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Abstract. Let F be a totally real field and p be an odd prime which splits

completely in F . We show that a generic p-ordinary non-CM primitive Hilbert

modular cuspidal eigenform over F of parallel weight two or more must have a
locally non-split p-adic Galois representation, at at least one of the primes of F

lying above p. This is proved under some technical assumptions on the global

residual Galois representation. We also indicate how to extend our results to
nearly ordinary families and forms of non-parallel weight.

1. Introduction

The purpose of this article is to generalize a result of the latter two authors [1]
to the case of totally real fields. Thus let F be a totally real field and OF its ring of
integers. Let p be an odd integer prime. Let k ≥ 2 be an integer and suppose that
f ∈ Sk(n, ψ) is a Hilbert modular form of (parallel) weight k, level n and character
ψ : ClF,+(n) → C×, which is a primitive eigenform for all the Hecke operators.
Denote by c(a, f) the eigenvalue of f with respect to the T (a) operator. As a varies
over the integral ideals of F , the c(a, f) generate a finite extension E of Q. Let P
be a prime ideal of Q̄, hence E, lying over p. Let

ρf : Gal(F̄ /F )→ GL2(EP)

be the Galois representation associated to f by Wiles, Taylor, Ohta, Carayol and
Blasius-Rogawski, building on the work of Eichler-Shimura and Deligne in the case
F = Q. For all prime ideals q - np, we have

Tr ρf (Frob q) = c(q, f), and

det ρf (Frob q) = ψ(q) Nqk−1.

We say that f is p-ordinary if for each prime p|p, c(p, f) is a P-adic unit. If f is
p-ordinary, then by Wiles [18], for p|p, the local representation

(1) ρf |Dp
∼
(
εp up
0 δp

)
is reducible, where εp and δp are characters on the decomposition group Dp with
values in E×P and δp is unramified. We say that f is p-distinguished if εp and δp are
distinct mod P for each p|p.

Definition 1. ρf is said to be split at p if the local representation ρ|Dp
is the direct

sum of two 1-dimensional characters. ρf is split at p if it is split at all p|p.

In general, it is rare that the representation ρf is split at p, and in fact Greenberg
asked (for F = Q) whether for weight k ≥ 2 this only happens for the so-called CM
forms, which we now proceed to describe.
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Let K be a totally imaginary quadratic extension of F and let c denote the
nontrivial automorphism of K/F . Let IK be the set of infinite places of K. Fix a set
Σ∞ ⊂ IK such that Σ∞ and Σ∞c are disjoint and Σ∞∪Σ∞c = IK . Let I(M) be the

fractional ideals of K coprime to a modulus M ⊂ OK and let λ : I(M)→ Q×p be an

arithmetic Hecke character of K of modulus M such that λ((α)) =
∏
σ∈Σ∞

σ(α)k−1

for all α ≡ 1 mod M , where k ≥ 1. Then by [2] there is a Hilbert modular form f of
parallel weight k and level NK/F (M) dK/F (where dK/F is the relative discriminant
of K/F ) associated to λ. That is, for all but finitely many primes q of F ,

f |T (q) = c(q, f)f,

where

c(q, f) =

 λ(Q) + λ(Q̄) if q = QQ̄
λ(Q) if q = Q2

0 if q = Q.

A Hilbert modular form is called a CM form if it arises from a Hecke character in
this way. The corresponding Galois representation of GF = Gal(Q/F ) is induced
from the index two subgroup GK = Gal(Q/K), and has projectively dihedral image.
For a construction of these Galois representations we refer the reader to the final
section of this paper, where a construction of Λ-adic CM-forms and their Galois
representations is given in the ordinary and nearly ordinary cases.

Remarks.

(i) In weight 1 there exist non-CM forms f whose associated representations
ρf have projectively dihedral image. Let K/F be an arbitrary quadratic
extension. Let λ be a finite order Hecke character such that whenever a real
place v of F splits into real places v1 and v2 in K, λv1 = sgn and λv2 = 1,
or vice versa. Let f be the form corresponding to λ, so that ρf is induced
from GK . The form f is not of CM type if K is not a CM field. Note that
ρf satisfies

ρf (cv) ∼
(
λv1(cv)

λv2(cv)

)
=

(
∓1

±1

)
for all split real places v of F as above, where cv is complex conjugation at
v, and so is totally odd, as it should be.

(ii) The non-CM holomorphic forms f with projectively dihedral image de-
scribed in (i) do not occur for (parallel) weight k ≥ 2. Let π be the au-
tomorphic representation associated to f and v be a real place of F . If v
splits in K as above, then πv will be a principal series representation (see,
e.g., [15, §3.1.4]), but for k ≥ 2 this is not possible since πv is a discrete
series representation.

(iii) CM forms of non-parallel weight can be obtained by taking powers of inte-
gers kσ ≥ 1 for each σ ∈ Σ∞ in the construction above.

If f is p-ordinary and CM, then it can easily be shown that ρf splits at p. We
prove the following theorem which states that the converse is also true with a small
set of exceptions.

Theorem 1. Let F be a totally real field and p an odd prime that splits completely
in F . Fix an integral ideal n0 of F which is prime to p. Let S(n0) be the set of
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primitive, p-ordinary Hilbert modular cusp forms f of weight k ≥ 2 and tame level
n0 such that

(1) f is p-distinguished, and
(2) ρ̄f is absolutely irreducible when restricted to GF (ζp) = Gal(Q/F (ζp)).

Then, except for a Zariski small subset of S(n0),

ρf is split at p if and only if f is CM.

Moreover, if we assume that Leopoldt’s conjecture is true for F and p, then there
are only finitely many exceptions.

Remarks. (a) We assume in this theorem that the prime p splits completely
in F . This is only necessary to apply the results of [17], specifically the
result stated in Theorem 2 below.

(b) The forms in S(n0) are parameterized by certain coheight one primes in
Spec(Λ), where Λ is a power-series ring in 1 + δ variables over a p-adic
ring, where δ is the defect in Leopoldt’s conjecture. When we say that
the set of exceptions is Zariski small, we mean that the exceptional set of
parameterization is a Zariski closed set of positive codimension in Spec(Λ).
Thus the theorem holds for a Zariski dense set of parameterizations. If
Leopoldt’s conjecture holds and δ = 0 (e.g., if F/Q is abelian), then Λ has
only one (cyclotomic) variable, and the exceptional set is finite.

When F = Q this problem was studied in [1]. It is shown that as f varies over
forms of weight k ≥ 2 in a non-CM Hida family of tame level N0, ρf is not split
at p with finitely many exceptions. We extend the proof to the case of totally
real fields. The key ingredient in the proof is a result by Sasaki [17, Theorem 2]
which characterizes Galois representations associated to weight one cuspidal Hilbert
modular forms. We state the relevant part of the theorem here.

Theorem 2. Let p be an odd prime that splits completely in F . Suppose that
ρ : GF → GL2(OP), where OP is the valuation ring in a finite extension EP of Qp,
is a continuous representation satisfying the following conditions:

(1) ρ ramifies only at finitely many primes
(2) ρ mod P is modular and absolutely irreducible when restricted to GF (ζp)

(3) For every prime p|p, ρ|Dp
is the direct sum of two 1-dimensional characters

αp and βp : Dp → O×P such that α(Ip) and β(Ip) have finite cardinality,
and αp and βp are distinct mod P.

Then there is an embedding i : EP → C and a classical weight 1 cuspform f such
that i◦ρ is isomorphic to the representation associated to f by Rogawski and Tunnell
in [16].

2. Ordinary families over totally real fields

In this section we recall basic properties of ordinary Λ-adic Hilbert modular cusp
forms due to Hida and Wiles (for more details see [18, 3, 4]) and prove a Λ-adic
version of our main theorem. Theorem 1 will follow from it.

Let M be the maximal abelian extension of F unramified outside p, and define
G to be the torsion-free part of the group Gal(M/F ). Then G is isomorphic
to 1 + δ copies of Zp, where δ is the defect in Leopoldt’s conjecture for F and
p. Furthermore, G may be identified with the group Gal(M/F ′), where F ′ is
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a subfield of a (strict) ray class field of F of conductor pα for some α ≥ 1. Thus
Gal(M/F ) ' G×Gal(F ′/F ). Let O be a finite extension of Zp and let Λ = O[[G]] '
O[[X0, X1, . . . , Xδ]], where the last isomorphism is given by sending generators γi
of G to Xi + 1.

Let N : GF → Z×p be the cyclotomic character of GF . By restriction we may view

N as a character of G. For any integer k and finite order character ε : G → Q×p ,

define κk,ε : Λ → Qp induced by the map a 7→ ε(a)Nak−1 on G. Let Pk,ε denote
the kernel of κk,ε.

Let L be a finite extension of the quotient field of Λ. We denote by ΛL the
integral closure of Λ in L. Let

κ : ΛL → Qp
be a homomorphism that restricts to κk,ε on Λ and let Pκ denote the kernel of this
map. When k ≥ 2, the homomorphisms κ or the coheight 1 primes Pκ are called
the arithmetic points of ΛL. We remark that the points corresponding to k = 1 are
precisely those which correspond to finite order characters of G.

Let χ denote the map

χ : GF � Gal(M/F ) = G×Gal(F ′/F ) � G ↪→ Λ×.

Let n be an integral ideal in F and let ClF,+(n) be the strict ray class group of F
modulo n. Let ψ be a fixed finite order character of conductor dividing n0p and
define the Λ-adic character Ψ = ψχ, so that

Ψ : GF � lim←−ClF,+(n0p
r)→ Λ×L .

Observe that Ψ modulo Pκ is the product of a finite order character with Nk−1. In
particular, Ψ has finite order modulo primes of weight 1.

Now let hord(n0) be Hida’s universal ordinary Hecke algebra of tame level n0.

Definition 2. A Λ-adic cusp form F of level n0 and character Ψ is a Λ-algebra
homomorphism F : hord(n0)→ ΛL such that for any arithmetic point κ the compo-
sition κ ◦F gives the Hecke eigenvalues of a classical ordinary Hilbert cusp form of
weight k, prime-to-p level n0 and (finite order) character ψκ = (N1−k ·Ψ) mod Pκ.
We denote these forms by fκ.

One may define the notion of a primitive Λ-adic cusp form by requiring a prim-
itivity condition on the specializations. If f0 is a p-ordinary p-stabilized primitive
Hilbert modular cusp form of weight k, there is a primitive Λ-adic form F interpo-
lating f0 (i.e., there is an arithmetic point κ such that κ ◦ F gives rise to f0).

We can further say that F is unique. Let Q be the kernel of κ◦λ; it lies above the
prime P = Pκ of Λ. In order to show that F is unique we need to show that there is
a unique minimal prime ideal of h = hord(n0) contained in Q. This is true because
the localization hQ over ΛP is an étale extension of regular local rings. We know
that hQ is flat over ΛP . By Hida’s control theorem [4] and [12, Lemma 12.7.6 (i)]
we know that Q is unramified over P . Since Λ is isomorphic to a power-series ring it
is regular and hence ΛP is also a regular local ring. The generators of QhQ = PhQ
form an hQ-regular sequence since they form a ΛP -regular sequence and hQ is flat.
Indeed, if x0, · · · , xm are generators of PΛP giving a regular sequence, then xi is
not a zero-divisor in ΛP /(x0, · · · , xi−1). So multiplication by xi is injective on this
ring. Tensoring with hQ and using flatness, we see that x0, · · · , xm continues to
be a regular sequence in hQ. This proof also works in the nearly ordinary case
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which will be dealt with later. If f0 is also CM by some field K, then there is a
CM form F passing through it (see section 4 below for the definition of Λ-adic CM
forms; here we only note that all arithmetic specializations of such CM forms have
CM) and by the uniqueness above this is the only form passing through it. Hence
primitive Λ-adic forms can be divided into CM and non-CM families.

To each primitive Hida family F with character Ψ there is a Galois representation

ρF : GF → GL2(L)

such that
Tr ρF (Frob q) = c(q,F), and

det ρF (Frob q) = Ψ(q)

for all q - np. We also know that for each p|p the restriction of ρF to the decompo-
sition group at p looks like

ρF |Dp
∼
(
Ep ∗
0 Dp

)
where Ep and Dp are characters Dp → Λ×L with Dp unramified. If F is CM, then
ρF splits at all primes p of F lying over p which are split in the corresponding
quadratic extension K/F .

Theorem 3. Let p be an odd prime that splits completely in F and let F be a
primitive Λ-adic form such that

• F is p-distinguished (i.e., Ēp 6= D̄p, for all p|p), and
• ρ̄F is absolutely irreducible when restricted to GF (ζp).

Then ρF |Dp
splits for each prime p|p if and only if F is of CM type.

Remarks. As we have already remarked, we need to assume that p splits com-
pletely in F in order to apply Theorem 2. Kassaei, Pilloni, Sasaki, Stroh and Tian
are working on removing this assumption. Their methods involve gluing overcon-
vergent eigenforms using analytic continuation techniques on rigid analytic Hilbert-
Blumenthal varieties. For instance, the papers [10] and [11] assume that p is unram-
ified in F and the paper [13] that p is mildly ramified in F . However, these works
also assume that the (quotient of) certain diagonal characters occurring on inertia
are at worst tamely ramified; their main results are therefore not directly applicable
in our method. Further work of Pilloni and Stroh [14] is expected to remove the
assumption of tame ramification, and to allow p to have arbitrary ramification in
F as well. Thus, it is expected that Theorems 2 and 3, and hence Theorem 1, will
become true without the splitting assumption on p in F in the near future.

Before we prove this theorem we need the following lemma.

Lemma 1. Let G be as above. Let ε : G → Q×p be any finite order character and

let κε = κ1,ε be the induced map from Λ = O[[G]] to Qp and let Pε = P1,ε denote
the kernel of this map. Then the ideals Pε form a dense subset of Spec(Λ).

Proof. If I = ∩Pε, then the closure of Pε in Spec(Λ) is Spec(Λ/I). The collection Pε
is dense if and only if I = 0. Suppose that w ∈ I ⊂ O[[G]] ∼= O[[X0, . . . , Xδ]], with
G ∼= Z1+δ

p . We may identify O[[G]] with the space of bounded O-valued measures
µ on the compact group G, as in Section 3.7 of [9]. If ε is a finite order character of
G we may view it as a locally constant function, and then

∫
G
ε dµ = µ (mod Pε).

It follows that if w ∈ ∩Pε and µ is the corresponding measure, then
∫
G
ε dµ = 0
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for all ε, which implies that µ and w are zero (since the finite order characters are
dense in the space of locally constant functions on the compact group G). �

Proof of Theorem 3. This result is a generalization of [1, Proposition 14]. We sketch
the proof here.

We know that if F is CM, then ρF is split at each p|p. We now prove the
converse. We prove that any weight 1 specialization of ρF satisfies the conditions
of Theorem 2 and thus has to come from a classical weight 1 form. Let P1,ε(F) be
a weight one specialization of F . If ρF is split at each p|p, then the specialization
ρF |Dp

to P1,ε is a direct sum of two characters, say αp and βp. To apply Theorem 2,
the only condition that needs to be verified is that αp and βp have finite images on
inertia. We know that βp is unramified, so βp(Ip) = 1. Since αpβp = Ψ (mod P1,ε)
has finite order, the claim follows.

Let X be the set of all finite order characters ε such that the weight 1 special-
ization f1,ε is a dihedral form induced from a character of a quadratic extension of
F . The same group theoretic argument as in [1] shows that all but finitely many
characters ε lie in X and this implies that the set of primes {P1,ε}ε∈X is dense
in Spec(Λ). There is a bound on the discriminant of the quadratic extension that
can occur in this family and hence there are only finitely many of them. Hence
there exist quadratic extensions K1, ...,Kh over F such that for every ε ∈ X , f1,ε

is dihedral by one of the Ki. This gives a finite partition of X into the Xi. We
claim that one of the sets {P1,ε}ε∈Xi is dense in Spec(Λ). If not, the closure of
each of these sets will be of the form Spec(Λ/Qi) for some ideal Qi 6= 0. We also
know that the dimension of Spec(Λ/Qi) is less than that of Spec(Λ). The density of
{P1,ε}ε∈X (see the lemma above) implies that Spec(Λ) = ∪h1Spec(Λ/Qi) and this
is impossible by comparing dimensions. We denote by K the quadratic extension
corresponding to this dense subset. We also let XK denote the corresponding set
of characters.

Suppose that κ is arithmetic of weight 1 such that the specialization fκ is dihedral
by K, then ρκ ∼ ρκ ⊗ φ where φ is the character of the extension K/F . We need
to show that ρF ∼ ρF ⊗ φ and we do this by proving that Tr(ρF (Frob l)) =
Tr((ρF ⊗ φ)(Frob l)) for all but finitely many prime ideals l in F . This is trivially
true if l splits in K (since φ(Frob l) = 1 for split ideals) and when l is inert we
claim both sides are zero. This is because for a κ of the form (1, ε) with ε ∈ XK

the specialization Tr(ρκ(Frob l)) = 0. Since their kernels Pκ are dense in Spec(Λ)
we know that Tr(ρF (Frob l)) = 0. This shows that the family F is dihedral by
K/F . In particular, all its weight 2 or more specializations are dihedral by K. But
by remark (ii) in section 1, these specializations must come from a CM field K, as
desired. �

Theorem 1 now follows in exactly the same manner as the main theorem in [1].

3. Nearly ordinary case

We would now like to consider the behavior of local Galois representations in
the case of modular forms of non-parallel weight. It is necessary to consider nearly
ordinary families of Hilbert modular forms in this case. For details see [3], [4] and
[6, §2,3].

Let I be the set of infinite places of F and by a weight vector we mean an element
of Z[I]. Let (kσ) ∈ Z[I] be such that all the kσ are congruent mod 2 and all kσ ≥ 2.
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Let t = (1, ..., 1) and set n = k − 2t. Choose a weight vector v ≥ 0 such that at
least one vσ = 0 and n+ 2v = µt is parallel (i.e., µ ∈ Z), and set w = v+ k− t. Let
Sk,w(n,C) denote the set of cusp forms of level n and weight (k,w). The classical
automorphy factor for such forms is given in [3], equation (0.1), and the cusp forms
of parallel weight considered earlier correspond to the case v = 0. We note also that
the pair (k,w) of weight vectors is determined by the pair (k, µ), where k is a weight
vector and µ is an ordinary integer satisfying the condition that k− (2 +µ)t = −2v
is a weight vector with all entries even.

There is an action of the Hecke operators T (a) on this space for integral ideals a
of F . Hida also defines the modified Hecke operators T0(a) which we describe now.
For details, see [3] and [4]. For each 0 ≤ v ∈ Z[I] we define a character F× → Q̄×
by sending x 7→

∏
xvσσ. The image of this map is in Φ, the Galois closure of F .

By continuity we extend the map above to F×A → Φ×A . We let A be the ring of

integers in the Hilbert class field of Φ. Then for every finite idele x ∈ F×A the ideal

xvA is a principal ideal in A. For each prime ideal l of OF let x ∈ F×A be an idele
such that l = xOF . We fix an element {xv} = {lv} ∈ A which is a generator for
the ideal xvA for every weight vector v. We extend this definition for any ideal a
of F multiplicatively. We then define the modified Hecke operator by

T0(a) = {av}−1T (a).

If Φ′/Φ is a field extension inside C, then it can be shown that the space of Φ′-
rational cusp forms Sk,w(n,Φ′) is stable under T (a) and T0(a) (cf. [3, Theorem
4.8]). Furthermore, if A is as above, then the A-integral cusp forms Sk,w(n, A) are
stable under T0(a) for all integral ideals a (cf. [3, Theorem 4.11]). If v = 0, we can
take all the {lv} to be 1 and this is the usual Hecke operator.

Definition 3. An eigenform f ∈ Sk,w(n,C) is said to be nearly ordinary at p if its
T0(p) eigenvalue is a P-adic unit, for all p|p.

If f is nearly ordinary at p, and E is the number field generated by the T0(a)-
eigenvalues of f , then the associated Galois representation

ρf : Gal(F̄ /F )→ GL2(EP)

has the following local behavior. At every p|p,

ρf |Dp
∼
(
εp up
0 δp

)
where εp and δp are again characters on the decomposition group Dp, but unlike
the ordinary case, δp need not be unramified.

We now discuss the Λ-adic analogues of nearly ordinary forms. Let M/F denote
the maximal abelian extension of F unramified outside p, and let G′ denote the
torsion-free part of Gal(M/F ). This is the group denoted by G in the ordinary case
and corresponds to the weight space there. In the nearly ordinary case at hand,
the weight space G is given by

G = U1,F ×G′

where U1,F is the torsion-free part of O×F,p, with OF,p = OF ⊗ Zp. Thus G is

isomorphic to [F : Q] + 1 + δ copies of Zp. Furthermore, G′ contains the subgroup
H′ = torsion-free part of U1,F /Ō×F,1 as a subgroup of finite index, where O×F,1 is the

subset of O×F of principal global units. Let H = U1,F ×H′. There is an action of
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H on Sk,w(n0p
α; O) denoted by 〈a, d〉. Following [6, §3] we modify this action for

each n, v above. Define 〈a, d〉n,v = d−µt〈a, d〉. It is known that this action factors
through a finite quotient of H. Given finite order characters ε1 : U1,F → O× and
ε2 : H′ → O×, we define the subset of cusp forms

Sk,w(n0p
α, ε1, ε2; O) = {f

∣∣ f |〈a,d〉n,v = ε1(a)ε2(d)f}.

Let hn.ord(n0) be the universal nearly ordinary Hecke algebra of tame level n0

over the Iwasawa algebra Λ = Λn.ord = O[[G]]. Let L be a finite extension of the
fraction field of Λ and let ΛL be the integral closure of Λ in L. Let κn,v,ε1,ε2 denote

the homomorphism O[[H]]→ Qp induced by (a, d) 7→ ε1(a)ε2(d)dµtav; a homomor-

phism κ : ΛL → Qp is called an arithmetic point if it extends some κn,v,ε1,ε2 with
k ≥ 2t. Here note that dt is essentially the cyclotomic character. A nearly ordinary
Λ-adic cusp form is a Λ-algebra homomorphism F : hn.ord(n0)→ ΛL such that for
every arithmetic point κ the map κ ◦ F corresponds to a classical nearly ordinary
Hilbert modular cusp form in Sk,w(n0p

α, ε1, ε2; O). This normalization is slightly
different than the one given above for ordinary forms; here the points corresponding
to finite order characters of G are given by v = 0 and k = 2t.

We know that every primitive nearly ordinary form f of weight k with kσ ≥ 2
lives in a unique primitive nearly ordinary family F , i.e., there exists a primitive Λ-
adic form F and an arithmetic point κ such that f corresponds to the specialization
κ ◦ F .

By [5], there is a Galois representation ρF : Gal(F̄ /F ) → GL2(ΛL) unramified
outside n0p such that for each p|p

ρF|Dp
∼
(
Ep ∗
0 Dp

)
where Ep and Dp are Λ-adic characters, but unlike the ordinary case Dp is not
necessarily unramified. We will construct Λ-adic forms with CM from a quadratic
extension K/F and the corresponding representations in section 4 below, and we
will see that if the primes above p split in K, then the Λ-adic representation is split
at p.

Now suppose that F is arbitrary, and that ρF is split at p. We can show using
Sasaki’s theorem that for any specialization of the form κ = κ−1,0,ε1,ε2 the Galois
representation ρκ comes from a classical weight 1 form. Let αp = κ ◦ Ep and
βp = κ◦Dp. The only non-trivial part is to check that αp and βp have finite image on
the inertia subgroup. We know by [7, Theorem 2.43] that βp([u, Fp]) = ε1,p(u)u−v,
where ε1,p is the p-part of ε1, and u ∈ p-part of U1,F . Also the units map onto the
inertia subgroup via the local Artin map. It follows that when v = 0 the restriction

to Ip of βp has finite image. Let ÔF = OF ⊗ Ẑ. For κ extending κn,v,ε1,ε2 , there
is an arithmetic Hecke character ε+(κ) with infinity type −(n + 2v) such that

ε+(κ)(z) = ε1(z)ε2(z) for z ∈ Ô×F . We know that on H′, det(ρκ) = ε+(κ) ·N which
is a character with infinity type −(t + n + 2v) (see loc. cit. and errata on Hida’s
webpage). When k is of parallel weight 1, so n = −t and v = 0, the determinant is
a finite order character, hence αp has finite order on Ip as well.

Using the same arguments as before we can show that a dense set of these weight
1 specializations are CM forms for a fixed CM-field K/F and that F is CM by K.
This proves a nearly ordinary version of Theorem 3. We leave it to the reader to
conclude the obvious nearly ordinary version of Theorem 1 from this.
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4. Construction of Λ-adic CM forms and representations

Let F be a totally real field, and K/F a totally imaginary quadratic extension.
Let c denote the nontrivial automorphism of K/F , so that c is induced by complex
conjugation under any embedding σ : K → C. Let p denote a rational prime, and
assume that every prime above p in F splits in K. We fix once and for all an
isomorphism ι : C 7→ Cp, the completion of the algebraic closure of Qp.

Fix a set Σ∞ of embeddings of K into C as in section 1. Then if σ ∈ Σ∞, the
composite ι ◦ σ gives an embedding K → Cp, and thus determines a place σp of K
above p. Set Σp = {σp : σ ∈ Σ∞}. Then the set Σp is disjoint from Σpc and gives
‘half’ the places of K lying above p; it is called a p-adic CM type in [8]. We may
view σp as a map K ⊗Qp → Cp by extension of scalars. Similarly, we view σ as a
map K ⊗ R→ C.

Now consider an arithmetic Hecke character λ : K×\K×A → C× such that the
restriction of λ to (K ⊗R)× is of the form x 7→

∏
σ∈Σ∞

σ(x)kσ , with kσ ≥ 1. Then

consider the map λp : K×A → C×p defined by

λp(x) = ι(λ(x)) ·
∏
σ∈Σ∞

ι(σ(x∞))−kσ ·
∏
σ∈Σp

σp(xp)
kσ .

Then λp is a continuous homomorphism, and λp is trivial on K× and on (K ⊗R)×

by construction. (Note however, that λp and λ take the same values at the ideles
(1, 1, · · · , πQ, · · · , 1) where πQ is a uniformizer at a prime Q not lying over p.)
By class field theory, we may view λp as a character Gal(Kab/K) → C×p . Since

Gal(Q/K) is a subgroup of index 2 in Gal(Q/F ), we may induce the character λp
to obtain a Galois representation

ρλ : Gal(Q/F )→ GL2(Cp).

Since by hypothesis all primes above p in F are split in K, the decomposition groups
of such primes are subgroups of Gal(Q/K). Since ρλ is a direct sum of λp and its

conjugate character on Gal(Q/K), we see ρλ is locally split at all primes above p.
We now wish to construct Λ-adic representations interpolating the representa-

tions described above. Let K/F be as above, and let G denote the torsion-free part
of the Galois group of the maximal abelian pro-p extension of K which is unramified
outside p. Then by class field theory G fits into an exact sequence

0→ U →
∏
P |p

U1,P → G→ H → 0

where H is finite, U1,P denotes the Zp-free summand of the units of KP , and U
denotes the set of global units of K which are contained in U1,P for each P . The
bar on top of the U indicates that we take the closure of U in

∏
P |p U1,P .

Observe that U is a subgroup of finite index in the group of all units of K.
Furthermore, by Dirichlet’s unit theorem, the units of F form a subgroup of finite
index in the units of K. Thus U has rank d−1 as an abelian group, with d = [F : Q].
We now claim that U has Zp-rank d − 1 − δ, where δ is the defect in Leopoldt’s
conjecture for F . To see this, let U ′ ⊂ U denote U ∩ F . Then U/U ′ is finite, and
by definition of δ, the closure of U ′ in

∏
p|p U1,p has Zp-rank d − 1 − δ, where p

runs over the primes of F over p. Furthermore, since p is odd, we may decompose∏
P |p U1,P as the direct sum of ±-eigenspaces for the action of the order 2 group
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Gal(K/F ) ∼= Z/2Z. Under this identification, it is clear that
∏

p|p U1,p is precisely

the eigenspace where the action is trivial, from which the claim follows.
Since

∏
P |p U1,P has Zp-rank 2d, we may conclude that the Zp-rank of the group

G is d+ 1 + δ. Thus if we let A denote the completed group algebra O[[G]], then
we get a tautological character

λ̃ : Gal(Q/K)→ G→ A ×,

and a representation ρ̃ : Gal(Q/F ) → GL2(A ) by induction from K to F . The
representation ρ̃ is locally split at primes above p, since all such primes split from
F to K.

Now we return to the question of Λ-adic forms, as described in the previous
section. First of all, we need to give A the structure of a Λ-algebra of finite type,
and to this end, we start by constructing a map G ↪→ G. Recall that G = G′×U1,F .
Our fixed CM-type Σp determines a prime P ∗ dividing p in K, for each prime p of
F over p. Since p splits, there is an isomorphism between U1,P∗ and U1,p. Thus we
get a map ∏

p|p

U1,p
∼=
∏
p|p

U1,P∗ ⊂
∏
P |p

U1,P ,

and a map
∏

p|p U1,p → G. This map is injective, since the kernel is the intersection

of
∏

p|p U1,P∗ ⊂
∏
P |p U1,P with the global units of K, and the global units have

nonzero projection to every completion KP . Thus we get a map
∏

p|p U1,p ↪→ G. On

the other hand, it is clear that there is a map G′ → G, induced by base extension
of the maximal abelian p-unramified extension of F to the analogous object for
K. This map is injective, since p is odd and K/F is quadratic. Thus we get a
map G = G′ ×

∏
p|p U1,p → G. This map is injective since the image of G′ is

fixed by Gal(K/F ), whereas the image of the other factor is clearly not invariant.
Consideration of Zp-ranks shows that G has finite index in G, so that A is in fact
an O[[G]]-algebra of finite type.

Let λ denote a grössencharacter of K such that the restriction of λ to (K⊗R)× is
given by x 7→

∏
σ∈Σ∞

σ(x)kσ , as before. We form the p-adic avatar λp as explained
above, and consider the character

λpλ̃ : Gal(Q/K)→ A

where we understand that the ring O may have to be enlarged to include the values
of λp. Then we observe that λp · λ̃ is an A -valued character that interpolates λp,
since we may specialize to the trivial character of G to recover λp. By inducing
as before, we obtain an A -valued Galois representation which interpolates ρλ, and
which is locally split at all primes above p. Finally, one verifies readily that the
numbers λp · λ̃(Q) + λp · λ̃(Q̄), for prime q = QQ̄ split in K, etc., give rise after
appropriate renormalization to an A -valued Λ-adic form over F , and that after
specialization they coincide with the eigenvalues of a Hilbert modular form of CM
type.
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