Is it semi-simple?
Short Answer: Yes for CM forms, and almost always not, for non-CM forms.

We will, in fact, prove results more generally for Hilbert modular cusp forms.

Some notation

Let

- F be a totally real field
- p be an odd prime, that splits completely in F.

Some notation

Let

- F be a totally real field
- p be an odd prime, that splits completely in F.

Let $f \leftrightarrow \pi$ be a primitive Hilbert modular cusp form of

- parallel weight $(k, k, \cdots k)$, for $k \geq 2$,
- level $\mathfrak{N} \subset \mathcal{O}_{F}$, and,
- character $\psi: \mathrm{Cl}_{F,+}(\mathfrak{N}) \rightarrow \mathbb{C}^{\times}$.

Let

- F be a totally real field
- p be an odd prime, that splits completely in F.

Let $f \leftrightarrow \pi$ be a primitive Hilbert modular cusp form of

- parallel weight $(k, k, \cdots k)$, for $k \geq 2$,
- level $\mathfrak{N} \subset \mathcal{O}_{F}$, and,
- character $\psi: \mathrm{Cl}_{F,+}(\mathfrak{N}) \rightarrow \mathbb{C}^{\times}$.

Let

$$
\rho_{f, p}: G_{F} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{p}\right)
$$

be the Galois representation attached to f by Wiles, Taylor, Ohta, Carayol, Blasius-Rogawksi.

Let

- F be a totally real field
- p be an odd prime, that splits completely in F.

Let $f \leftrightarrow \pi$ be a primitive Hilbert modular cusp form of

- parallel weight $(k, k, \cdots k)$, for $k \geq 2$,
- level $\mathfrak{N} \subset \mathcal{O}_{F}$, and,
- character $\psi: \mathrm{Cl}_{F,+}(\mathfrak{N}) \rightarrow \mathbb{C}^{\times}$.

Let

$$
\rho_{f, p}: G_{F} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{p}\right)
$$

be the Galois representation attached to f by Wiles, Taylor, Ohta, Carayol, Blasius-Rogawksi. Thus, for all primes $\mathfrak{q} \nmid \mathfrak{N p}$, $\operatorname{tr}\left(\rho_{f, p}\left(\operatorname{Frob}_{\mathfrak{q}}\right)\right)=c(\mathfrak{q}, f) \quad$ and $\quad \operatorname{det}\left(\rho_{f, p}\left(\operatorname{Frob}_{\mathfrak{q}}\right)\right)=\psi(\mathfrak{q}) N(\mathfrak{q})^{k-1}$.

Split and CM

Wiles: If f is p-ordinary (i.e., $v_{p}(c(\mathfrak{p}, f))=0$, for all $\mathfrak{p} \mid p$), then

$$
\left.\rho_{f, p}\right|_{G_{\mathfrak{p}}} \sim\left(\begin{array}{cc}
\delta_{\mathfrak{p}} & u_{\mathfrak{p}} \\
0 & \epsilon_{\mathfrak{p}}
\end{array}\right)
$$

is reducible, with $\epsilon_{\mathfrak{p}}$ unramified, for all \mathfrak{p} of F lying over p.

Split and CM

Wiles: If f is p-ordinary (i.e., $v_{p}(c(\mathfrak{p}, f))=0$, for all $\mathfrak{p} \mid p$), then

$$
\left.\rho_{f, p}\right|_{G_{p}} \sim\left(\begin{array}{cc}
\delta_{\mathfrak{p}} & u_{\mathfrak{p}} \\
0 & \epsilon_{\mathfrak{p}}
\end{array}\right)
$$

is reducible, with $\epsilon_{\mathfrak{p}}$ unramified, for all \mathfrak{p} of F lying over p.

Definition

Say f is p-split if $u_{\mathfrak{p}}=0$ (in some basis), for all $\mathfrak{p} \mid p$.

Split and CM

Wiles: If f is p-ordinary (i.e., $v_{p}(c(\mathfrak{p}, f))=0$, for all $\mathfrak{p} \mid p$), then

$$
\left.\rho_{f, p}\right|_{G_{\mathfrak{p}}} \sim\left(\begin{array}{cc}
\delta_{\mathfrak{p}} & u_{\mathfrak{p}} \\
0 & \epsilon_{\mathfrak{p}}
\end{array}\right)
$$

is reducible, with $\epsilon_{\mathfrak{p}}$ unramified, for all \mathfrak{p} of F lying over p.

Definition

Say f is p-split if $u_{\mathfrak{p}}=0$ (in some basis), for all $\mathfrak{p} \mid p$.
Say f has CM,

Split and CM

Wiles: If f is p-ordinary (i.e., $v_{p}(c(\mathfrak{p}, f))=0$, for all $\mathfrak{p} \mid p$), then

$$
\left.\rho_{f, p}\right|_{G_{\mathfrak{p}}} \sim\left(\begin{array}{cc}
\delta_{\mathfrak{p}} & u_{\mathfrak{p}} \\
0 & \epsilon_{\mathfrak{p}}
\end{array}\right)
$$

is reducible, with $\epsilon_{\mathfrak{p}}$ unramified, for all \mathfrak{p} of F lying over p.

Definition

Say f is p-split if $u_{\mathfrak{p}}=0$ (in some basis), for all $\mathfrak{p} \mid p$.
Say f has CM, if there exits:

- a CM field K / F, a CM type Σ, and

Split and CM

Wiles: If f is p-ordinary (i.e., $v_{p}(c(\mathfrak{p}, f))=0$, for all $\left.\mathfrak{p} \mid p\right)$, then

$$
\left.\rho_{f, p}\right|_{G_{\mathfrak{p}}} \sim\left(\begin{array}{cc}
\delta_{\mathfrak{p}} & u_{\mathfrak{p}} \\
0 & \epsilon_{\mathfrak{p}}
\end{array}\right)
$$

is reducible, with $\epsilon_{\mathfrak{p}}$ unramified, for all \mathfrak{p} of F lying over p.

Definition

Say f is p-split if $u_{\mathfrak{p}}=0$ (in some basis), for all $\mathfrak{p} \mid p$.
Say f has $\mathbf{C M}$, if there exits:

- a CM field K / F, a CM type Σ, and
- a Hecke character $\lambda: I_{K}(M) \rightarrow \mathbb{C}^{\times}$, satsifying

$$
\lambda((\alpha))=\prod_{\sigma \in \Sigma} \sigma(\alpha)^{k-1}, \text { for all } \alpha \equiv 1 \bmod M, \text { and } k \geq 2,
$$

Split and CM

Wiles: If f is p-ordinary (i.e., $v_{p}(c(\mathfrak{p}, f))=0$, for all $\left.\mathfrak{p} \mid p\right)$, then

$$
\left.\rho_{f, p}\right|_{G_{\mathfrak{p}}} \sim\left(\begin{array}{cc}
\delta_{\mathfrak{p}} & u_{\mathfrak{p}} \\
0 & \epsilon_{\mathfrak{p}}
\end{array}\right)
$$

is reducible, with $\epsilon_{\mathfrak{p}}$ unramified, for all \mathfrak{p} of F lying over p.

Definition

Say f is p-split if $u_{\mathfrak{p}}=0$ (in some basis), for all $\mathfrak{p} \mid p$.
Say f has $\mathbf{C M}$, if there exits:

- a CM field K / F, a CM type Σ, and
- a Hecke character $\lambda: I_{K}(M) \rightarrow \mathbb{C}^{\times}$, satsifying

$$
\lambda((\alpha))=\prod_{\sigma \in \Sigma} \sigma(\alpha)^{k-1}, \text { for all } \alpha \equiv 1 \bmod M, \text { and } k \geq 2,
$$

such that $f=\theta(\lambda)$ is the theta-series attached to λ.

Split and CM

Wiles: If f is p-ordinary (i.e., $v_{p}(c(\mathfrak{p}, f))=0$, for all $\left.\mathfrak{p} \mid p\right)$, then

$$
\rho_{f, p} \left\lvert\, G_{\mathfrak{p}} \sim\left(\begin{array}{cc}
\delta_{\mathfrak{p}} & u_{p} \\
0 & \epsilon_{\mathfrak{p}}
\end{array}\right)\right.
$$

is reducible, with $\epsilon_{\mathfrak{p}}$ unramified, for all \mathfrak{p} of F lying over p.

Definition

Say f is p-split if $u_{\mathfrak{p}}=0$ (in some basis), for all $\mathfrak{p} \mid p$.
Say f has $\mathbf{C M}$, if there exits:

- a CM field K / F, a CM type Σ, and
- a Hecke character $\lambda: I_{K}(M) \rightarrow \mathbb{C}^{\times}$, satsifying

$$
\lambda((\alpha))=\prod_{\sigma \in \Sigma} \sigma(\alpha)^{k-1}, \text { for all } \alpha \equiv 1 \bmod M, \text { and } k \geq 2,
$$

such that $f=\theta(\lambda)$ is the theta-series attached to λ.
Then $f \in S_{k}\left(\mathrm{~N}_{K / F}(M) \cdot D_{K / F},\left.\lambda\right|_{\mathbb{A}_{F}^{\times}} \cdot \omega_{K / F}\right)$.

CM implies split

If f has CM, then $\rho_{f, p}$ is induced:

$$
\rho_{f, p} \sim \operatorname{Ind}_{G_{K}}^{G_{F}} \lambda
$$

so is globally semi-simple on G_{K}.

CM implies split

If f has CM , then $\rho_{f, p}$ is induced:

$$
\rho_{f, p} \sim \operatorname{Ind}_{G_{K}}^{G_{F}} \lambda,
$$

so is globally semi-simple on G_{K}.
But f is p-ordinary $\Longrightarrow \mathfrak{p}=P \bar{P}$ splits in K and $G_{\mathfrak{p}} \subset G_{K}$, for all $\mathfrak{p} \mid p \Longrightarrow f$ is p-split.

CM implies split

If f has CM, then $\rho_{f, p}$ is induced:

$$
\rho_{f, p} \sim \operatorname{Ind}_{G_{K}}^{G_{F}} \lambda,
$$

so is globally semi-simple on G_{K}.
But f is p-ordinary $\Longrightarrow \mathfrak{p}=P \bar{P}$ splits in K and $G_{\mathfrak{p}} \subset G_{K}$, for all $\mathfrak{p} \mid p \Longrightarrow f$ is p-split.

Remarks:
(1) There are CM forms in weight 1 (and also of non-\| wts).

CM implies split

If f has CM, then $\rho_{f, p}$ is induced:

$$
\rho_{f, p} \sim \operatorname{Ind}_{G_{K}}^{G_{F}} \lambda,
$$

so is globally semi-simple on G_{K}.
But f is p-ordinary $\Longrightarrow \mathfrak{p}=P \bar{P}$ splits in K and $G_{\mathfrak{p}} \subset G_{K}$, for all $\mathfrak{p} \mid p \Longrightarrow f$ is p-split.

Remarks:
(1) There are CM forms in weight 1 (and also of non-\| wts).
(2) There are other 'exotic' dihedral forms in weight 1 .

CM implies split

If f has CM, then $\rho_{f, p}$ is induced:

$$
\rho_{f, p} \sim \operatorname{Ind}_{G_{K}}^{G_{F}} \lambda
$$

so is globally semi-simple on G_{K}.
But f is p-ordinary $\Longrightarrow \mathfrak{p}=P \bar{P}$ splits in K and $G_{\mathfrak{p}} \subset G_{K}$, for all $\mathfrak{p} \mid p \Longrightarrow f$ is p-split.

Remarks:

(1) There are CM forms in weight 1 (and also of non-\| wts).
(2) There are other 'exotic' dihedral forms in weight 1 . Take K / F arbitrary and λ of finite order such that for each real place v of F that splits into two real places $v=v_{1} v_{2}$ in K, we have $\lambda_{v_{1}}=\operatorname{sgn}, \lambda_{v_{2}}=1$, or vice-versa.

CM implies split

If f has CM , then $\rho_{f, p}$ is induced:

$$
\rho_{f, p} \sim \operatorname{Ind}_{G_{K}}^{G_{F}} \lambda
$$

so is globally semi-simple on G_{K}.
But f is p-ordinary $\Longrightarrow \mathfrak{p}=P \bar{P}$ splits in K and $G_{p} \subset G_{K}$, for all $\mathfrak{p} \mid p \Longrightarrow f$ is p-split.

Remarks:

(1) There are CM forms in weight 1 (and also of non- \| wts).
(2) There are other 'exotic' dihedral forms in weight 1 . Take K / F arbitrary and λ of finite order such that for each real place v of F that splits into two real places $v=v_{1} v_{2}$ in K, we have $\lambda_{v_{1}}=\operatorname{sgn}, \lambda_{v_{2}}=1$, or vice-versa. Then $f=\theta(\lambda)$ is a non-CM dihedral weight 1 form.

CM implies split

If f has CM , then $\rho_{f, p}$ is induced:

$$
\rho_{f, p} \sim \operatorname{Ind}_{G_{K}}^{G_{F}} \lambda
$$

so is globally semi-simple on G_{K}.
But f is p-ordinary $\Longrightarrow \mathfrak{p}=P \bar{P}$ splits in K and $G_{\mathfrak{p}} \subset G_{K}$, for all $\mathfrak{p} \mid p \Longrightarrow f$ is p-split.

Remarks:

(1) There are CM forms in weight 1 (and also of non-\| wts).
(2) There are other 'exotic' dihedral forms in weight 1 . Take K / F arbitrary and λ of finite order such that for each real place v of F that splits into two real places $v=v_{1} v_{2}$ in K, we have $\lambda_{v_{1}}=\operatorname{sgn}, \lambda_{v_{2}}=1$, or vice-versa. Then $f=\theta(\lambda)$ is a non-CM dihedral weight 1 form.
(3) These exotic forms do not occur for weight $k \geq 2$ (since π_{v} cannot be both discrete series and principal series).

Converse?

Are the CM forms the only p-split forms in weights $k \geq 2$?

Converse?

Are the CM forms the only p-split forms in weights $k \geq 2$?
Theorem (Serre)
Let E be an elliptic curve over \mathbb{Q} with ordinary reduction at p. Then $\rho_{E, p}$ is p-split $\Longleftrightarrow E$ has CM.

Converse?

Are the CM forms the only p-split forms in weights $k \geq 2$?
Theorem (Serre)
Let E be an elliptic curve over \mathbb{Q} with ordinary reduction at p. Then $\rho_{E, p}$ is p-split $\Longleftrightarrow E$ has CM.

Proposition (G-Vatsal, 2011)

Let Δ be the Ramanujan Delta function and p ordinary for Δ. Then Δ is NOT p-split, for all $p<10,000$.

Converse?

Are the CM forms the only p-split forms in weights $k \geq 2$?

Theorem (Serre)

Let E be an elliptic curve over \mathbb{Q} with ordinary reduction at p. Then $\rho_{E, p}$ is p-split $\Longleftrightarrow E$ has CM.

Proposition (G-Vatsal, 2011)

Let Δ be the Ramanujan Delta function and p ordinary for Δ. Then Δ is NOT p-split, for all $p<10,000$.

Proof: The proof shows that in the cases of interest the universal locally split deformation ring $R_{\text {split }}$ for $\bar{\rho}_{\Delta, p}$, has vanishing tangent space, and so has very few split points.

Converse?

Are the CM forms the only p-split forms in weights $k \geq 2$?

Theorem (Serre)

Let E be an elliptic curve over \mathbb{Q} with ordinary reduction at p. Then $\rho_{E, p}$ is p-split $\Longleftrightarrow E$ has CM.

Proposition (G-Vatsal, 2011)

Let Δ be the Ramanujan Delta function and p ordinary for Δ. Then Δ is NOT p-split, for all $p<10,000$.

Proof: The proof shows that in the cases of interest the universal locally split deformation ring $R_{\text {split }}$ for $\bar{\rho}_{\Delta, p}$, has vanishing tangent space, and so has very few split points. In general, it is HARD to check whether a given form is p-split!

Converse?

Are the CM forms the only p-split forms in weights $k \geq 2$?

Theorem (Serre)

Let E be an elliptic curve over \mathbb{Q} with ordinary reduction at p. Then $\rho_{E, p}$ is p-split $\Longleftrightarrow E$ has CM.

Proposition (G-Vatsal, 2011)

Let Δ be the Ramanujan Delta function and p ordinary for Δ. Then Δ is NOT p-split, for all $p<10,000$.

Proof: The proof shows that in the cases of interest the universal locally split deformation ring $R_{\text {split }}$ for $\bar{\rho}_{\Delta, p}$, has vanishing tangent space, and so has very few split points. In general, it is HARD to check whether a given form is p-split!

Today: We show that 'most' forms in 'most' non-CM Hilbert modular Hida families are NOT p-split.

Main Theorem

Let $\left(\mathfrak{n}_{0}, p\right)=1$.

Main Theorem

$$
\text { Let }\left(\mathfrak{n}_{0}, p\right)=1 \text {. }
$$

Theorem (Balasubramanyam-G-Vatsal, 2012)

Suppose $p>2$ split completely in F.

Main Theorem

Let $\left(\mathfrak{n}_{0}, p\right)=1$.

Theorem (Balasubramanyam-G-Vatsal, 2012)

Suppose $p>2$ split completely in F. Let $S\left(\mathfrak{n}_{0}\right)=$ set of all primitive p-ordinary Hilbert modular cusp forms of weight $k \geq 2$ and prime-to-p level \mathfrak{n}_{0},

Main Theorem

Let $\left(\mathfrak{n}_{0}, p\right)=1$.

Theorem (Balasubramanyam-G-Vatsal, 2012)

Suppose $p>2$ split completely in F. Let $S\left(\mathfrak{n}_{0}\right)=$ set of all primitive p-ordinary Hilbert modular cusp forms of weight $k \geq 2$ and prime-to-p level \mathfrak{n}_{0}, satisfying
(1) f is p-distinguished $\left(\bar{\delta}_{\mathfrak{p}} \neq \bar{\epsilon}_{\mathfrak{p}}\right.$, for all $\left.\mathfrak{p} \mid p\right)$.
(2) $\bar{\rho}_{f, p}$ is abs. irr. on $G_{F\left(\zeta_{p}\right)}$.

Main Theorem

$$
\text { Let }\left(\mathfrak{n}_{0}, p\right)=1
$$

Theorem (Balasubramanyam-G-Vatsal, 2012)

Suppose $p>2$ split completely in F. Let $S\left(\mathfrak{n}_{0}\right)=$ set of all primitive p-ordinary Hilbert modular cusp forms of weight $k \geq 2$ and prime-to-p level \mathfrak{n}_{0}, satisfying
(1) f is p-distinguished ($\bar{\delta}_{\mathfrak{p}} \neq \bar{\epsilon}_{\mathfrak{p}}$, for all $\mathfrak{p} \mid p$).
(3) $\bar{\rho}_{f, p}$ is abs. irr. on $G_{F\left(\zeta_{p}\right)}$.

Then except for a 'Zariski small' subset of $S\left(\mathfrak{n}_{0}\right)$
f is p-spilt $\Longleftrightarrow f$ has CM.

Remarks

1. The set $S\left(\mathfrak{n}_{0}\right)$ is parametrized by a power series ring

$$
\Lambda=\mathbb{Z}_{p}\left[\left[X_{0}, X_{1}, \ldots, X_{\delta}\right]\right]
$$

in $1+\delta$ variables where δ is the defect to Leopoldt's conjecture.

Remarks

1. The set $S\left(\mathfrak{n}_{0}\right)$ is parametrized by a power series ring

$$
\Lambda=\mathbb{Z}_{p}\left[\left[X_{0}, X_{1}, \ldots, X_{\delta}\right]\right]
$$

in $1+\delta$ variables where δ is the defect to Leopoldt's conjecture. Zariski small means that the exceptional parameters form a Zariski closed subset of $\operatorname{Spec}(\Lambda)$ of positive codimension.

Remarks

1. The set $S\left(\mathfrak{n}_{0}\right)$ is parametrized by a power series ring

$$
\Lambda=\mathbb{Z}_{p}\left[\left[X_{0}, X_{1}, \ldots, X_{\delta}\right]\right]
$$

in $1+\delta$ variables where δ is the defect to Leopoldt's conjecture. Zariski small means that the exceptional parameters form a Zariski closed subset of $\operatorname{Spec}(\Lambda)$ of positive codimension. If Leopoldt holds, e.g., if F / \mathbb{Q} is abelian, then $\delta=0$ and Zariski small $=$ finite.

Remarks

1. The set $S\left(\mathfrak{n}_{0}\right)$ is parametrized by a power series ring

$$
\Lambda=\mathbb{Z}_{p}\left[\left[X_{0}, X_{1}, \ldots, X_{\delta}\right]\right]
$$

in $1+\delta$ variables where δ is the defect to Leopoldt's conjecture. Zariski small means that the exceptional parameters form a Zariski closed subset of $\operatorname{Spec}(\Lambda)$ of positive codimension. If Leopoldt holds, e.g., if F / \mathbb{Q} is abelian, then $\delta=0$ and Zariski small $=$ finite.
2. We assume p splits completely in F. This is because we are using a result of Sasaki which assumes this. However, recent work of Kassaei, Pilloni and others on glueing overconvergent eigenforms is expected to remove this hypothesis.

Remarks

1. The set $S\left(\mathfrak{n}_{0}\right)$ is parametrized by a power series ring

$$
\Lambda=\mathbb{Z}_{p}\left[\left[X_{0}, X_{1}, \ldots, X_{\delta}\right]\right]
$$

in $1+\delta$ variables where δ is the defect to Leopoldt's conjecture. Zariski small means that the exceptional parameters form a Zariski closed subset of $\operatorname{Spec}(\Lambda)$ of positive codimension. If Leopoldt holds, e.g., if F / \mathbb{Q} is abelian, then $\delta=0$ and Zariski small $=$ finite.
2. We assume p splits completely in F. This is because we are using a result of Sasaki which assumes this. However, recent work of Kassaei, Pilloni and others on glueing overconvergent eigenforms is expected to remove this hypothesis.
3. This generalizes a result of Ghate-Vatsal (2004) for $F=\mathbb{Q}$.

Remarks

1. The set $S\left(\mathfrak{n}_{0}\right)$ is parametrized by a power series ring

$$
\Lambda=\mathbb{Z}_{p}\left[\left[X_{0}, X_{1}, \ldots, X_{\delta}\right]\right]
$$

in $1+\delta$ variables where δ is the defect to Leopoldt's conjecture. Zariski small means that the exceptional parameters form a Zariski closed subset of $\operatorname{Spec}(\Lambda)$ of positive codimension. If Leopoldt holds, e.g., if F / \mathbb{Q} is abelian, then $\delta=0$ and Zariski small $=$ finite.
2. We assume p splits completely in F. This is because we are using a result of Sasaki which assumes this. However, recent work of Kassaei, Pilloni and others on glueing overconvergent eigenforms is expected to remove this hypothesis.
3. This generalizes a result of Ghate-Vatsal (2004) for $F=\mathbb{Q}$.
4. When $k=2$, see also B. Zhao's forthcoming UCLA thesis.

Some notation

Let $\mathbf{G}=\mathbb{Z}_{p}^{1+\delta}$ be the \mathbb{Z}_{p}-free part of the Galois group of the maximal abelian, unramified-outside- p extension of F.

Some notation

Let $\mathbf{G}=\mathbb{Z}_{p}^{1+\delta}$ be the \mathbb{Z}_{p}-free part of the Galois group of the maximal abelian, unramified-outside- p extension of F.
Let $\Lambda=\mathcal{O}[[\mathbf{G}]]$, for $\mathcal{O} / \mathbb{Z}_{p}$ finite.

Some notation

Let $\mathbf{G}=\mathbb{Z}_{\rho}^{1+\delta}$ be the \mathbb{Z}_{p}-free part of the Galois group of the maximal abelian, unramified-outside- p extension of F.
Let $\Lambda=\mathcal{O}[[\mathbf{G}]]$, for $\mathcal{O} / \mathbb{Z}_{p}$ finite. Let L be the integral closure of Λ in a finite extension of the quotient field of Λ.

Some notation

Let $\mathbf{G}=\mathbb{Z}_{p}^{1+\delta}$ be the \mathbb{Z}_{p}-free part of the Galois group of the maximal abelian, unramified-outside- p extension of F.
Let $\Lambda=\mathcal{O}[[\mathbf{G}]]$, for $\mathcal{O} / \mathbb{Z}_{p}$ finite. Let L be the integral closure of Λ in a finite extension of the quotient field of Λ.
Let N be the cyclotomic character of G_{F}, thought of as a character $N: \mathbf{G} \rightarrow \mathbb{Z}_{p}^{\times}$.

Let $\mathbf{G}=\mathbb{Z}_{p}^{1+\delta}$ be the \mathbb{Z}_{p}-free part of the Galois group of the maximal abelian, unramified-outside- p extension of F. Let $\Lambda=\mathcal{O}[[\mathbf{G}]]$, for $\mathcal{O} / \mathbb{Z}_{p}$ finite. Let L be the integral closure of Λ in a finite extension of the quotient field of Λ.
Let N be the cyclotomic character of G_{F}, thought of as a character $N: \mathbf{G} \rightarrow \mathbb{Z}_{p}^{\times}$. Let $\epsilon: \mathbf{G} \rightarrow \overline{\mathbb{Q}}_{p}^{\times}$be of finite order.

Let $\mathbf{G}=\mathbb{Z}_{p}^{1+\delta}$ be the \mathbb{Z}_{p}-free part of the Galois group of the maximal abelian, unramified-outside- p extension of F. Let $\Lambda=\mathcal{O}[[\mathbf{G}]]$, for $\mathcal{O} / \mathbb{Z}_{p}$ finite. Let L be the integral closure of Λ in a finite extension of the quotient field of Λ.
Let N be the cyclotomic character of G_{F}, thought of as a character $N: \mathbf{G} \rightarrow \mathbb{Z}_{p}^{\times}$. Let $\epsilon: \mathbf{G} \rightarrow \overline{\mathbb{Q}}_{p}^{\times}$be of finite order. Let

$$
P_{k, \epsilon}: L \rightarrow \overline{\mathbb{Q}}_{p}
$$

be an extension of the alg. homo. $\Lambda \rightarrow \overline{\mathbb{Q}}_{p}$ induced by the gp. homo. $\mathbf{G} \rightarrow \overline{\mathbb{Q}}_{p}^{\times}$given by $a \mapsto \epsilon(a) N(a)^{k-1}$.

Let $\mathbf{G}=\mathbb{Z}_{p}^{1+\delta}$ be the \mathbb{Z}_{p}-free part of the Galois group of the maximal abelian, unramified-outside- p extension of F. Let $\Lambda=\mathcal{O}[[\mathbf{G}]]$, for $\mathcal{O} / \mathbb{Z}_{p}$ finite. Let L be the integral closure of Λ in a finite extension of the quotient field of Λ.
Let N be the cyclotomic character of G_{F}, thought of as a character $N: \mathbf{G} \rightarrow \mathbb{Z}_{p}^{\times}$. Let $\epsilon: \mathbf{G} \rightarrow \overline{\mathbb{Q}}_{p}^{\times}$be of finite order. Let

$$
P_{k, \epsilon}: L \rightarrow \overline{\mathbb{Q}}_{p}
$$

be an extension of the alg. homo. $\Lambda \rightarrow \overline{\mathbb{Q}}_{p}$ induced by the gp. homo. $\mathbf{G} \rightarrow \overline{\mathbb{Q}}_{p}^{\times}$given by $a \mapsto \epsilon(a) N(a)^{k-1}$. For $k \geq 2$, these are the arithemetic points of L. For $k=1$, the gp. homos. have finite order.

Let $\mathbf{G}=\mathbb{Z}_{p}^{1+\delta}$ be the \mathbb{Z}_{p}-free part of the Galois group of the maximal abelian, unramified-outside- p extension of F. Let $\Lambda=\mathcal{O}[[\mathbf{G}]]$, for $\mathcal{O} / \mathbb{Z}_{p}$ finite. Let L be the integral closure of Λ in a finite extension of the quotient field of Λ.
Let N be the cyclotomic character of G_{F}, thought of as a character $N: \mathbf{G} \rightarrow \mathbb{Z}_{p}^{\times}$. Let $\epsilon: \mathbf{G} \rightarrow \overline{\mathbb{Q}}_{p}^{\times}$be of finite order. Let

$$
P_{k, \epsilon}: L \rightarrow \overline{\mathbb{Q}}_{p}
$$

be an extension of the alg. homo. $\Lambda \rightarrow \overline{\mathbb{Q}}_{p}$ induced by the gp . homo. $\mathbf{G} \rightarrow \overline{\mathbb{Q}}_{p}^{\times}$given by $a \mapsto \epsilon(a) N(a)^{k-1}$. For $k \geq 2$, these are the arithemetic points of L. For $k=1$, the gp. homos. have finite order.
Let $\chi: G_{F} \rightarrow \Lambda^{\times}$be the character induced by

$$
G_{F} \rightarrow \mathbf{G} \hookrightarrow \Lambda^{\times}=\mathcal{O}[[\mathbf{G}]]^{\times} .
$$

Let $\mathbf{G}=\mathbb{Z}_{p}^{1+\delta}$ be the \mathbb{Z}_{p}-free part of the Galois group of the maximal abelian, unramified-outside- p extension of F. Let $\Lambda=\mathcal{O}[[\mathbf{G}]]$, for $\mathcal{O} / \mathbb{Z}_{p}$ finite. Let L be the integral closure of Λ in a finite extension of the quotient field of Λ.
Let N be the cyclotomic character of G_{F}, thought of as a character $N: \mathbf{G} \rightarrow \mathbb{Z}_{p}^{\times}$. Let $\epsilon: \mathbf{G} \rightarrow \overline{\mathbb{Q}}_{p}^{\times}$be of finite order. Let

$$
P_{k, \epsilon}: L \rightarrow \overline{\mathbb{Q}}_{p}
$$

be an extension of the alg. homo. $\Lambda \rightarrow \overline{\mathbb{Q}}_{p}$ induced by the gp . homo. $\mathbf{G} \rightarrow \overline{\mathbb{Q}}_{p}^{\times}$given by $a \mapsto \epsilon(a) N(a)^{k-1}$. For $k \geq 2$, these are the arithemetic points of L. For $k=1$, the gp. homos. have finite order.
Let $\chi: G_{F} \rightarrow \Lambda^{\times}$be the character induced by

$$
G_{F} \rightarrow \mathbf{G} \hookrightarrow \Lambda^{\times}=\mathcal{O}[[\mathbf{G}]]^{\times} .
$$

Let $\psi: G_{F} \rightarrow \mathrm{Cl}_{F,+}\left(\mathfrak{n}_{0} p\right) \rightarrow \mathcal{O}^{\times}$be of finite order and set $\psi=\psi \cdot \chi$.

Hida families

Let $\left(\mathfrak{n}_{0}, p\right)=1$.

Hida families

Let $\left(\mathfrak{n}_{0}, p\right)=1$.
Definition
A \wedge-adic Hilbert modular cusp form \mathcal{F} of tame level \mathfrak{n}_{0} and character ψ

Hida families

Let $\left(\mathfrak{n}_{0}, p\right)=1$.

Definition

A Λ-adic Hilbert modular cusp form \mathcal{F} of tame level \mathfrak{n}_{0} and character Ψ is a collection of elements

$$
c(\mathfrak{a}, \mathcal{F}) \in L \quad \text { for } \mathfrak{a} \subset \mathcal{O}_{F}
$$

Hida families

Let $\left(\mathfrak{n}_{0}, p\right)=1$.

Definition

A \wedge-adic Hilbert modular cusp form \mathcal{F} of tame level \mathfrak{n}_{0} and character Ψ is a collection of elements

$$
c(\mathfrak{a}, \mathcal{F}) \in L \quad \text { for } \mathfrak{a} \subset \mathcal{O}_{F}
$$

such that for all arithmetic primes $P_{k, \epsilon}: L \rightarrow \overline{\mathbb{Q}}_{p}^{\times}$as above, the

$$
P_{k, \epsilon}(c(\mathfrak{a}, \mathcal{F}))
$$

are the Fourier coefficients of a classical p-ordinary Hilbert modular cusp form

Hida families

Let $\left(\mathfrak{n}_{0}, p\right)=1$.

Definition

A \wedge-adic Hilbert modular cusp form \mathcal{F} of tame level \mathfrak{n}_{0} and character Ψ is a collection of elements

$$
c(\mathfrak{a}, \mathcal{F}) \in L \quad \text { for } \mathfrak{a} \subset \mathcal{O}_{F}
$$

such that for all arithmetic primes $P_{k, \epsilon}: L \rightarrow \overline{\mathbb{Q}}_{p}^{\times}$as above, the

$$
P_{k, \epsilon}(c(\mathfrak{a}, \mathcal{F}))
$$

are the Fourier coefficients of a classical p-ordinary Hilbert modular cusp form of weight $k \geq 2$, level $\mathfrak{n}_{0} p^{\infty}$, and (finite order) character $P_{k, \epsilon}(\Psi) \cdot N^{1-k}$.

Hida families

Let $\left(\mathfrak{n}_{0}, p\right)=1$.

Definition

A Λ-adic Hilbert modular cusp form \mathcal{F} of tame level \mathfrak{n}_{0} and character Ψ is a collection of elements

$$
c(\mathfrak{a}, \mathcal{F}) \in L \quad \text { for } \mathfrak{a} \subset \mathcal{O}_{F}
$$

such that for all arithmetic primes $P_{k, \epsilon}: L \rightarrow \overline{\mathbb{Q}}_{p}^{\times}$as above, the

$$
P_{k, \epsilon}(c(\mathfrak{a}, \mathcal{F}))
$$

are the Fourier coefficients of a classical p-ordinary Hilbert modular cusp form of weight $k \geq 2$, level $\mathfrak{n}_{0} p^{\infty}$, and (finite order) character $P_{k, \epsilon}(\Psi) \cdot N^{1-k}$.

Define primitive forms \mathcal{F} (eigen + new + normalized forms) appropriately.

Results from Hida theory

Theorem (Hida)

- There are finitely many primitive Λ-adic forms \mathcal{F} of tame level \mathfrak{n}_{0}.

Results from Hida theory

Theorem (Hida)

- There are finitely many primitive Λ-adic forms \mathcal{F} of tame level \mathfrak{n}_{0}.
- $S\left(\mathfrak{n}_{0}\right)=\bigcup_{\mathcal{F}} S_{\mathcal{F}}\left(\mathfrak{n}_{0}\right)$ is a finite disjoint union.

Results from Hida theory

Theorem (Hida)

- There are finitely many primitive Λ-adic forms \mathcal{F} of tame level \mathfrak{n}_{0}.
- $S\left(\mathfrak{n}_{0}\right)=\bigcup_{\mathcal{F}} S_{\mathcal{F}}\left(\mathfrak{n}_{0}\right)$ is a finite disjoint union.
- Each \mathcal{F} is of CM type or not of CM type.

Results from Hida theory

Theorem (Hida)

- There are finitely many primitive \wedge-adic forms \mathcal{F} of tame level \mathfrak{n}_{0}.
- $S\left(\mathfrak{n}_{0}\right)=\bigcup_{\mathcal{F}} S_{\mathcal{F}}\left(\mathfrak{n}_{0}\right)$ is a finite disjoint union.
- Each \mathcal{F} is of CM type or not of CM type.
- There is a Galois representation $\rho_{\mathcal{F}}: G_{F} \rightarrow \mathrm{GL}_{2}(L)$ attached to \mathcal{F}, such that

$$
\operatorname{tr}\left(\rho_{\mathcal{F}}\left(\operatorname{Frob}_{\mathfrak{q}}\right)\right)=c(\mathfrak{q}, \mathcal{F}) \quad \text { and } \quad \operatorname{det}\left(\rho_{\mathcal{F}}\left(\operatorname{Frob}_{\mathfrak{q}}\right)\right)=\Psi(\mathfrak{q})
$$

for all primes $\mathfrak{q} \nmid \mathfrak{n}_{0} p$,

Results from Hida theory

Theorem (Hida)

- There are finitely many primitive Λ-adic forms \mathcal{F} of tame level \mathfrak{n}_{0}.
- $S\left(\mathfrak{n}_{0}\right)=\bigcup_{\mathcal{F}} S_{\mathcal{F}}\left(\mathfrak{n}_{0}\right)$ is a finite disjoint union.
- Each \mathcal{F} is of CM type or not of CM type.
- There is a Galois representation $\rho_{\mathcal{F}}: G_{F} \rightarrow \mathrm{GL}_{2}(L)$ attached to \mathcal{F}, such that

$$
\operatorname{tr}\left(\rho_{\mathcal{F}}\left(\operatorname{Frob}_{\mathfrak{q}}\right)\right)=c(\mathfrak{q}, \mathcal{F}) \quad \text { and } \quad \operatorname{det}\left(\rho_{\mathcal{F}}\left(\operatorname{Frob}_{\mathfrak{q}}\right)\right)=\Psi(\mathfrak{q})
$$

for all primes $\mathfrak{q} \nmid \mathfrak{n}_{0} p$, and such that, for all primes $\mathfrak{p} \mid p$,

$$
\left.\rho_{\mathcal{F}}\right|_{G_{\mathfrak{p}}} \sim\left(\begin{array}{cc}
\delta_{\mathcal{F}, \mathfrak{p}} & u_{\mathcal{F}, \mathfrak{p}} \\
0 & \epsilon_{\mathcal{F}, \mathfrak{p}}
\end{array}\right) .
$$

Local semisimplicity for families

Definition

\mathcal{F} is p-split if $u_{\mathcal{F}, \mathfrak{p}}=0$ (in some basis), for all $\mathfrak{p} \mid p$.

Local semisimplicity for families

Definition

\mathcal{F} is p-split if $u_{\mathcal{F}, \mathfrak{p}}=0$ (in some basis), for all $\mathfrak{p} \mid p$.

Theorem (\wedge)

If \mathcal{F} is a primitive Λ-adic family, such that
(1) \mathcal{F} is p-distinguished
(2) $\bar{\rho}_{\mathcal{F}}$ is abs. irr. on $G_{F\left(\zeta_{p}\right)}$.

Then

$$
\mathcal{F} \text { is } p \text {-split } \Longleftrightarrow \mathcal{F} \text { is of CM type. }
$$

Local semisimplicity for families

Definition

\mathcal{F} is p-split if $u_{\mathcal{F}, \mathfrak{p}}=0$ (in some basis), for all $\mathfrak{p} \mid p$.

Theorem (\wedge)

If \mathcal{F} is a primitive Λ-adic family, such that
(1) \mathcal{F} is p-distinguished
(2) $\bar{\rho}_{\mathcal{F}}$ is abs. irr. on $G_{F\left(\zeta_{p}\right)}$.

Then

$$
\mathcal{F} \text { is } p \text {-split } \Longleftrightarrow \mathcal{F} \text { is of } C M \text { type. }
$$

Theorem \wedge implies the main Theorem, by descent to the classical world.

Proof of Theorem \wedge

One direction is clear.

One direction is clear. The proof of the other direction studies the weight 1 members of the family \mathcal{F}, and is similar to the proof for the case $F=\mathbb{Q}$, except that Buzzard's theorem gets replaced by the following:

Proof of Theorem \wedge

One direction is clear. The proof of the other direction studies the weight 1 members of the family \mathcal{F}, and is similar to the proof for the case $F=\mathbb{Q}$, except that Buzzard's theorem gets replaced by the following:

Theorem (Sasaki)

Say $p>2$ splits completely in F.

Proof of Theorem \wedge

One direction is clear. The proof of the other direction studies the weight 1 members of the family \mathcal{F}, and is similar to the proof for the case $F=\mathbb{Q}$, except that Buzzard's theorem gets replaced by the following:

Theorem (Sasaki)

Say $p>2$ splits completely in F. Let $\rho: G_{F} \rightarrow \mathrm{GL}_{2}(\mathcal{O})$ be a finitely ramified, residually modular, continuous p-adic Galois representation such that

Proof of Theorem \wedge

One direction is clear. The proof of the other direction studies the weight 1 members of the family \mathcal{F}, and is similar to the proof for the case $F=\mathbb{Q}$, except that Buzzard's theorem gets replaced by the following:

Theorem (Sasaki)

Say $p>2$ splits completely in F. Let $\rho: G_{F} \rightarrow \mathrm{GL}_{2}(\mathcal{O})$ be a finitely ramified, residually modular, continuous p-adic Galois representation such that

- $\left.\rho\right|_{G_{p}} \sim\left(\begin{array}{cc}\alpha_{\mathfrak{p}} & 0 \\ 0 & \beta_{\mathfrak{p}}\end{array}\right)$ is split,

Proof of Theorem \wedge

One direction is clear. The proof of the other direction studies the weight 1 members of the family \mathcal{F}, and is similar to the proof for the case $F=\mathbb{Q}$, except that Buzzard's theorem gets replaced by the following:

Theorem (Sasaki)

Say $p>2$ splits completely in F. Let $\rho: G_{F} \rightarrow \mathrm{GL}_{2}(\mathcal{O})$ be a finitely ramified, residually modular, continuous p-adic Galois representation such that
(1) $\left.\rho\right|_{G_{p}} \sim\left(\begin{array}{cc}\alpha_{\mathfrak{p}} & 0 \\ 0 & \beta_{\mathfrak{p}}\end{array}\right)$ is split, with $\bar{\alpha}_{\mathfrak{p}} \neq \bar{\beta}_{\mathfrak{p}}$,

Proof of Theorem \wedge

One direction is clear. The proof of the other direction studies the weight 1 members of the family \mathcal{F}, and is similar to the proof for the case $F=\mathbb{Q}$, except that Buzzard's theorem gets replaced by the following:

Theorem (Sasaki)

Say $p>2$ splits completely in F. Let $\rho: G_{F} \rightarrow \mathrm{GL}_{2}(\mathcal{O})$ be a finitely ramified, residually modular, continuous p-adic Galois representation such that
(1) $\left.\rho\right|_{G_{p}} \sim\left(\begin{array}{cc}\alpha_{\mathfrak{p}} & 0 \\ 0 & \beta_{\mathfrak{p}}\end{array}\right)$ is split, with $\bar{\alpha}_{\mathfrak{p}} \neq \bar{\beta}_{\mathfrak{p}}$, and $\left|\alpha\left(I_{\mathfrak{p}}\right)\right|$ and
$\left|\beta_{\mathfrak{p}}\left(I_{\mathfrak{p}}\right)\right|$ are finite, for all $\mathfrak{p} \mid p$,

Proof of Theorem \wedge

One direction is clear. The proof of the other direction studies the weight 1 members of the family \mathcal{F}, and is similar to the proof for the case $F=\mathbb{Q}$, except that Buzzard's theorem gets replaced by the following:

Theorem (Sasaki)

Say $p>2$ splits completely in F. Let $\rho: G_{F} \rightarrow \mathrm{GL}_{2}(\mathcal{O})$ be a finitely ramified, residually modular, continuous p-adic Galois representation such that
(1) $\left.\rho\right|_{G_{p}} \sim\left(\begin{array}{cc}\alpha_{\mathfrak{p}} & 0 \\ 0 & \beta_{\mathfrak{p}}\end{array}\right)$ is split, with $\bar{\alpha}_{\mathfrak{p}} \neq \bar{\beta}_{\mathfrak{p}}$, and $\left|\alpha\left(I_{\mathfrak{p}}\right)\right|$ and
$\left|\beta_{\mathfrak{p}}\left(I_{\mathfrak{p}}\right)\right|$ are finite, for all $\mathfrak{p} \mid p$,
(3) $\bar{\rho}$ is abs. irr. on $G_{F\left(\zeta_{p}\right)}$.

Proof of Theorem \wedge

One direction is clear. The proof of the other direction studies the weight 1 members of the family \mathcal{F}, and is similar to the proof for the case $F=\mathbb{Q}$, except that Buzzard's theorem gets replaced by the following:

Theorem (Sasaki)

Say $p>2$ splits completely in F. Let $\rho: G_{F} \rightarrow \mathrm{GL}_{2}(\mathcal{O})$ be a finitely ramified, residually modular, continuous p-adic Galois representation such that
(1) $\left.\rho\right|_{G_{p}} \sim\left(\begin{array}{cc}\alpha_{\mathfrak{p}} & 0 \\ 0 & \beta_{\mathfrak{p}}\end{array}\right)$ is split, with $\bar{\alpha}_{\mathfrak{p}} \neq \bar{\beta}_{\mathfrak{p}}$, and $\left|\alpha\left(I_{\mathfrak{p}}\right)\right|$ and
$\left|\beta_{\mathfrak{p}}\left(I_{\mathfrak{p}}\right)\right|$ are finite, for all $\mathfrak{p} \mid p$,
(2) $\bar{\rho}$ is abs. irr. on $G_{F\left(\zeta_{p}\right)}$.

Then, there is a Hilbert cusp form f of weight 1 such that $\rho \sim \rho_{f}$, the Rogawski-Tunnel representation attached to f.

Proof continued

Now assume $\rho_{\mathcal{F}}$ is p-split.

Proof continued

Now assume $\rho_{\mathcal{F}}$ is p-split. Apply Saskai's theorem to the weight 1 specialization of $\rho_{\mathcal{F}}$:

$$
\rho:=P_{1, \epsilon}\left(\rho_{\mathcal{F}}\right)
$$

Proof continued

Now assume $\rho_{\mathcal{F}}$ is p-split. Apply Saskai's theorem to the weight 1 specialization of $\rho_{\mathcal{F}}$:

$$
\rho:=P_{1, \epsilon}\left(\rho_{\mathcal{F}}\right)
$$

Note ρ is p-split.

Now assume $\rho_{\mathcal{F}}$ is p-split. Apply Saskai's theorem to the weight 1 specialization of $\rho_{\mathcal{F}}$:

$$
\rho:=P_{1, \epsilon}\left(\rho_{\mathcal{F}}\right)
$$

Note ρ is p-split. ρ is also p-distinguished by hypothesis.

Now assume $\rho_{\mathcal{F}}$ is p-split. Apply Saskai's theorem to the weight 1 specialization of $\rho_{\mathcal{F}}$:

$$
\rho:=P_{1, \epsilon}\left(\rho_{\mathcal{F}}\right)
$$

Note ρ is p-split. ρ is also p-distinguished by hypothesis. Moreover, the local diagonal characters of ρ are finite on inertia, since one is unramified, and the other is just $P_{1, \epsilon}\left(\operatorname{det} \rho_{\mathcal{F}}\right)=P_{1, \epsilon}(\Psi)$ which has finite order.

Now assume $\rho_{\mathcal{F}}$ is p-split. Apply Saskai's theorem to the weight 1 specialization of $\rho_{\mathcal{F}}$:

$$
\rho:=P_{1, \epsilon}\left(\rho_{\mathcal{F}}\right)
$$

Note ρ is p-split. ρ is also p-distinguished by hypothesis. Moreover, the local diagonal characters of ρ are finite on inertia, since one is unramified, and the other is just $P_{1, \epsilon}\left(\operatorname{det} \rho_{\mathcal{F}}\right)=P_{1, \epsilon}(\Psi)$ which has finite order. So

$$
\rho \sim \rho_{f},
$$

for a classical Hilbert modular weight 1 cusp form f.

Proof continued

Now assume $\rho_{\mathcal{F}}$ is p-split. Apply Saskai's theorem to the weight 1 specialization of $\rho_{\mathcal{F}}$:

$$
\rho:=P_{1, \epsilon}\left(\rho_{\mathcal{F}}\right)
$$

Note ρ is p-split. ρ is also p-distinguished by hypothesis. Moreover, the local diagonal characters of ρ are finite on inertia, since one is unramified, and the other is just $P_{1, \epsilon}\left(\operatorname{det} \rho_{\mathcal{F}}\right)=P_{1, \epsilon}(\Psi)$ which has finite order. So

$$
\rho \sim \rho_{f},
$$

for a classical Hilbert modular weight 1 cusp form f.
As ϵ varies, we see \mathcal{F} has a Zariski dense set of classical weight 1 specializations.

Proof continued

All but finitely many of these must be dihedral.

Proof continued

All but finitely many of these must be dihedral.
Since there are only finitely many choices for the associated quadratic extension K / F, one K must occur for a Zariski dense set of specializations.

All but finitely many of these must be dihedral.
Since there are only finitely many choices for the associated quadratic extension K / F, one K must occur for a Zariski dense set of specializations.

This implies

$$
\rho_{\mathcal{F}} \sim \operatorname{Ind}_{G_{K}}^{G_{F}} \lambda
$$

for a Λ-adic Hecke character λ of this K.

All but finitely many of these must be dihedral.
Since there are only finitely many choices for the associated quadratic extension K / F, one K must occur for a Zariski dense set of specializations.
This implies

$$
\rho_{\mathcal{F}} \sim \operatorname{Ind}_{G_{K}}^{G_{F}} \lambda,
$$

for a Λ-adic Hecke character λ of this K. By the earlier remark (regarding non-existence of 'exotic' dihedral forms in weights 2 or more), this K / F must also be a $C M$ field.

Proof continued

All but finitely many of these must be dihedral.
Since there are only finitely many choices for the associated quadratic extension K / F, one K must occur for a Zariski dense set of specializations.
This implies

$$
\rho_{\mathcal{F}} \sim \operatorname{Ind}_{G_{K}}^{G_{F}} \lambda,
$$

for a Λ-adic Hecke character λ of this K. By the earlier remark (regarding non-existence of 'exotic' dihedral forms in weights 2 or more), this K / F must also be a CM field.
Thus \mathcal{F} is a CM form, and we are done.

Aside: Weight 1 forms

The proof raises several interesting questions.

Aside: Weight 1 forms

The proof raises several interesting questions.

Corollary

If $F=\mathbb{Q}$ (or Leopoldt holds for F), then the number of weight 1 forms in a primitive non-CM family \mathcal{F} is finite.

Aside: Weight 1 forms

The proof raises several interesting questions.

Corollary

If $F=\mathbb{Q}$ (or Leopoldt holds for F), then the number of weight 1 forms in a primitive non-CM family \mathcal{F} is finite.

Question (Sarnak)

Can one give effective bounds on the number of classical weight 1 forms in a non-CM \mathcal{F}, when $F=\mathbb{Q}$?

Aside: Weight 1 forms

The proof raises several interesting questions.

Corollary

If $F=\mathbb{Q}$ (or Leopoldt holds for F), then the number of weight 1 forms in a primitive non-CM family \mathcal{F} is finite.

Question (Sarnak)

Can one give effective bounds on the number of classical weight 1 forms in a non-CM \mathcal{F}, when $F=\mathbb{Q}$?
E.g.: Greenberg-Vatsal have remarked that if there is Steinberg-type prime in the prime-to- p level N_{0} of \mathcal{F}, then \mathcal{F} has no classical weight 1 specializations.

Residually exceptional case

If there is a weight 1 form in \mathcal{F}, then it must be of

- exceptional type $\left(A_{4}, S_{4}, A_{5}\right)$ or
- dihedral type (RM or CM),

Residually exceptional case

If there is a weight 1 form in \mathcal{F}, then it must be of

- exceptional type $\left(A_{4}, S_{4}, A_{5}\right)$ or
- dihedral type (RM or CM), and then, the residual representation $\bar{\rho}_{\mathcal{F}}$ is of the same type.

Residually exceptional case

If there is a weight 1 form in \mathcal{F}, then it must be of

- exceptional type $\left(A_{4}, S_{4}, A_{5}\right)$ or
- dihedral type (RM or CM), and then, the residual representation $\bar{\rho}_{\mathcal{F}}$ is of the same type.
Exceptional weight 1 forms are rare.

Residually exceptional case

If there is a weight 1 form in \mathcal{F}, then it must be of

- exceptional type $\left(A_{4}, S_{4}, A_{5}\right)$ or
- dihedral type (RM or CM), and then, the residual representation $\bar{\rho}_{\mathcal{F}}$ is of the same type.
Exceptional weight 1 forms are rare. For example:

Theorem (Bhargava-G, 2009)

The number of octahedral forms of prime level is, on average, bounded by a constant.

Residually exceptional case

If there is a weight 1 form in \mathcal{F}, then it must be of

- exceptional type $\left(A_{4}, S_{4}, A_{5}\right)$ or
- dihedral type (RM or CM),
and then, the residual representation $\bar{\rho}_{\mathcal{F}}$ is of the same type.
Exceptional weight 1 forms are rare. For example:

Theorem (Bhargava-G, 2009)

The number of octahedral forms of prime level is, on average, bounded by a constant.

In the context of families, we have:

Theorem (G-Dimitrov, 2012)

If \mathcal{F} is residually exceptional and $p \geq 7$, then there is at most ONE exceptional form in \mathcal{F}.

Residually exceptional case

If there is a weight 1 form in \mathcal{F}, then it must be of

- exceptional type $\left(A_{4}, S_{4}, A_{5}\right)$ or
- dihedral type (RM or CM),
and then, the residual representation $\bar{\rho}_{\mathcal{F}}$ is of the same type.
Exceptional weight 1 forms are rare. For example:

Theorem (Bhargava-G, 2009)

The number of octahedral forms of prime level is, on average, bounded by a constant.

In the context of families, we have:

Theorem (G-Dimitrov, 2012)

If \mathcal{F} is residually exceptional and $p \geq 7$, then there is at most ONE exceptional form in \mathcal{F}.

Also: if $p=3$ or 5 , there are at most 4 such forms in \mathcal{F} l

Residually RM case

Now assume \mathcal{F} is a primitive non-CM family, residually of dihedral type.

Residually RM case

Now assume \mathcal{F} is a primitive non-CM family, residually of dihedral type. Then \mathcal{F} is residually of

- RM type, or
- CM type.

Residually RM case

Now assume \mathcal{F} is a primitive non-CM family, residually of dihedral type. Then \mathcal{F} is residually of

- RM type, or
- CM type.

Say K / \mathbb{Q} is the corresponding quadratic field, and $p \nmid D_{K}$.

Residually RM case

Now assume \mathcal{F} is a primitive non-CM family, residually of dihedral type. Then \mathcal{F} is residually of

- RM type, or
- CM type.

Say K / \mathbb{Q} is the corresponding quadratic field, and $p \nmid D_{K}$.

Proposition

Say $p \geq 3$ and \mathcal{F} is residually $R M$, with $p \nmid D_{\kappa}$. Then the number of classical wt 1 (RM) forms in \mathcal{F} is bounded

Residually RM case

Now assume \mathcal{F} is a primitive non-CM family, residually of dihedral type. Then \mathcal{F} is residually of

- RM type, or
- CM type.

Say K / \mathbb{Q} is the corresponding quadratic field, and $p \nmid D_{K}$.

Proposition

Say $p \geq 3$ and \mathcal{F} is residually $R M$, with $p \nmid D_{K}$. Then the number of classical wt 1 (RM) forms in \mathcal{F} is bounded by the p-part of

$$
\prod_{\ell \mid N_{0}}\left(\ell^{2}-1\right) \cdot h_{K} \cdot N_{K / \mathbb{Q}}\left(\epsilon_{K}^{p-1}-1\right)
$$

Residually RM case

Now assume \mathcal{F} is a primitive non-CM family, residually of dihedral type. Then \mathcal{F} is residually of

- RM type, or
- CM type.

Say K / \mathbb{Q} is the corresponding quadratic field, and $p \nmid D_{K}$.

Proposition

Say $p \geq 3$ and \mathcal{F} is residually $R M$, with $p \nmid D_{K}$. Then the number of classical wt 1 (RM) forms in \mathcal{F} is bounded by the p-part of

$$
\prod_{\ell \mid N_{0}}\left(\ell^{2}-1\right) \cdot h_{K} \cdot N_{K / \mathbb{Q}}\left(\epsilon_{K}^{p-1}-1\right),
$$

where h_{K} is the class number of K and ϵ_{K} is a fundamental unit of K.

Residually CM case

In the residually CM case, can only give a non-effective bound!

Residually CM case

In the residually CM case, can only give a non-effective bound! Remarks:

- However, we do not know of an example of a non-CM, but residually CM (and not RM) family \mathcal{F} with a classical weight 1 CM point, with $p \nmid D_{K}$.

Residually CM case

In the residually CM case, can only give a non-effective bound!
Remarks:

- However, we do not know of an example of a non-CM, but residually CM (and not RM) family \mathcal{F} with a classical weight 1 CM point, with $p \nmid D_{K}$. There are plenty of examples of such \mathcal{F} without classical weight 1 points

Residually CM case

In the residually CM case, can only give a non-effective bound!

Remarks:

- However, we do not know of an example of a non-CM, but residually CM (and not RM) family \mathcal{F} with a classical weight 1 CM point, with $p \nmid D_{K}$. There are plenty of examples of such \mathcal{F} without classical weight 1 points Take a p-ordinary CM form g of wt 2 on $\Gamma_{0}(M)$, with $p \nmid M$. By Ribet's level raising criterion, there will be Steinberg-at- ℓ forms f (for $\ell \nmid M p$) of level $N_{0}=M \ell$, with $f \equiv g \bmod p$.

Residually CM case

In the residually CM case, can only give a non-effective bound!

Remarks:

- However, we do not know of an example of a non-CM, but residually CM (and not RM) family \mathcal{F} with a classical weight 1 CM point, with $p \nmid D_{K}$. There are plenty of examples of such \mathcal{F} without classical weight 1 points Take a p-ordinary CM form g of wt 2 on $\Gamma_{0}(M)$, with $p \nmid M$. By Ribet's level raising criterion, there will be Steinberg-at- ℓ forms f (for $\ell \nmid M p$) of level $N_{0}=M \ell$, with $f \equiv g \bmod p$. The \mathcal{F} 's passing through these f 's are non-CM and residually CM, but as remarked earlier, have no weight 1 points.

Residually CM case

In the residually CM case, can only give a non-effective bound!

Remarks:

- However, we do not know of an example of a non-CM, but residually CM (and not RM) family \mathcal{F} with a classical weight 1 CM point, with $p \nmid D_{K}$. There are plenty of examples of such \mathcal{F} without classical weight 1 points Take a p-ordinary CM form g of wt 2 on $\Gamma_{0}(M)$, with $p \nmid M$. By Ribet's level raising criterion, there will be Steinberg-at- ℓ forms f (for $\ell \nmid M p$) of level $N_{0}=M \ell$, with $f \equiv g \bmod p$. The \mathcal{F} 's passing through these f 's are non-CM and residually CM, but as remarked earlier, have no weight 1 points.
- On the other hand, there are examples of non-CM and residually CM families \mathcal{F} with classical weight 1 CM points, with $p \mid D_{K}$.

Towards uniqueness in weight 1

Say there did exist a non-CM family \mathcal{F} which was residually CM (and not RM), with a weight 1 CM point f, with $p \nmid D_{K}$.

Say there did exist a non-CM family \mathcal{F} which was residually CM (and not RM), with a weight 1 CM point f, with $p \nmid D_{K}$.
Then we get an immediate contradiction to uniqueness for families with respect to weight 1 members: f would also live in a CM family \mathcal{G}, since $p \nmid D_{K}$.

Say there did exist a non-CM family \mathcal{F} which was residually CM (and not RM), with a weight 1 CM point f, with $p \nmid D_{K}$.
Then we get an immediate contradiction to uniqueness for families with respect to weight 1 members: f would also live in a CM family \mathcal{G}, since $p \nmid D_{K}$.
NB: If $p \mid D_{K}$, get no violation to uniqueness, since f cannot live in a CM family \mathcal{G}.

Towards uniqueness in weight 1

Say there did exist a non-CM family \mathcal{F} which was residually CM (and not RM), with a weight 1 CM point f, with $p \nmid D_{K}$.
Then we get an immediate contradiction to uniqueness for families with respect to weight 1 members: f would also live in a CM family \mathcal{G}, since $p \nmid D_{K}$.
NB: If $p \mid D_{K}$, get no violation to uniqueness, since f cannot live in a CM family \mathcal{G}.

Recall for $p \geq 3$, Hida's control theorem for $k \geq 2$
\Longrightarrow étaleness of Hida's Hecke algebra at wt $k \geq 2$ points

Towards uniqueness in weight 1

Say there did exist a non-CM family \mathcal{F} which was residually CM (and not RM), with a weight 1 CM point f, with $p \nmid D_{K}$.

Then we get an immediate contradiction to uniqueness for families with respect to weight 1 members: f would also live in a CM family \mathcal{G}, since $p \nmid D_{K}$.
NB: If $p \mid D_{K}$, get no violation to uniqueness, since f cannot live in a CM family \mathcal{G}.

Recall for $p \geq 3$, Hida's control theorem for $k \geq 2$
\Longrightarrow étaleness of Hida's Hecke algebra at wt $k \geq 2$ points
\Longrightarrow each arithmetic point live is a unique family, up to Galois conjugacy.

Towards uniqueness in weight 1

Say there did exist a non-CM family \mathcal{F} which was residually CM (and not RM), with a weight 1 CM point f, with $p \nmid D_{K}$.

Then we get an immediate contradiction to uniqueness for families with respect to weight 1 members: f would also live in a CM family \mathcal{G}, since $p \nmid D_{K}$.
NB: If $p \mid D_{K}$, get no violation to uniqueness, since f cannot live in a CM family \mathcal{G}.

Recall for $p \geq 3$, Hida's control theorem for $k \geq 2$
\Longrightarrow étaleness of Hida's Hecke algebra at wt $k \geq 2$ points
\Longrightarrow each arithmetic point live is a unique family, up to Galois conjugacy.
So, in view of the above remarks, is uniqueness trying to hold in weight 1 ?

Towards uniqueness in weight 1

Say there did exist a non-CM family \mathcal{F} which was residually CM (and not RM), with a weight 1 CM point f, with $p \nmid D_{K}$.

Then we get an immediate contradiction to uniqueness for families with respect to weight 1 members: f would also live in a CM family \mathcal{G}, since $p \nmid D_{K}$.
NB: If $p \mid D_{K}$, get no violation to uniqueness, since f cannot live in a CM family \mathcal{G}.

Recall for $p \geq 3$, Hida's control theorem for $k \geq 2$
\Longrightarrow étaleness of Hida's Hecke algebra at wt $k \geq 2$ points
\Longrightarrow each arithmetic point live is a unique family, up to Galois conjugacy.
So, in view of the above remarks, is uniqueness trying to hold in weight 1 ? This is our next question.

Aside: Uniqueness in Weight 1

Question

Does a classical weight 1 form live in a unique family \mathcal{F} ?

Aside: Uniqueness in Weight 1

Question

Does a classical weight 1 form live in a unique family \mathcal{F} ?

Answer: Apparently not.

Aside: Uniqueness in Weight 1

Question

Does a classical weight 1 form live in a unique family \mathcal{F} ?
Answer: Apparently not. Take an RM wt 1 form $f=f \otimes \chi_{D}$. Then f lives in some \mathcal{F}, but it also lives in $\mathcal{G}=\mathcal{F} \otimes \chi_{D}$.

Aside: Uniqueness in Weight 1

Question
Does a classical weight 1 form live in a unique family \mathcal{F} ?
Answer: Apparently not. Take an RM wt 1 form $f=f \otimes \chi_{D}$. Then f lives in some \mathcal{F}, but it also lives in $\mathcal{G}=\mathcal{F} \otimes \chi_{D}$. However: numerically, \mathcal{F} and \mathcal{G} are always Galois conjugates!

Aside: Uniqueness in Weight 1

Question

Does a classical weight 1 form live in a unique family \mathcal{F} ?
Answer: Apparently not. Take an RM wt 1 form $f=f \otimes \chi_{D}$. Then f lives in some \mathcal{F}, but it also lives in $\mathcal{G}=\mathcal{F} \otimes \chi_{D}$. However: numerically, \mathcal{F} and \mathcal{G} are always Galois conjugates!
Typical example: Threre is a 3 -adic \mathcal{F} with $N_{0}=13$ and $\psi=\chi-39$ with Fourier coefficients in

$$
L=\mathbb{Z}_{3}[[X]][Y] /\left(Y^{2}+X\right)
$$

having a weight 1 form with with RM by $\mathbb{Q}(\sqrt{13})$. If $\sigma: Y \mapsto-Y$, then $\mathcal{F} \otimes \chi_{13}=\mathcal{F}^{\sigma}$ is a Galois conjugate form.

Aside: Uniqueness in Weight 1

Question

Does a classical weight 1 form live in a unique family \mathcal{F} ?
Answer: Apparently not. Take an RM wt 1 form $f=f \otimes \chi_{D}$. Then f lives in some \mathcal{F}, but it also lives in $\mathcal{G}=\mathcal{F} \otimes \chi_{D}$. However: numerically, \mathcal{F} and \mathcal{G} are always Galois conjugates!
Typical example: Threre is a 3 -adic \mathcal{F} with $N_{0}=13$ and $\psi=\chi-39$ with Fourier coefficients in

$$
L=\mathbb{Z}_{3}[[X]][Y] /\left(Y^{2}+X\right)
$$

having a weight 1 form with with RM by $\mathbb{Q}(\sqrt{13})$. If $\sigma: Y \mapsto-Y$, then $\mathcal{F} \otimes \chi_{13}=\mathcal{F}^{\sigma}$ is a Galois conjugate form.
Thus Hida's Hecke algebra is not étale at weight 1 points, but is there still a chance that uniqueness (up to conjugacy) holds?

Uniqueness in Weight 1

We have:

Proposition (G-Dimitrov)

Uniqueness fails for classical weight 1 points.

Uniqueness in Weight 1

We have:

Proposition (G-Dimitrov)

Uniqueness fails for classical weight 1 points.
Proof: Let $f=f \otimes \chi_{D_{1}}$, with $D_{1}>0$, be an RM wt 1 form s.t. ρ_{f} has projective image the Klein- 4 group.

Uniqueness in Weight 1

We have:

Proposition (G-Dimitrov)

Uniqueness fails for classical weight 1 points.
Proof: Let $f=f \otimes \chi_{D_{1}}$, with $D_{1}>0$, be an RM wt 1 form s.t. ρ_{f} has projective image the Klein- 4 group. Then

$$
f=f \otimes \chi_{D_{2}}=f \otimes \chi_{D_{3}}
$$

for two imaginary fields K_{2} and K_{3}.

Uniqueness in Weight 1

We have:

Proposition (G-Dimitrov)

Uniqueness fails for classical weight 1 points.
Proof: Let $f=f \otimes \chi_{D_{1}}$, with $D_{1}>0$, be an RM wt 1 form s.t. ρ_{f} has projective image the Klein- 4 group. Then

$$
f=f \otimes \chi_{D_{2}}=f \otimes \chi_{D_{3}}
$$

for two imaginary fields K_{2} and K_{3}. Say $p \nmid D_{K_{i}}$, for $i=2,3$.

Uniqueness in Weight 1

We have:

Proposition (G-Dimitrov)

Uniqueness fails for classical weight 1 points.
Proof: Let $f=f \otimes \chi_{D_{1}}$, with $D_{1}>0$, be an RM wt 1 form s.t. ρ_{f} has projective image the Klein- 4 group. Then

$$
f=f \otimes \chi_{D_{2}}=f \otimes \chi_{D_{3}}
$$

for two imaginary fields K_{2} and K_{3}. Say $p \nmid D_{K_{i}}$, for $i=2,3$. Let \mathcal{F} and \mathcal{G} have CM by K_{2} and K_{3} and pass through f.

Uniqueness in Weight 1

We have:

Proposition (G-Dimitrov)

Uniqueness fails for classical weight 1 points.
Proof: Let $f=f \otimes \chi_{D_{1}}$, with $D_{1}>0$, be an RM wt 1 form s.t. ρ_{f} has projective image the Klein- 4 group. Then

$$
f=f \otimes \chi_{D_{2}}=f \otimes \chi_{D_{3}}
$$

for two imaginary fields K_{2} and K_{3}. Say $p \nmid D_{K_{i}}$, for $i=2,3$. Let \mathcal{F} and \mathcal{G} have CM by K_{2} and K_{3} and pass through f. Then \mathcal{F} and \mathcal{G} are not Galois conjugates.

Uniqueness in Weight 1

We have:

Proposition (G-Dimitrov)

Uniqueness fails for classical weight 1 points.
Proof: Let $f=f \otimes \chi_{D_{1}}$, with $D_{1}>0$, be an RM wt 1 form s.t. ρ_{f} has projective image the Klein- 4 group. Then

$$
f=f \otimes \chi_{D_{2}}=f \otimes \chi_{D_{3}}
$$

for two imaginary fields K_{2} and K_{3}. Say $p \nmid D_{K_{i}}$, for $i=2,3$. Let \mathcal{F} and \mathcal{G} have CM by K_{2} and K_{3} and pass through f. Then \mathcal{F} and \mathcal{G} are not Galois conjugates. Indeed if $\mathcal{F}=\mathcal{G}^{\sigma}$,

Uniqueness in Weight 1

We have:

Proposition (G-Dimitrov)

Uniqueness fails for classical weight 1 points.
Proof: Let $f=f \otimes \chi_{D_{1}}$, with $D_{1}>0$, be an RM wt 1 form s.t. ρ_{f} has projective image the Klein- 4 group. Then

$$
f=f \otimes \chi_{D_{2}}=f \otimes \chi_{D_{3}}
$$

for two imaginary fields K_{2} and K_{3}. Say $p \nmid D_{K_{i}}$, for $i=2,3$. Let \mathcal{F} and \mathcal{G} have CM by K_{2} and K_{3} and pass through f. Then \mathcal{F} and \mathcal{G} are not Galois conjugates. Indeed if $\mathcal{F}=\mathcal{G}^{\sigma}$, then
$\mathcal{F}=\mathcal{F} \otimes \chi_{D_{2}}=\left(\mathcal{G} \otimes \chi_{D_{2}}\right)^{\sigma}$

Uniqueness in Weight 1

We have:

Proposition (G-Dimitrov)

Uniqueness fails for classical weight 1 points.
Proof: Let $f=f \otimes \chi_{D_{1}}$, with $D_{1}>0$, be an RM wt 1 form s.t. ρ_{f} has projective image the Klein- 4 group. Then

$$
f=f \otimes \chi_{D_{2}}=f \otimes \chi_{D_{3}}
$$

for two imaginary fields K_{2} and K_{3}. Say $p \nmid D_{K_{i}}$, for $i=2,3$. Let \mathcal{F} and \mathcal{G} have CM by K_{2} and K_{3} and pass through f. Then \mathcal{F} and \mathcal{G} are not Galois conjugates. Indeed if $\mathcal{F}=\mathcal{G}^{\sigma}$, then
$\mathcal{F}=\mathcal{F} \otimes \chi_{D_{2}}=\left(\mathcal{G} \otimes \chi_{D_{2}}\right)^{\sigma}=\left(\mathcal{G} \otimes \chi_{D_{3}} \chi_{D_{1}}\right)^{\sigma}$

Uniqueness in Weight 1

We have:

Proposition (G-Dimitrov)

Uniqueness fails for classical weight 1 points.
Proof: Let $f=f \otimes \chi_{D_{1}}$, with $D_{1}>0$, be an RM wt 1 form s.t. ρ_{f} has projective image the Klein- 4 group. Then

$$
f=f \otimes \chi_{D_{2}}=f \otimes \chi_{D_{3}}
$$

for two imaginary fields K_{2} and K_{3}. Say $p \nmid D_{K_{i}}$, for $i=2,3$. Let \mathcal{F} and \mathcal{G} have CM by K_{2} and K_{3} and pass through f. Then \mathcal{F} and \mathcal{G} are not Galois conjugates. Indeed if $\mathcal{F}=\mathcal{G}^{\sigma}$, then

$$
\mathcal{F}=\mathcal{F} \otimes \chi_{D_{2}}=\left(\mathcal{G} \otimes \chi_{D_{2}}\right)^{\sigma}=\left(\mathcal{G} \otimes \chi_{D_{3}} \chi_{D_{1}}\right)^{\sigma}=\left(\mathcal{G} \otimes \chi_{D_{1}}\right)^{\sigma}
$$

Uniqueness in Weight 1

We have:

Proposition (G-Dimitrov)

Uniqueness fails for classical weight 1 points.
Proof: Let $f=f \otimes \chi_{D_{1}}$, with $D_{1}>0$, be an RM wt 1 form s.t. ρ_{f} has projective image the Klein- 4 group. Then

$$
f=f \otimes \chi_{D_{2}}=f \otimes \chi_{D_{3}}
$$

for two imaginary fields K_{2} and K_{3}. Say $p \nmid D_{K_{i}}$, for $i=2,3$. Let \mathcal{F} and \mathcal{G} have CM by K_{2} and K_{3} and pass through f. Then \mathcal{F} and \mathcal{G} are not Galois conjugates. Indeed if $\mathcal{F}=\mathcal{G}^{\sigma}$, then

$$
\begin{aligned}
\mathcal{F} & =\mathcal{F} \otimes \chi_{D_{2}}=\left(\mathcal{G} \otimes \chi_{D_{2}}\right)^{\sigma}=\left(\mathcal{G} \otimes \chi_{D_{3}} \chi_{D_{1}}\right)^{\sigma}=\left(\mathcal{G} \otimes \chi_{D_{1}}\right)^{\sigma} \\
& =\mathcal{F} \otimes \chi_{D_{1}}
\end{aligned}
$$

a contradiction, since \mathcal{F} cannot have RM forms in wts ≥ 2.

This leads us to two refined questions regarding uniqueness for weight 1 forms:

This leads us to two refined questions regarding uniqueness for weight 1 forms:

Question

i) In the dihedral case, does uniqueness hold outside the Klein-4 case?

This leads us to two refined questions regarding uniqueness for weight 1 forms:

Question

i) In the dihedral case, does uniqueness hold outside the Klein-4 case?
ii) Does uniqueness always hold at exceptional weight 1 points?

Two subquestions

This leads us to two refined questions regarding uniqueness for weight 1 forms:

Question

i) In the dihedral case, does uniqueness hold outside the Klein-4 case?
ii) Does uniqueness always hold at exceptional weight 1 points?

Answers to these questions have implications for the geometry of the eigencurve at classical weight 1 points.

Nearly ordinary forms

What about local semisimplicity for Hilbert modular forms of non-parallel weight?

Nearly ordinary forms

What about local semisimplicity for Hilbert modular forms of non-parallel weight?
Let:

- I be the set of embeddings of F into \mathbb{R}

Nearly ordinary forms

What about local semisimplicity for Hilbert modular forms of non-parallel weight?
Let:

- / be the set of embeddings of F into \mathbb{R}
- $t=(1,1, \ldots, 1) \in \mathbb{Z}[I]$

Nearly ordinary forms

What about local semisimplicity for Hilbert modular forms of non-parallel weight?
Let:

- I be the set of embeddings of F into \mathbb{R}
- $t=(1,1, \ldots, 1) \in \mathbb{Z}[I]$
- $k=\left(k_{\sigma}\right)$ and $n=\left(n_{\sigma}\right) \in \mathbb{Z}[I]$ with $n=k-2 t$

Nearly ordinary forms

What about local semisimplicity for Hilbert modular forms of non-parallel weight?
Let:

- I be the set of embeddings of F into \mathbb{R}
- $t=(1,1, \ldots, 1) \in \mathbb{Z}[I]$
- $k=\left(k_{\sigma}\right)$ and $n=\left(n_{\sigma}\right) \in \mathbb{Z}[I]$ with $n=k-2 t$
- $v=\left(v_{\sigma}\right) \geq 0$, some $v_{\sigma}=0, n+2 v=\mu t$ parallel

Nearly ordinary forms

What about local semisimplicity for Hilbert modular forms of non-parallel weight?
Let:

- I be the set of embeddings of F into \mathbb{R}
- $t=(1,1, \ldots, 1) \in \mathbb{Z}[I]$
- $k=\left(k_{\sigma}\right)$ and $n=\left(n_{\sigma}\right) \in \mathbb{Z}[I]$ with $n=k-2 t$
- $v=\left(v_{\sigma}\right) \geq 0$, some $v_{\sigma}=0, n+2 v=\mu t$ parallel
- $w=v+k-t \in \mathbb{Z}[I]$.

Nearly ordinary forms

What about local semisimplicity for Hilbert modular forms of non-parallel weight?
Let:

- I be the set of embeddings of F into \mathbb{R}
- $t=(1,1, \ldots, 1) \in \mathbb{Z}[/]$
- $k=\left(k_{\sigma}\right)$ and $n=\left(n_{\sigma}\right) \in \mathbb{Z}[I]$ with $n=k-2 t$
- $v=\left(v_{\sigma}\right) \geq 0$, some $v_{\sigma}=0, n+2 v=\mu t$ parallel
- $w=v+k-t \in \mathbb{Z}[/]$.

Let $S_{k, w}(\mathfrak{n}, \mathbb{C})$ be the space of Hilbert modular forms of weight (k, w).
For $\mathfrak{a} \subset \mathcal{O}_{F}$, let

$$
T_{0}(\mathfrak{a})=\left\{\mathfrak{a}^{\vee}\right\}^{-1} T(\mathfrak{a})
$$

be Hida's modified Hecke operator.

Nearly ordinary forms

Hida: An eigenform $f \in S_{k, w}(\mathfrak{n}, \mathbb{C})$ is nearly p-ordinary if it's $T_{0}(\mathfrak{p})$-eigenvalue is a p-adic unit for all $\mathfrak{p} \mid p$. In this case

$$
\left.\rho_{f, p}\right|_{G_{\mathfrak{p}}} \sim\left(\begin{array}{cc}
\delta_{\mathfrak{p}} & u_{\mathfrak{p}} \\
0 & \epsilon_{\mathfrak{p}}
\end{array}\right)
$$

for all $\mathfrak{p} \mid p$, but $\epsilon_{\mathfrak{p}}$ is not necessarily unramified.

Nearly ordinary forms

Hida: An eigenform $f \in S_{k, w}(\mathfrak{n}, \mathbb{C})$ is nearly p-ordinary if it's $T_{0}(\mathfrak{p})$-eigenvalue is a p-adic unit for all $\mathfrak{p} \mid p$. In this case

$$
\left.\rho_{f, p}\right|_{G_{\mathfrak{p}}} \sim\left(\begin{array}{cc}
\delta_{\mathfrak{p}} & u_{\mathfrak{p}} \\
0 & \epsilon_{\mathfrak{p}}
\end{array}\right)
$$

for all $\mathfrak{p} \mid p$, but $\epsilon_{\mathfrak{p}}$ is not necessarily unramified.
NB: Sasaki's theorem (and it's refinements) allow $\alpha_{\mathfrak{p}}$ and $\beta_{\mathfrak{p}}$ to have arbitrary finite ramification on inertia.
So one might expect that all the proofs go through in the n.ord setting.

Nearly ordinary forms

Hida: An eigenform $f \in S_{k, w}(\mathfrak{n}, \mathbb{C})$ is nearly p-ordinary if it's $T_{0}(\mathfrak{p})$-eigenvalue is a p-adic unit for all $\mathfrak{p} \mid p$. In this case

$$
\left.\rho_{f, p}\right|_{G_{\mathfrak{p}}} \sim\left(\begin{array}{cc}
\delta_{\mathfrak{p}} & u_{\mathfrak{p}} \\
0 & \epsilon_{\mathfrak{p}}
\end{array}\right)
$$

for all $\mathfrak{p} \mid p$, but $\epsilon_{\mathfrak{p}}$ is not necessarily unramified.
NB: Sasaki's theorem (and it's refinements) allow $\alpha_{\mathfrak{p}}$ and $\beta_{\mathfrak{p}}$ to have arbitrary finite ramification on inertia.
So one might expect that all the proofs go through in the n.ord setting. This is indeed true.

Nearly ordinary families

For instance, there is a theory of nearly ordinary families.

Nearly ordinary families

For instance, there is a theory of nearly ordinary families. Let - $\mathbf{G}^{\prime}:=\mathbf{G}$ from before

Nearly ordinary families

For instance, there is a theory of nearly ordinary families. Let

- $\mathbf{G}^{\prime}:=\mathbf{G}$ from before
- $U_{1, F}=$ torsion-free part of $\left(\mathcal{O}_{F} \otimes \mathbb{Z}_{p}\right)^{\times}$

Nearly ordinary families

For instance, there is a theory of nearly ordinary families. Let

- $\mathbf{G}^{\prime}:=\mathbf{G}$ from before
- $U_{1, F}=$ torsion-free part of $\left(\mathcal{O}_{F} \otimes \mathbb{Z}_{p}\right)^{\times}$
- \mathbf{H}^{\prime} be the torsion-free part of $U_{1, F} / \overline{\mathcal{O}}_{F}^{\times} \subset \mathbf{G}^{\prime}$,

Nearly ordinary families

For instance, there is a theory of nearly ordinary families. Let

- $\mathbf{G}^{\prime}:=\mathbf{G}$ from before
- $U_{1, F}=$ torsion-free part of $\left(\mathcal{O}_{F} \otimes \mathbb{Z}_{p}\right)^{\times}$
- \mathbf{H}^{\prime} be the torsion-free part of $U_{1, F} / \overline{\mathcal{O}}_{F}^{\times} \subset \mathbf{G}^{\prime}$, and set

$$
\mathbf{G}:=U_{1, F} \times \mathbf{G}^{\prime}=\mathbb{Z}_{p}^{[F: \mathbb{Q}]+1+\delta}
$$

Nearly ordinary families

For instance, there is a theory of nearly ordinary families. Let

- $\mathbf{G}^{\prime}:=\mathbf{G}$ from before
- $U_{1, F}=$ torsion-free part of $\left(\mathcal{O}_{F} \otimes \mathbb{Z}_{p}\right)^{\times}$
- \mathbf{H}^{\prime} be the torsion-free part of $U_{1, F} / \overline{\mathcal{O}}_{F}^{\times} \subset \mathbf{G}^{\prime}$, and set

$$
\begin{aligned}
\mathbf{G} & :=U_{1, F} \times \mathbf{G}^{\prime}=\mathbb{Z}_{p}^{[F: \mathbb{Q}]+1+\delta} \\
\mathbf{H} & :=U_{1, F} \times \mathbf{H}^{\prime}
\end{aligned}
$$

Nearly ordinary families

For instance, there is a theory of nearly ordinary families. Let

- $\mathbf{G}^{\prime}:=\mathbf{G}$ from before
- $U_{1, F}=$ torsion-free part of $\left(\mathcal{O}_{F} \otimes \mathbb{Z}_{p}\right)^{\times}$
- \mathbf{H}^{\prime} be the torsion-free part of $U_{1, F} / \overline{\mathcal{O}}_{F}^{\times} \subset \mathbf{G}^{\prime}$, and set

$$
\begin{aligned}
\mathbf{G} & :=U_{1, F} \times \mathbf{G}^{\prime}=\mathbb{Z}_{\rho}^{[F: \mathbb{Q}]+1+\delta} \\
\mathbf{H} & :=U_{1, F} \times \mathbf{H}^{\prime} .
\end{aligned}
$$

Finally, let $\Lambda=\mathcal{O}[[\mathbf{G}]]$.

Nearly ordinary families

For instance, there is a theory of nearly ordinary families. Let

- $\mathbf{G}^{\prime}:=\mathbf{G}$ from before
- $U_{1, F}=$ torsion-free part of $\left(\mathcal{O}_{F} \otimes \mathbb{Z}_{p}\right)^{\times}$
- \mathbf{H}^{\prime} be the torsion-free part of $U_{1, F} / \overline{\mathcal{O}}_{F}^{\times} \subset \mathbf{G}^{\prime}$, and set

$$
\begin{aligned}
\mathbf{G} & :=U_{1, F} \times \mathbf{G}^{\prime}=\mathbb{Z}_{\rho}^{[F: \mathbb{Q}]+1+\delta} \\
\mathbf{H} & :=U_{1, F} \times \mathbf{H}^{\prime} .
\end{aligned}
$$

Finally, let $\Lambda=\mathcal{O}[[\mathbf{G}]]$. This time arithmetic points

$$
P_{n, v, \epsilon_{1}, \epsilon_{2}}: L \rightarrow \overline{\mathbb{Q}}_{p}
$$

extend homomorphisms $\mathcal{O}[[\mathbf{H}]] \rightarrow \overline{\mathbb{Q}}_{p}$ which on \mathbf{H} are given by

$$
(a, d) \mapsto \epsilon_{1}(a) \epsilon_{2}(d) d^{\mu t} a^{v},
$$

with $k \geq 2 t$.

Nearly ordinary families

For instance, there is a theory of nearly ordinary families. Let

- $\mathbf{G}^{\prime}:=\mathbf{G}$ from before
- $U_{1, F}=$ torsion-free part of $\left(\mathcal{O}_{F} \otimes \mathbb{Z}_{p}\right)^{\times}$
- \mathbf{H}^{\prime} be the torsion-free part of $U_{1, F} / \overline{\mathcal{O}}_{F}^{\times} \subset \mathbf{G}^{\prime}$, and set

$$
\begin{aligned}
\mathbf{G} & :=U_{1, F} \times \mathbf{G}^{\prime}=\mathbb{Z}_{\rho}^{[F: \mathbb{Q}]+1+\delta} \\
\mathbf{H} & :=U_{1, F} \times \mathbf{H}^{\prime} .
\end{aligned}
$$

Finally, let $\Lambda=\mathcal{O}[[\mathbf{G}]]$. This time arithmetic points

$$
P_{n, v, \epsilon_{1}, \epsilon_{2}}: L \rightarrow \overline{\mathbb{Q}}_{p}
$$

extend homomorphisms $\mathcal{O}[[\mathbf{H}]] \rightarrow \overline{\mathbb{Q}}_{p}$ which on \mathbf{H} are given by

$$
(a, d) \mapsto \epsilon_{1}(a) \epsilon_{2}(d) d^{\mu t} a^{v},
$$

with $k \geq 2 t$. ETC....

Nearly ordinary families

For instance, there is a theory of nearly ordinary families. Let

- $\mathbf{G}^{\prime}:=\mathbf{G}$ from before
- $U_{1, F}=$ torsion-free part of $\left(\mathcal{O}_{F} \otimes \mathbb{Z}_{p}\right)^{\times}$
- \mathbf{H}^{\prime} be the torsion-free part of $U_{1, F} / \overline{\mathcal{O}}_{F}^{\times} \subset \mathbf{G}^{\prime}$, and set

$$
\begin{aligned}
\mathbf{G} & :=U_{1, F} \times \mathbf{G}^{\prime}=\mathbb{Z}_{\rho}^{[F: \mathbb{Q}]+1+\delta} \\
\mathbf{H} & :=U_{1, F} \times \mathbf{H}^{\prime} .
\end{aligned}
$$

Finally, let $\Lambda=\mathcal{O}[[\mathbf{G}]]$. This time arithmetic points

$$
P_{n, v, \epsilon_{1}, \epsilon_{2}}: L \rightarrow \overline{\mathbb{Q}}_{p}
$$

extend homomorphisms $\mathcal{O}[[\mathbf{H}]] \rightarrow \overline{\mathbb{Q}}_{p}$ which on \mathbf{H} are given by

$$
(a, d) \mapsto \epsilon_{1}(a) \epsilon_{2}(d) d^{\mu t} a^{v},
$$

with $k \geq 2 t$. ETC.... The results and proofs are similar,

Finally, $p=2$

All of this (i.e., local semisimplicity for Λ-adic forms) should work for $p=2$, but some key results do not seem to be in the literature yet.

Finally, $p=2$

All of this (i.e., local semisimplicity for Λ-adic forms) should work for $p=2$, but some key results do not seem to be in the literature yet.

Theorem (G-Kumar)

Hida's control theorem holds for $F=\mathbb{Q}$ and $p=2$.

Finally, $p=2$

All of this (i.e., local semisimplicity for Λ-adic forms) should work for $p=2$, but some key results do not seem to be in the literature yet.

Theorem (G-Kumar)

Hida's control theorem holds for $F=\mathbb{Q}$ and $p=2$.
In particular, we may speak of CM and non-CM 2-adic families.

Finally, $p=2$

All of this (i.e., local semisimplicity for Λ-adic forms) should work for $p=2$, but some key results do not seem to be in the literature yet.

Theorem (G-Kumar)

Hida's control theorem holds for $F=\mathbb{Q}$ and $p=2$.
In particular, we may speak of CM and non-CM 2-adic families.
However, the analog of Buzzard/Sasaski's theorem is not yet available for $p=2$, when the residual image of ρ is dihedral.

Finally, $p=2$

All of this (i.e., local semisimplicity for Λ-adic forms) should work for $p=2$, but some key results do not seem to be in the literature yet.

Theorem (G-Kumar)

Hida's control theorem holds for $F=\mathbb{Q}$ and $p=2$.
In particular, we may speak of CM and non-CM 2-adic families.
However, the analog of Buzzard/Sasaski's theorem is not yet available for $p=2$, when the residual image of ρ is dihedral.
This may come out of methods from P. Allen's recent UCLA thesis.

Thank you!

