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Abstract. This is an expository article explaining the theory of diagrams of Breuil and
Paskunas and its recent application to the construction of non-admissible irreducible mod
p representations of GL2 over unramified extensions of Qp.
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1. Introduction

Smooth complex representations of reductive p-adic groups play a pivotal role in the
global Langlands program as they appear as local factors of automorphic representations.
These local representations are admissible. Recall that a representation is smooth if every
vector has an open subgroup fixing that vector, and it is admissible if the subspace fixed
by any open subgroup is finite-dimensional. The mod p analogue of the local Langlands
correspondence makes it necessary to understand smooth mod p representations of reduc-
tive p-adic groups. Unlike complex representations, one does not have analytic methods
at one’s disposal to study smooth mod p representations of p-adic groups because they do
not admit a non-zero Fp-valued Haar measure. Diagrams give a powerful tool to construct
interesting smooth mod p representations of reductive p-adic groups.

Breuil and Paskunas used diagrams attached to certain Galois representations to con-
struct irreducible admissible supercuspidal mod p representations of GL2(Qpf ) where Qpf

is the degree f unramified extension of Qp ([BP12]). The universal supercuspidal represen-
tations, i.e., the compact inductions of weights modulo the image of the Hecke operator,
classify all irreducible admissible supercuspidal mod p representations of GL2(Qp), while
in general, their irreducible admissible quotients exhaust all admissible supercuspidal rep-
resentations of GL2(Qpf ) for f > 1 ([Bre07], Proposition 4.6). The theory of diagrams can
be used to show that, for f > 1, the universal supercuspidal representation is not of finite
length and is also not admissible ([Bre10], Theorem 3.3). This also follows from [Sch15],
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Corollary 2.21 and [Wu21], Corollary 4.5. This indicates that the mod p representation
theory of GL2(Qpf ) is more involved than that of GL2(Qp) ([Hu10], [BP12]). For some
work on the mod p representation theory of GL2 over a totally ramified extension of Qp,
see, for example, [Sch04], and for a general finite extension of Qp, see [Hen19].1

By the work of many mathematicians such as Harish-Chandra, Jacquet, Vignéras, it is
known that all smooth irreducible representations of connected reductive2 p-adic groups
over algebraically closed fields of characteristic not equal to p are admissible ([Vig96],
II §2.8). The main point is to show that all irreducible supercuspidal representations
are admissible, since a general smooth irreducible representation is a subrepresentation
of the parabolic induction of an irreducible supercuspidal representation and parabolic
induction preserves admissibility. However, it is no longer true that irreducible supercus-
pidal representations over characteristic p fields are admissible. Recently, Daniel Le con-
structed non-admissible irreducible (supercuspidal) Fp-linear representations of GL2(Qpf )
using infinite-dimensional diagrams for all f > 2, although only the case f = 3 is presented
in his paper for simplicity ([Le19]). Applying Le’s method to a diagram attached to a split
reducible Galois representation, the authors have constructed non-admissible irreducible
representations of GL2(Qp2) ([GS20]).

This article gives an expository treatment of the theory of diagrams of Breuil and
Paskunas, and provides a proof of Le’s construction of non-admissible irreducible mod
p representations of GL2(Qpf ) for all f > 2. It is organized as follows. In Section 2, we
introduce (finite dimensional) diagrams and describe how they give rise to smooth admis-
sible representations of GL2 over p-adic fields. Section 3 focuses on diagrams attached to
Galois representations and on the irreducible admissible supercuspidal representations of
GL2(Qpf ) that they give rise to. Finally, we prove Le’s theorem for all f > 2 in Section 4.

1.1. Acknowledgments. We acknowledge support of the Department of Atomic Energy,
Government of India, under project number 12-R&D-TFR-5.01-0500. We thank the orga-
nizers of the ICTS (International Centre for Theoretical Sciences) program on “Perfectoid
spaces” (Code: ICTS/perfectoid2019/09) for the discussion meeting on “p-adic automor-
phic forms and perfectoid spaces”. The research talks on mod p representation theory of
p-adic groups during the meeting provided an impetus to our joint work mentioned in this
article.

1.2. Notation. Let p > 2 be a prime number and Qp be the field of p-adic numbers. Let
Qpf denote the unramified extension of Qp of degree f with ring of integers Zpf . The

residue field of Qpf is the finite field Fpf with pf elements. Fix an algebraic closure Fp of

Fp and an embedding Fpf ↪→ Fp.
For an arbitrary but fixed f , let G = GL2(Qpf ), K = GL2(Zpf ), and Γ = GL2(Fpf ).

Let B and U be the subgroups of Γ consisting of the upper triangular matrices and the
upper triangular unipotent matrices respectively. Let I and I1 be the preimages of B

1The words supersingular and supercuspidal are used interchangeably in the literature for mod p rep-
resentations. These two a priori different notions are now known to be equivalent ([AHHV17]).

2The reductive hypothesis is necessary, see [Hel90].
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and U respectively under the natural surjection K � Γ. The subgroups I and I1 of
K are called the Iwahori and the pro-p Iwahori subgroup of K respectively. Let Kn

denote the n-th principal congruence subgroup of K, i.e., the kernel of the reduction map
K −→ GL2(Zpf/pnZpf ) modulo pn for n ≥ 1. Write N for the normalizer of I (and of I1)

in G. Then N is generated by I, the center Z of G and by the element Π =
(

0 1
p 0

)
.

Unless stated otherwise, all representations considered in this paper are on Fp-vector
spaces and are sometimes referred to as mod p representations. A weight is a smooth
irreducible representation of K. The K-action on such a representation factors through
Γ and thus a weight is an irreducible representation of Γ ([Bre07], Lemma 2.14). For a
character χ of I, χs denotes its Π-conjugate sending g in I to χ(ΠgΠ−1). Given a weight
σ, the subspace σI1 of its I1-invariants has dimension 1. We denote the corresponding
smooth character of I afforded by the space σI1 by χσ. If χσ 6= χsσ, then there exists a
unique weight σs such that χσs = χsσ ([Pas04], Theorem 3.1.1). For an I-representation V
and an I-character χ, we write V χ for the χ-isotypic part of V .

2. Diagrams and the existence theorem

Diagrams were introduced by Paskunas in [Pas04] to construct smooth admissible rep-
resentations of G.

Definition 2.1. A diagram is a triple (D0, D1, r) where D0 is a smooth representation of
KZ, D1 is a smooth representation of N , and r : D1 −→ D0 is an IZ-equivariant map.
A diagram (D0, D1, r) is called a basic diagram if p acts trivially on D0 and D1, and r
induces an isomorphism D1

∼−→ DI1
0 of IZ-representations.

The idea is to use the data of a basic diagram to construct a space Ω admitting actions
of both KZ and N which agree on IZ = KZ ∩N . Let G0 be the subgroup of G consisting
of matrices whose determinant is a p-adic unit. Since G0 is an amalgamated product of
K and ΠKΠ−1, and G = G0 o ΠZ, the actions of KZ and N on Ω glue together to give a
G-action on Ω. This G-action is unique because KZ and N generate the group G ([Bre07],
Theorem 3.3 and Corollary 3.4).

A way to construct Ω is to use injective envelopes of finite-dimensional representa-
tions of finite groups. An injective envelope of a representation is the “smallest” injective
object containing the representation ([Bre07], Definition 5.12). If the subspace DK1

0 of
K1-invariants of D0 is finite-dimensional, then the K-socle socKD0 of D0, i.e., the maxi-
mal semi-simple K-subrepresentation of D0, is finite-dimensional, and therefore the direct
limit lim−→n

injK/Kn(socKD0) of finite-dimensional injective envelopes exists in the category

of smooth K-representations. By [Bre07], Proposition 5.17, this direct limit is the smooth
injective envelope injK(socKD0) of D0.

Let Ω := injK(socKD0) be equipped with the KZ-action such that p acts trivially. The
smooth injective I-envelope injID1 of D1 appears as an I-direct summand of Ω via the
IZ-equivariant map r. There is a unique N -action on injID1 compatible with that of I
and compatible with the action of N on D1 ([Bre07], Corollary 6.7). Let e denote the
projection of Ω onto injID1. By [BP12], Lemma 9.6, there is a non-canonical N -action on
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(1− e)(Ω) extending the given I-action. This gives an N -action on Ω whose restriction to
IZ is compatible with the action coming from KZ on Ω. Consequently, there is a G-action
on Ω as discussed two paragraphs above.

Let π be the G-representation generated by D0 inside Ω. Then, we see that

socKD0 ⊆ socKπ ⊆ socK(injK(socKD0)) = socKD0

so that equality holds throughout.
We summarize the above discussion in the following theorem ([Bre07], Theorem 5.10).

Theorem 2.2 (The existence theorem). Let (D0, D1, r) be a basic diagram such that D0

is finite-dimensional and K1 acts trivially on D0. Then there exists a smooth admissible
representation π of G such that

(1) (πK1 , πI1 , can) contains (D0, D1, r), where can is the canonical inclusion,
(2) π is generated by D0 as a G-representation,
(3) socKπ = socKD0.

Note that the representation π in the theorem above is admissible because πKn ⊆
(injK(socKD0))Kn = injK/Kn(socKD0) which is finite-dimensional (cf. [Pas04], Lemma
6.2.4).

We remark that the discussion in this section, i.e., the notion of a basic diagram and
the existence theorem, works for G = GL2(F ) for any finite extension F of Qp.

Example 2.3. Let G = GL2(Qp) and σ be a weight. Take D0 = σ ⊕ σs and D1 = DI1
0 =

χσ ⊕ χsσ. Let Π map a basis vector of the underlying vector space of χσ to that of χsσ. By
letting p act trivially on D0 and D1, we get a basic diagram (D0, D1, can) where can is
the canonical injection. The existence theorem applied to this diagram gives rise to a G-
representation π that is irreducible and supercuspidal, and is uniquely determined by the
diagram (D0, D1, can) ([Bre07], Lemma 5.2). In fact, one obtains all irreducible admissible
supercuspidal representations of G up to a smooth twist in this way as σ varies. Under
the mod p local Langlands correspondence for GL2 over Qp, π is mapped to a continuous

2-dimensional irreducible representation of Gal(Qp/Qp) whose restriction to the inertia
subgroup contains the information of socKπ = socKD0 = σ ⊕ σs.

3. Diagrams attached to Galois representations

Let f > 2 for the rest of the article.

3.1. Diamond diagrams. Let ρ : Gal(Qp/Qpf ) −→ GL2(Fp) be a continuous irreducible
generic Galois representation ([BP12], Definition 11.7). In [BDJ10], Buzzard, Diamond
and Jarvis associate to ρ a finite set D(ρ) of distinct weights anticipating that it would
describe the K-socle of the supercuspidal representation of G corresponding to ρ under
the conjectural mod p local Langlands correspondence for GL2 over Qpf .

3 As we shall
see, the set D(ρ) can indeed be used to construct irreducible supercuspidal representations

3They associate a finite set of weights to any continuous semi-simple generic Galois representation ρ.
We stick to irreducible ρ in this exposition. However, see Remark 4.5.
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with K-socle described by D(ρ). However, it turns out that there are infinitely many such
representations up to isomorphism. The mod p local Langlands correspondence for GL2

over finite extensions of Qp thus still remains puzzling.
The set D(ρ) has cardinality 2f . By elementary representation theoretic arguments,

there exists a unique finite dimensional Fp-linear representation D0(ρ) of Γ whose Γ-socle
equals

⊕
σ∈D(ρ) σ, and is maximal with respect to the property that each σ ∈ D(ρ) occurs

exactly once in D0(ρ) as a Jordan–Hölder factor. Further, there is an isomorphism of
Γ-representations

D0(ρ) ∼=
⊕
σ∈D(ρ)

D0,σ(ρ)

with socΓD0,σ(ρ) = σ ([BP12], Proposition 13.1). Viewing D0(ρ) as a K-representation,
let us denote by D1(ρ) the I-representation D0(ρ)I1 and by D1,σ(ρ) the I-representation
D0,σ(ρ)I1 . If an I-character χ appears in D1(ρ) then so does χs.

While for any finite set of weights, there exists a finite-dimensional Γ-representation D0

satisfying the same properties listed above, the properties of D0(ρ) and D1(ρ) specific to
the set of weights D(ρ) are summarized below.

Proposition 3.1.

(1) The Jordan–Hölder factors of D0(ρ) are multiplicity free.
(2) D1(ρ) is a multiplicity free semi-simple I-representation of dimension 3f − 1 and

thus

D1(ρ) =
⊕

I−character χ

χ⊕ χs.

Proof. See [BP12], Corollary 13.5, Corollary 13.6, Lemma 14.1 and Proposition 14.7. �

Proposition 3.1 allows us to define an action of Π on D1(ρ) by mapping I-characters to
their Π-conjugates, thereby giving a family of basic diagrams D(ρ, r) := (D0(ρ), D1(ρ), r)
parameterized by IZ-equivariant injections r : D1(ρ) ↪→ D0(ρ). The diagrams D(ρ, r)
attached to Galois representations ρ in this way are called Diamond diagrams in [BP12].

3.2. The map δ. We now introduce the map δ : D(ρ) −→ D(ρ) which governs the dy-
namics of the Π-action on D(ρ, r) and plays an important role in proving the irreducibility
of representations of G coming from D(ρ, r). There is a natural identification of the set
D(ρ) of weights with the set of subsets of Z/fZ = {0, 1, . . . , f − 1} ([BP12], §11). Under
this identification, the map δ is defined as follows:

Definition 3.2. For J ⊆ Z/fZ,

δ(J) :=

{
{j − 1 | j ∈ J} ∪ {0} if 1 /∈ J
{j − 1 | j ∈ J} \ {0} if 1 ∈ J

with the convention −1 = f − 1.

Note that δ is a bijection and partitions the set D(ρ) into δ-orbits.



6 EKNATH GHATE AND MIHIR SHETH

Example 3.3. We list the four δ-orbits for f = 5.

∆1 =
{
φ 7→ {0} 7→ {0, 4} 7→ {0, 3, 4} 7→ {0, 2, 3, 4} 7→ {0, 1, 2, 3, 4} 7→ {1, 2, 3, 4} 7→
{1, 2, 3} 7→ {1, 2} 7→ {1}

}
,

∆2 =
{
{2} 7→ {0, 1} 7→ {4} 7→ {0, 3} 7→ {0, 2, 4} 7→ {0, 1, 3, 4} 7→ {2, 3, 4} 7→
{0, 1, 2, 3} 7→ {1, 2, 4} 7→ {1, 3}

}
,

∆3 =
{
{3} 7→ {0, 2} 7→ {0, 1, 4} 7→ {3, 4} 7→ {0, 2, 3} 7→ {0, 1, 2, 4} 7→ {1, 3, 4} 7→
{2, 3} 7→ {0, 1, 2} 7→ {1, 4}

}
,

∆4 =
{
{2, 4} 7→ {0, 1, 3}

}
.

The map δ has a nice reinterpretation. Identify the set of subsets of Z/fZ as the set of
binary numbers (sequences of 0s and 1s) of length f . The subset J ⊆ Z/fZ corresponds
to the binary number a1a2 . . . af under the rule aj = 1 if and only if j ∈ J , where we make
the identification f = 0. Under this identification, δ is the map that moves the first digit
of a binary number to the end and changes its parity:

δ(a1a2 . . . af ) = a2a3 . . . af (a1 + 1) with the convention 2 = 0.

Example 3.4. Let f = 5. The subset {0, 1, 3} corresponds to the binary number 10101
and δ(10101) = 01010 which corresponds to {2, 4}.

It follows from the definition that

δ2f (a1a2 . . . af ) = (a1 + 2)(a2 + 2) . . . (af + 2) = a1a2 . . . af .

Hence the order of δ is at most 2f . In fact the order of δ equals 2f as one easily sees by
considering the δ-orbit of the empty set (= f zeros). It follows that the size of any δ-orbit
divides 2f . Observe that δ changes the size of a subset J by ±1. So any δ-orbit contains
an even number of subsets. Therefore, the size of a δ-orbit is 2f ′ for some f ′ dividing f .
Using the reinterpretation of δ, we can prove the following result which is of independent
interest.

Lemma 3.5. The set D(ρ) has a δ-orbit of size 2f ′ if and only if f
f ′

is odd.

Proof. (⇒) Suppose d := f
f ′

is even. Let a = a1a2 . . . af belongs to a δ-orbit of size 2f ′.
We write

a = a1a2 . . . af ′af ′+1af ′+2 . . . a2f ′ . . . a(d−1)f ′+1a(d−1)f ′+2 . . . af .

Then

δf
′
(a) = af ′+1af ′+2 . . . a2f ′a2f ′+1a2f ′+2 . . . a3f ′ . . . (a1 + 1)(a2 + 1) . . . (af ′ + 1).

Since aj and δf
′
(a)j must have opposite parity for all 1 ≤ j ≤ f and d is even by assump-

tion, we get a1 = a(d−2)f ′+1. Comparing the parity of the last block of f ′ digits in a and

δf
′
(a), we also have a(d−1)f ′+1 = a1. This implies that the first digit a(d−2)f ′+1 of the second

last block of f ′ digits in a is equal to the first digit a(d−1)f ′+1 of the second last block of f ′

digits in δf
′
(a), a contradiction.
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(⇐) Let a be the f -digit binary number starting with f ′ 0s, followed by f ′ 1s, followed
by f ′ 0s, and so on. The number a ends with f ′ 0s as f

f ′
is odd. Clearly δf

′
(a) flips the

parity of the digits of a, showing that the δ-orbit of a has size 2f ′.
�

If σ ∈ D(ρ) corresponds to a subset J , let δ(σ) denote the weight corresponding to the
subset δ(J). The map δ is characterized by the following property.

Lemma 3.6. For σ ∈ D(ρ), δ(σ) ∈ D(ρ) is the unique weight such that σs is a Jordan–
Hölder factor of D0,δ(σ)(ρ).

Proof. See [BP12], Lemma 15.2. �

Using the combinatorics of the Π-action dynamics on D(ρ, r) described by δ, one obtains
the following theorem.

Theorem 3.7. The basic diagram D(ρ, r) is indecomposable, i.e., the KZ-representation
D0(ρ) does not have a proper non-zero KZ-direct summand X such that XI1 is stable
under the action of Π.

Proof. See [BP12], Theorem 15.4. �

3.3. Irreducible admissible supercuspidal representations. Let τ(ρ, r) be a smooth
admissible representation of G given by the existence theorem applied to a Diamond dia-
gram D(ρ, r). We briefly sketch the argument of the irreducibility of τ(ρ, r) using Theorem
3.7. Let τ ′ ⊆ τ(ρ, r) be a non-zero subrepresentation. Since 0 6= socKτ

′ ⊆ socKτ(ρ, r) =
socKD0(ρ), we have σ ∈ socKτ

′ for some σ ∈ D(ρ). Thus, D1(ρ)χσ ⊆ τ ′. As τ ′ is stable un-
der the Π-action, we have D1(ρ)χ

s
σ ⊆ τ ′. By Lemma 3.6, we see that D1,δ(σ)(ρ)χ

s
σ ⊆ τ ′. As

τ ′ is clearly a K-representation, it follows that τ ′ contains the unique K-subrepresentation
I(δ(σ), σs) of D0,δ(σ)(ρ) with quotient σs. It is a non-trivial fact that the embedding
I(δ(σ), σs) ↪→ τ ′ extends uniquely to an embedding D0,δ(σ)(ρ) ↪→ τ ′. This requires delicate
analysis of non-split extensions between weights (cf. [BP12], §17 and 18). Repeating the
argument for δ(σ), we get D0,δ2(σ)(ρ) ⊆ τ ′ and so on. Since the map δ has finite order, we
get D0,σ(ρ) ⊆ τ ′. It then follows that⊕

σ∈socKτ ′

D0,σ(ρ) = τ ′ ∩D0(ρ).

Since the space of I1-invariants of the right hand side in the above is stable under the
action of Π, the same is true for the left hand side which is a non-zero direct summand of
D0(ρ). This contradicts Theorem 3.7 unless τ ′ = τ(ρ, r). Hence τ(ρ, r) is irreducible.

As socKτ(ρ, r) = socKD0(ρ), the number of weights in the K-socle of τ(ρ, r) is equal to
the size of D(ρ) which is 2f > 2. Any subquotient of a principal series representation of
G has at most two weights in its K-socle ([Bre07], Remark 4.9). It follows that τ(ρ, r) is
supercuspidal.

Finally, we remark that if D(ρ, r) and D(ρ, r′) are two non-isomorphic basic diagrams,
then any two smooth admissible G-representations τ(ρ, r) and τ(ρ, r′) are non-isomorphic
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([BP12], Theorem 19.8 (ii)). In fact, even the representation τ(ρ, r) is not uniquely deter-
mined by D(ρ, r) ([Hu10]).

3.4. Extra characters. Let us now fix a diagram D = (D0, D1, r) in the family {D(ρ, r)}r
for the rest of the article. We have D0 =

⊕
σ∈D(ρ) D0,σ. Write D1,σ = (D0,σ)I1 . For any

δ-orbit ∆, we write

D0,∆ :=
⊕
σ∈∆

D0,σ and D1,∆ := (D0,∆)I1 .

We call an I-character χ ⊂ D1 extra if χ 6= χσ and χ 6= χsσ for any σ ∈ D(ρ). There
are a total of 3f − 1 characters in D1 (Proposition 3.1). Of these at most 2f+1 characters
correspond to the socle weights and their Π-conjugates. Therefore, the set of extra char-
acters is non-empty because 3f − 1 > 2f+1 as f > 2. We remark that Lemma 3.6 together
with Theorem 3.7 imply that for a given δ-orbit ∆, there is an extra character χ such that
(D1,∆)χ 6= 0.

Let n be the number of δ-orbits of D(ρ). As the set D(ρ) has cardinality 2f and f > 2, we
have n > 1. The existence of the set of extra characters established in the following lemma
is used crucially by Le in his construction of non-admissible irreducible G-representations.

Lemma 3.8. There exists a set S of 2(n− 1) extra characters closed under Π-conjugation
such that given a δ-orbit ∆, there is a χ ∈ S satisfying (D1,∆)χ 6= 0.

Proof. Choose any δ-orbit, call it ∆1, and pick an extra character, say χ1, such that

(D1,∆1)
χ1 6= 0 and

( ⊕
σ∈D(ρ)\∆1

D1,σ

)χs1 6= 0.

The existence of such a χ1 is guaranteed by Theorem 3.7. Call the orbit ∆2 for which
(D1,∆2)

χs1 6= 0. Using Theorem 3.7 again, there is an extra character χ2 such that(
D1,∆1

⊕
D1,∆2

)χ2 6= 0 and
( ⊕
σ∈D(ρ)\(∆1t∆2)

D1,σ

)χs2 6= 0.

Note that χ2 /∈ {χ1, χ
s
1}. Call the orbit ∆3 for which (D1,∆3)

χs2 6= 0. Proceeding in this way,
we find n δ-orbits ∆1,∆2, . . . ,∆n of D(ρ) and (n−1) extra characters χ1, χ2, . . . , χn−1 such
that (D1,∆j+1

)χ
s
j 6= 0 for all 1 ≤ j ≤ n− 1. Take S = {χ1, χ

s
1, χ2, χ

s
2, . . . , χn−1, χ

s
n−1}. �

4. Infinite-dimensional diagrams and non-admissible representations

We now explain Le’s method of constructing infinite-dimensional diagrams from Di-
amond diagrams to produce non-admissible irreducible representations. Let D0(∞) :=⊕

i∈ZD0(i) be the smooth KZ-representation with componentwise KZ-action, where there
is a fixed isomorphism D0(i) ∼= D0 of KZ-representations for every i ∈ Z. Denote the nat-
ural inclusion D0

∼−→ D0(i) ↪→ D0(∞) by ιi, and write vi := ιi(v) for v ∈ D0 for every
i ∈ Z. Let D1(∞) := D0(∞)I1 .

We make use of the δ-orbits and the set S of extra characters from the proof of Lemma
3.8 to define a Π-action on D1(∞) which is different from the componentwise Π-action.
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Pick a pair of extra characters {ψ, ψs} not belonging to the set S. To justify the existence
of such a pair, note that it is enough to show the inequality 2(n− 1) < 3f − 1− 2f+1 for
all f > 2. Since the size of any δ-orbit is even, we have n ≤ 2f−1. Thus 2(n− 1) ≤ 2f − 2.
It is now easy to check that 2f − 2 < 3f − 1− 2f+1 for all f > 2.

Let us choose a weight σk ∈ ∆k for all 1 ≤ k ≤ n and let λ = (λi) ∈
∏

i∈Z Fp
×

. For all
integers i ∈ Z, define

Πvi :=


(Πv)i if v ∈ Dχ

1 for χ /∈ {χσ1 , χsσ1 , . . . , χσn , χ
s
σn , ψ, ψ

s},
(Πv)i+1 if v ∈ Dχ

1 for χ ∈ {χσ1 , . . . , χσn−1},
(Πv)i−1 if v ∈ Dχσn

1 ,

λi(Πv)i if v ∈ Dψ
1 .

This uniquely determines a smooth N -action on D1(∞) such that p = Π2 acts trivially
on it. Thus we get a basic diagram D(λ) := (D0(∞), D1(∞), can) with the above actions
where can is the canonical inclusion D1(∞) ↪→ D0(∞).

Theorem 4.1 (Le). There exists a smooth representation π of G such that

(1) (π|KZ , π|N , id) contains D(λ),
(2) π is generated by D0(∞) as a G-representation, and
(3) socKπ = socKD0(∞).

Proof. The idea is to consider the infinite direct sum
⊕

i∈Z Ω(i) where each Ω(i) is iso-
morphic to the smooth injective K-envelope Ω of D0, and equip this direct sum with an
N -action extending the N -action on D1(∞) defined above. The proof is same as that of
[Le19], Theorem 3.2, presented for f = 3. �

Theorem 4.2 (Le). If λi 6= λ0 for all i 6= 0, then any smooth representation π of G
satisfying the properties (1), (2), and (3) of Theorem 4.1 is irreducible and non-admissible.

Proof. Let π′ ⊆ π be a non-zero subrepresentation of G. By property (3), we have
HomK(σ, π′) 6= 0 for some σ ∈ socKD0. Considering that σ could be embedded diago-
nally in π′, there exists a non-zero (ci) ∈

⊕
i∈Z Fp such that(∑

i

ciιi
)
(σ) ⊂ π′,

or equivalently (∑
i

ciιi
)
(D0,σ) ∩ π′ 6= 0,

because the K-socle of
(∑

i ciιi
)
(D0,σ) is

(∑
i ciιi

)
(σ), which is irreducible.

We claim that

(4.3)
(∑

i

ciιi+j
)
(D0) ⊂ π′ for all j ∈ Z.

We prove the claim (4.3) assuming σ ∈ ∆n. The cases where σ is in an orbit other than
∆n are proved similarly. If σ ∈ ∆n, then σ is in the same δ-orbit ∆n as σn is. So it follows
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from the discussion in Subsection 3.3 that(∑
i

ciιi
)
(σ) ⊂ π′ =⇒

(∑
i

ciιi
)
(σn) ⊂ π′.

Note that the indices i are unchanged since the action of Π on ιi(D
χσ
1 ) fixes the index i of

the embedding ιi for all σ ∈ ∆n except σn. Since the Π-action takes ιi(D
χσn
1 ) to ιi−1(D

χsσn
1 ),

we have (∑
i

ciιi−1

)
(D0,δ(σn)) ⊂ π′.

Therefore, again from the discussion in Subsection 3.3, we get that(∑
i

ciιi−1

)
(D0,∆n) ⊂ π′.

Continuing in this fashion, we obtain(∑
i

ciιi+j
)
(D0,∆n) ⊂ π′ for all j < 0.

Making use of the extra character χsn−1 in the proof of Lemma 3.8, we have in particular,(∑
i

ciιi+j
)
(D

χsn−1

1 ) ⊂ π′ for all j < 0.

Therefore, (∑
i

ciιi+j
)
(D

χn−1

1 ) ⊂ π′ for all j < 0.

We know from the proof of Lemma 3.8 that (D1,∆k
)χn−1 6= 0 for some 1 ≤ k < n. Since

the Π-action takes ιi(D
χσk
1 ) to ιi+1(D

χsσk
1 ), we obtain(∑

i

ciιi+j
)
(D0,∆k

) ⊂ π′ for all j ∈ Z for some 1 ≤ k < n.

Making use of the extra character χsk−1, by the same arguments as above, we obtain(∑
i

ciιi+j
)
(D0,∆k′

) ⊂ π′ for all j ∈ Z for some 1 ≤ k′ < k.

Continuing in this fashion, we finally get that(∑
i

ciιi+j
)
(D0,∆1) ⊂ π′ for all j ∈ Z.

Recall from the proof of Lemma 3.8 that

(4.4)
( l⊕
m=1

D1,∆m

)χl 6= 0 and (D1,∆l+1
)χ

s
l 6= 0 for all 1 ≤ l ≤ n− 1.

Using (4.4) with l = 1 we get(∑
i

ciιi+j
)
((D1,∆1)

χ1) ⊂ π′ and
(∑

i

ciιi+j
)
((D1,∆2)

χs1) ⊂ π′ for all j ∈ Z.
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This implies (∑
i

ciιi+j
)
(D0,∆2) ⊂ π for all j ∈ Z.

Similarly, using (4.4) successively for l = 2, . . . , n− 1, we obtain(∑
i

ciιi+j
)
(D0,∆r) ⊂ π′ for all j ∈ Z and for all 1 ≤ r ≤ n.

Hence
(∑

i ciιi+j
)
(D0) ⊂ π′ for all j ∈ Z as desired.

For (di) ∈
⊕

i∈Z Fp, let #(di) denote the number of non-zero di’s. Among all the non-zero

elements (ci) of
⊕

i∈Z Fp for which
(∑

i ciιi
)
(D0) ⊂ π′, we pick one with #(ci) minimal.

We may also assume that c0 6= 0 using (4.3). We now show that #(ci) = 1. Assume to the

contrary that #(ci) > 1. Since
(∑

i ciιi
)
(Dψ

1 ) ⊂ π′ and π′ is stable under the Π-action, we
have (∑

i

λiciιi
)
(Dψs

1 ) ⊂ π′.

Since
(∑

i λ0ciιi
)
(Dψs

1 ) is also clearly in π′, subtracting it from the above, we get(∑
i

(λi − λ0)ciιi
)
(Dψs

1 ) ⊂ π′.

Let ν ∈ D(ρ) be the weight for which Dψs

1,ν 6= 0. Writing (c′i) := ((λi − λ0)ci), we see that(∑
i

c′iιi
)
(D0,ν) ∩ π′ 6= 0.

Following the same arguments as in the previous paragraph proving the claim (4.3), we
get that

(∑
i c
′
iιi
)
(D0) ⊂ π′. However, the hypothesis λi 6= λ0 for all i 6= 0, and the

assumption #(ci) > 1 imply that (c′i) is non-zero and #(c′i) = #(ci)− 1 contradicting the
minimality of #(ci). Therefore, we have c0ι0(D0) ⊂ π′. So ι0(D0) ⊂ π′. Using (4.3) again,
we get that

⊕
j∈Z ιj(D0) = D0(∞) ⊂ π′. By property (2) of Theorem 4.1, we have π′ = π.

The non-admissibility of π is clear because πK1 ⊇ socKπ and socKπ is not finite-
dimensional by property (3) of Theorem 4.1. �

Remark 4.5. The strategy to construct non-admissible irreducible representations ex-
plained above fails for the group GL2(Qp2) because of the absence of extra characters in
D1(ρ) when f = 2. However, it turns out that a Diamond diagram attached to a reducible
split mod p Galois representation of Gal(Qp/Qp2) does have enough extra characters to
employ Le’s strategy to produce non-admissible irreducible representations of GL2(Qp2)
(cf. [GS20]).

Remark 4.6. Note that the smooth irreducible non-admissible representations π in The-
orem 4.2 and in [GS20], Theorem 3.2 have a central character because the action of p on π
is trivial. By [BL94], Theorem 33 (1), π is a quotient of c-IndGKZσ/(T − λ)(c-IndGKZσ) for
some σ ∈ socKπ and λ ∈ Fp. If λ 6= 0, by [BL94], Corollary 31, π is the unique irreducible
quotient and by [BL94], Lemma 28 (1) and Theorem 33, all such quotients are admissible.
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It follows that λ = 0 and π is a quotient of c-IndGKZσ/T (c-IndGKZσ), i.e., π is supercuspi-
dal. Since quotients of admissible representations are admissible, by [Hen09], Theorem 1,
we deduce that the universal supercuspidal representation c-IndGKZσ/T (c-IndGKZσ) is not
admissible. This was already known, as mentioned in the introduction.
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