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Abstract

We formulate a question regarding uniform versions of “large Galois
image properties” for modular abelian varieties of higher dimension, gener-
alizing the well-known case of elliptic curves. We then answer our question
affirmatively in the exceptional image case, and provide lower estimates
for uniform bounds in the remaining cases.
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1 Introduction

Let A be a simple abelian variety of dimension d over Q, without complex
multiplication (CM) over Q. The images of the Galois representations

ρA,p : GQ := Gal(Q/Q)→ GL(Tp(A))

defined by the p-adic Tate modules of A, for p running through the set of
primes, are expected to be “generically big”. The most famous instance of such
a statement is probably Serre’s result on elliptic curves [31], which shows that,
given a non-CM elliptic curve A (over any number field) and large enough p
relative to A, the image ρA,p(GQ) is all of GL(Tp(A)) ' GL2(Zp).

When A is a higher dimensional abelian variety, endowed with a polariza-
tion e, the existence of the Weil pairing implies that the image of ρA,p lands
in GSp(Tp(A), e). For A such that EndQ(A)⊗Q = Q Serre partly extended his
result for elliptic curves: when d is odd, or d = 2 or 6, he showed that ρA,p(GQ)
equals GSp2d(Zp), for p large enough relative to A (see [33], Théorème 3).

The orthogonal situation, that is, when A has as many Q-endomorphisms as
possible, has also been worked out. Recall a (simple) abelian variety A over Q
is said to be of GL2-type if EndQ(A)⊗Q is a number field E of (maximal)
degree [E : Q] = dim(A). A result of Ribet (cf. [28], Theorem 4.4) implies that
this is equivalent to A being modular, i.e., a quotient of some modular jacobian
J1(N). This result was conditional on Serre’s modularity conjecture which has
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since been proved by Khare-Wintenberger and Kisin (see [14] and the references
therein). Then, as the name indicates, the image of the representation

ρA,p : GQ → GL(Tp(A))

lands in GL2(E ⊗ Qp), and the image inside this last group is still expected
to be “generically big”. Indeed, the unavoidable constraint on the image given
by the prescribed form of the determinant was shown by Momose, Papier and
Ribet to be, asymptotically, the main one:

Theorem 1.1 ([25], Theorem 3.1) Let f =
∑
an(f)qn be a non-CM new-

form of level N ≥ 1 and weight k ≥ 2. Let E = Q(an(f)) be the number
field generated by its Fourier coefficients. There are a subfield F of E, the
fixed field of the automorphisms of E corresponding to the extra twists of f
(so that F = E when f has no extra twists), and an abelian number field
K, cut out by the Dirichlet characters corresponding to the extra twists of
f , such that the following holds: for large enough p relative to f , the im-
age of the restriction to GK := Gal(Q/K) of the Shimura-Deligne represen-
tation ρf,p : GQ → GL2(OE ⊗Z Zp) lands in GL2(OF ⊗ Zp), and is equal to

{u ∈ GL2(OF ⊗Z Zp) such that det(u) ∈ Z∗(k−1)
p }.

We content ourselves here with this somewhat imprecise statement in order to
avoid recalling too many definitions, and we further note that [25], Theorem
4.1 describes the image ρf,p(GQ) completely. Specializing the above result in
weight k = 2 yields the desired “big image result” for simple non-CM abelian
varieties A of GL2-type.

Now, a natural question is whether or not there are uniform versions for
these large image theorems. Even more, one might first ask what are the correct
questions in the abelian varieties setting. Going back again to the case of elliptic
curves, Serre asked if one can find an absolute constant C (that is, independent
of the non-CM rational elliptic curve A) such that, for p > C, the representation
ρA,p (or, equivalently, the residual representation ρA,p) is surjective (see [31],
p. 299 or [32], p. 199).

The following classification due to Dickson on finite subgroups of PGL2(Fp)
(cf. e.g., [10], Satz 8.27) allows one to break up Serre’s question further: up
to conjugacy every finite subgroup H of PGL2(Fp), for p an odd prime, is
isomorphic to either:

(a) an exceptional group, that is a permutation group isomorphic to A4, S4

or A5;

(b) a Borel subgroup (that is, a finite subgroup of upper triangular matrices);

(c) a dihedral group Dr, for some r ∈ N not divisible by p;

(d) PSL2(Fpr ) or PGL2(Fpr ), for some r ∈ N.
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For elliptic curves A, when considering the image of ρA,p ⊂ GL2(Fp) (and not its
projectivization PρA,p), it is natural to divide case (c) into two further subcases,
depending on whether the image belongs to the normalizer of a split or nonsplit
Cartan subgroup of GL2(Fp). More generally, this distinction occurs as soon
as there is a natural finite field of coefficients Fq for our representation (as will
be the case for us): Cartan subgroups in the general case are by definition
maximal subtori of GLn(Fq), and when n = 2 they can only be either split
(that is, isomorphic to F∗q × F∗q) or nonsplit (' F∗q2).

Serre’s question for elliptic curves therefore boils down to asking for absolute
lower bounds on primes p such that, for p larger that these bounds, the projective
images of ρA,p, as A varies over all non-CM elliptic curves over Q, are not
contained in groups of the first three types above: namely, exceptional, Borel,
or normalizer of split or nonsplit Cartan subgroups. The exceptional cases (a)
are relatively easy to rule out for elliptic curves over arbitrary number fields
(see [17], p. 36). For elliptic curves over Q it is known that such absolute
upper bounds also exist in cases (b) ([18]), and (c) when the Cartan group is
split ([2]), but we still do not know if there are rational non-CM elliptic curves
with normalizer of nonsplit Cartan structure modulo arbitrarily large p.

For a higher-dimensional A which is (and, from this point on, will always be)
a (simple) abelian variety of GL2-type over Q without complex multiplication,
set E := EndQ(A)⊗Q, and consider the residual representation

ρA,P := ρA,p mod P : GQ → GL(A[P]) = GL2(Fpn), (1)

for P a prime of E above p, with residue field Fpn = FP := OE,P/P. Using
Dickson’s theorem, we will say a simple and non-CM abelian variety A of GL2-
type has big image mod p if the projectivization PρA,P of the above ρA,P con-
tains PSL2(Fp) for all primes P of E of characteristic p. Theorem 1.1 shows
that each A as above has big image mod p, for p large enough relative to A.

Can this dependence on A be removed? Keeping in mind that even the
simplest situation of rational elliptic curves still remains not completely under-
stood, we might nevertheless consider the general case, and the motivation for
this note is a very preliminary study of what could happen for higher dimen-
sional abelian varieties of GL2-type. In this setting, as far as we are aware,
virtually nothing is known regarding uniform results. As we will see below, if
uniform bounds are to be expected they must at least depend on the dimension
d of the abelian varieties. We feel the most natural statement is the following.

Question 1.2 Does there exist a function B(d) for d ∈ N such that, if A is a
rational simple non-CM abelian variety of GL2-type with dimension less than
or equal to d, then for all places P of E := EndQ(A)⊗Q, the image of PρA,P
contains PSL2(Fp) if char(P) =: p > B(d)?

As above, it helps to divide Question 1.2 according to Dickson’s theorem. Here,
as alluded to above, we speak of split or nonsplit Cartan depending on whether
the implicit maximal torus is split or nonsplit over the base field FP. In the
sequel we write B for “Borel”, E for “exceptional”, SP for “normalizer of split
Cartan” and NSP for “normalizer of non-split Cartan”.
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Question 1.3 For ∗ = B,E,SP or NSP, does there exist a function B∗(d)
for d ∈ N, such that if A is a simple rational non-CM abelian variety of GL2-
type with dimension less than or equal to d, then PρA,P cannot have image
contained in a subgroup of type ∗ as soon as char(P) =: p > B∗(d)?

In cases SP and NSP, these questions can be reinterpreted in terms of Hecke
algebras (see Remark 4.4 in the last section).

In this paper we first give an effective positive answer to Question 1.3 in the
easiest case of exceptional groups (we have not tried to obtain sharp bounds
here). We then give negative results (i.e., lower bounds for the expected B∗(d))
in the three other cases. The Borel case can be deduced in a straightforward
way from Ribet’s famous work [23] on the converse to Herbrand’s criterion. For
the dihedral case, we estimate how other classical results of Ribet on level rais-
ing ([24], or [26] Theorem 7.3) can be used. We thus produce families of varieties
with controlled dimension. But there we also exhibit a more efficient technique:
we show that Hida theory gives further information towards Question 1.3 in the
dihedral case. This last technique gives sharper results (than level raising) on
the quantitative side, but it does not seem to distinguish easily between the
split and nonsplit subcases.

Putting all this together yields the following theorem.

Theorem 1.4 We have:

(a) (Exceptional subgroups). Assume A is a rational simple abelian vari-
ety of GL2-type without complex multiplication of dimension d, endowed
with a Galois structure of exceptional type modulo some prime p. Then p
is bounded above in terms of d, and more precisely, for d large enough one
has

p ≤ d2 · 34d.

(b) (Borel subgroups). There is an infinite sequence of prime numbers p
for each of which there is a rational simple abelian variety of GL2-type
without complex multiplication endowed with a Borel structure modulo p,
whose dimension d satisfies

d ≤ (p− 5)(p− 7)
24

.

(c) (Dihedral subgroups, I). For each sufficiently large prime p ≡ 1 mod 4
(respectively p ≡ 3 mod 4), there is a rational simple abelian variety
of GL2-type without complex multiplication, endowed with a normalizer-
of-split-Cartan structure modulo p (respectively, a normalizer-of-nonsplit-
Cartan structure modulo p), whose dimension d satisfies

d ≤ C · p11/2

for some absolute constant C.
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(d) (Dihedral subgroups, II). For each large enough prime p ≡ 3 mod 4
there is a rational simple abelian variety of GL2-type without complex mul-
tiplication endowed with a projectively dihedral structure modulo p, whose
dimension d satisfies

d ≤ (p− 5)(p− 7)
24

.

Theorem 1.4 has the following immediate consequence for the bound in Ques-
tion 1.2:

Corollary 1.5 If a uniform bound B(d) exists in Question 1.2, then it is of
order not less than O(

√
d).

Remark 1.6 It would be interesting to see if the results proved here carry over
to the case of modular forms of arbitrary weight. For these one might need to
have some control on the variation of the degree of Hecke fields in a Hida (or
Coleman) family, perhaps along the lines of [9].

Acknowledgments The first author thanks Institut de Mathématiques de
Bordeaux for its hospitality during two visits in 2010 and 2011, during which
time this work was carried out. The second author was supported by the ANR
grant ARIVAF. The present material served as a basis for a talk at the 27th
Journées Arithmétiques (Vilnius 2011) by the second author, who takes this
opportunity to thank the organizers for their invitation.

2 Exceptional case: Nebentypus and monodromy

We first prove part (a) of Theorem 1.4, which is actually a generalization of a
remark of Serre for the case of elliptic curves (see [17], p. 36). Our first approach
is geometric, though later we give a more automorphic proof in a special case.
For a more computational approach, see [15].

2.1 A geometric approach

With notation as in Theorem 1.4, let A be a d-dimensional abelian variety
corresponding to (the Galois orbit of) a weight 2 newform f(q) =

∑
n>0 anq

n of
some level N . Though this is not necessary, we remark that, up to replacing A
by an isogenous variety, one may assume that EndQ(A) = OE is the full ring
of integers of the Hecke field E := Q(an), with the standard notation. Let P
be a prime of OE above p. Let K be a (totally ramified) extension of Qp

over which A acquires semistable (i.e., possibly good) reduction, with ring of
integers OK . Denote by GK the absolute Galois group of K and IK its inertia
subgroup. It is well-known that e := [K : Qp] can be bounded in terms of d only.
Indeed, by the Galois criterion for semistable reduction ([6], Théorème IX.3.6
and Proposition IX.3.5; see also [35], Theorem 1), A acquires good (respectively,
bad semistable) reduction over any extension field such that the image of inertia
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at p on the `-adic Tate module T`(A) is trivial (respectively, unipotent of degree
2), for any ` 6= p. If an element γ in Aut(T`(A)) is torsion (respectively, has
some power which is unipotent of degree two) and is trivial mod ` > 2, one
readily checks that γ = 1 (respectively, γ is unipotent of degree two). It follows
that one can choose a K as desired inside Qp(A[`]). For p > 3, we thus have e ≤
card(GL2(OE ⊗ F3)) < 34d. This bound is known to be far from sharp - a
(non-CM) elliptic curve over Q acquires semistable reduction over a number
field of degree dividing 6, and similarly, better bounds for jacobian varieties can
be found in [16], Proposition 4 (γ).

Let us still denote by A what will actually be its Néron model over OK . The
P-adic Tate module AP := lim←−nA[Pn] is OP-free of rank 2 (where OP is the
completion of the Hecke ring OE at P), and similarly for A[P] = AP ⊗OP/P
over OP/P. We define A0[P] to be the connected part of the latter: this can
be seen as a FP-vector space scheme, for FP = OP/P, finite and flat over OK ,
or as a certain subspace in the p-torsion of the corresponding formal group. It
follows from Raynaud’s classification of group schemes of type (p, . . . , p) that
the tame inertia subgroup of GK acts on the semi-simplification A0[P]ss of
A0[P] via sums of products of fundamental characters raised to powers in the
range {0, . . . , e} ([22], Corollaire 3.4.4). As we are dealing with 2-dimensional
representations, these fundamental characters are actually of level (0 or) 1 or 2
([34], Proposition 1). We now distinguish the following four cases: either

(i) A0[P] has dimension 0 over FP, or

(ii) A0[P] has dimension 1 over FP, or

(iii) A0[P] has dimension 2 over FP and the tame inertia acts on A0[P]ss via
fundamental characters of level 2, or

(iv) A0[P] has dimension 2 over FP and the tame inertia acts on A0[P]ss via
fundamental characters of level (0 or) 1.

Assume we are in case (i). Let χ be the Nebentypus of the newform corre-
sponding to A, let ω be the Teichmüller lift of the cyclotomic character and Ip
an inertia subgroup at p in GQ, extending IK . Define ρ̄A,P as in (1). As A is
modular, one knowns that det(ρ̄A,P) = χω mod P. On the other hand, it fol-
lows from our hypothesis (i) above that ρ̄A,P|IK has trivial semi-simplification,
so that (χω|Ip)e = 1 mod P.

This implies that χ has order divisible by (p− 1)/gcd(e, p− 1). Now the
field E := EndQ(A)⊗Q contains the values of χ, so

ϕ((p− 1)/gcd(e, p− 1)) ≤ [E : Q] = dim(A) = d

(where ϕ is Euler’s totient function). We know that

lim inf
ϕ(n) log(log(n))

n
= e−γ
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for γ = 0.577... the Euler-Mascheroni’s constant (see e.g., [37], Théorème 5.6),
or more simply that

ϕ(n) > Cε · n1−ε

for any ε > 0 and Cε > 0 depending on ε, so that

p ≤ cε · d1+ε34d

for some cε > 0 depending on ε. This concludes the proof that our case (i) does
not occur for sufficiently large p relative to d.

Assume now we are in case (ii). By Raynaud’s theorem mentioned above,
the tame inertia of GK at p acts on A0[P] via some power ωa of the fundamental
character of level 1 so that:

ρ̄A,P |IK '
(
ωa ∗
0 1

)
with 1 ≤ a ≤ e. This has projective image containing a cyclic group of or-
der (p− 1)/gcd(a, p− 1) ≥ (p− 1)/e, which cannot be included in an excep-
tional subgroup if p > 5e+1 (recall that exceptional subgroups have no element
of order larger than 5). Using our estimate for e we obtain p ≤ 5 · 34d + 1,
whence our claim in case (ii).

The same argument works for case (iii). Here Raynaud’s result implies that
the tame inertia of GK acts on A[P] (=A0[P]) via fundamental characters of
level 2 raised to powers less than e. As we are dealing with 2-dimensional rep-
resentations we know more precisely that this inertia action is via the diagonal
matrix with coefficients ωa2 and ωpa2 , with 1 ≤ a ≤ e and {ω2, ω

p
2} the conjugate

pair of fundamental characters of level 2, which have order p2 − 1 on Ip (see
[34], Proposition 1). Therefore ρ̄A,P |IK has projective image a cyclic group of
order (p+ 1)/gcd(a, p+ 1) ≥ (p+1)/e, and we now conclude that p ≤ 5 ·34d−1.

Assume finally we are in case (iv). Here we prove that, if p > e + 1, the
action of the local Galois group GK on A[P] is not diagonal: it therefore has
a p-part, the same is true projectively and this implies the image cannot be
exceptional.

Let indeed ε be the ramification index of P in the endomorphism ring OP,
and π a uniformizing parameter of OP: one has P = πOP and pOP = πεOP.
Let also r = [FP : Fp], for FP := OP/P, be the residual degree. Let A be
the formal group associated with the P-adic Tate module AP, and call δ its
dimension (which is the Fp-dimension of its cotangent space over Fp, or simply
the “number of variables” of A). One has δ = [OP : Zp] = εr. The uniformizer π
can be seen as an element of EndOK (A). The action of GK commutes with
multiplication by π, so there is a Galois-compatible filtration:

0 ⊆ A[P] ⊆ A[P2] ⊆ · · · ⊆ A[Pε−1] ⊆ A[Pε]

which can be identified with

0 ⊆ πε−1A[p] ⊆ πε−2A[p] ⊆ · · · ⊆ πA[p] ⊆ A[p]
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and each subquotient of the above filtration is isomorphic, as a GK-module,
to A[P]. One therefore sees that, whereas A has dimension δ, the group
scheme A[P] (which has rank p2r) has a cotangent space (over Fp) of dimen-
sion r = δ/ε (“r variables”).

By [22], Théorème 3.3.3, one knows that, if p > e+ 1, any (finite flat) group
scheme of type (p, . . . , p) over OK is uniquely determined by its generic fiber.
Therefore, assuming that the local Galois action is diagonal on A[P], the latter
splits uniquely into the direct sum A1 ⊕ A2 of two finite flat group schemes of
rank pr over OK (and not only K), each of which is an FP-vector scheme of rank
one. Considering the geometric special fibers we claim that each Aj ×OK Fp is
isomorphic to

Spec(Fp[X1, . . . , Xr]/(X
p
1 , . . . , X

p
r )). (2)

It indeed follows from [22] that one can take equations for Aj (over OK) of the
shape Xp

i = δiXi+1, for some δi ∈ OK whose valuation verifies 0 ≤ v(δi) ≤ e
(cf. loc. cit., Corollaire 1.5.1 and p. 266). Moreover, Théorème 3.4.1 of [22]
tells us that the tame inertia acts on Aj via

ψ
v(δr)
1 · ψv(δ1)

2 · · · · · ψv(δr−1)
r ,

with notations of loc. cit.: ψi := ψp
i−1

1 , and {ψi}1≤i≤r is the set of conjugate
fundamental characters of level r. On the other hand, our running hypothe-
sis (iv) implies that GK acts on the Aj via some power ωa of the fundamental
character of level 1, which can be expressed in terms of the fundamental char-
acters of level r as:

ω = ψ1+p+p2+···+pr−1

1 = ψ1 · · ·ψr.

Assuming e < p − 1, we therefore see that the v(δi) are all equal to a (as
0 ≤ v(δi) ≤ e). Moreover a > 0 (otherwise the equations Xp

i = δiXi+1 would
show Aj is isomorphic over Fp to Spec(Fp[X]/(Xpr−cX)), for some c 6= 0 in Fp;
the Aj would therefore be étale over OK , a contradiction). So v(δi) > 0 and
Raynaud’s equations Xp

i = δiXi+1 do give our claim (2) above.
But this is not compatible with what we know about A[P] ×OK Fp. For

instance, (2) implies all nilpotent functions on A1 ⊕ A2 are killed by raising
them to the pth power, so if A[P] ×OK Fp was split, it would in turn be of
shape Spec(R), with R⊗OK Fp a quotient of Fp[X1, . . . , Xr]/(X

p
1 , . . . , X

p
r ) (re-

call A[P] has r variables). This would be a contradiction with the fact that A[P]
has rank p2r.

This proves our claim that A[P] is nonsplit as a scheme, from which it follows
that the local Galois projective image has order greater or equal to p. Using
once more that exceptional subgroups have no element of order larger than 5,
this concludes the study of case (iv), and therefore the proof of Theorem 1.4 (a).

Remark 2.1 It might also help to briefly recall how things work in the techni-
cally simpler setting of elliptic curves (over arbitrary number fields). Case (i)
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does not occur, as A0[p] is never 0 in this case. Cases (ii) and (iii) can actually
be copied with no change. For case (iv), instead of specializing the method
above (see, for instance, [21], proof of Lemma 1.3), one can use Serre’s study of
the one-parameter formal group defined by an elliptic curve ([31], paragraph 1.9
and 1.10). If the elliptic curve in question is supersingular but the tame iner-
tia acts via powers of the fundamental character of level 1, it indeed follows
from loc. cit. that the relevant Newton polygon is broken, and there are points
in the p-torsion of the corresponding formal group which have valuation with
denominator divisible by p (see [31], p. 272). This precisely means that the Ga-
lois extension cut out by the p-torsion of the elliptic curve has degree divisible
by p. Therefore the Galois action is non-diagonal, and the projectivization of
its image again has a non-trivial p-part. This approach might be generalizable
to higher-dimensional abelian varieties and formal groups, up to some more
technicalities.

We also note that an elliptic curve over a number field F acquires semi-
stable reduction over an extension of F of degree dividing 12. Therefore, the
associated mod p representations is not projectively exceptional as soon as
p > 60[F : Q] + 1: see [17], p. 36. (There Mazur asserts that for elliptic curves
over Q, p > 13 would even do.)

2.2 An automorphic approach, when valp(N) ≤ 1

For forms of weight 2 and conductor having p-adic valuation at most 1, one can
give a purely automorphic proof of part (a) of Theorem 1.4. This proof has the
virtue of appealing to more modern technology, but does not cover all cases,
since the mod p reductions of forms with high powers of p in the level are not
yet fully known.

Suppose f ∈ S2(Γ1(N)). Assume that the power of p dividing N is at most 1.
We show that ρ̄f cannot have exceptional projective image, if the dimension of
the corresponding abelian variety is bounded, for p sufficiently large depending
on the dimension.

First assume that N is prime to p. We show that for p sufficiently large, ρ̄f
on Ip has large projective image irrespective of the dimension of the underlying
abelian variety. Indeed, since N is prime to p, then (e.g., see [29]) the Serre
weight of ρ̄f is 2. If f is ordinary at p, then it is well-known that on Ip, ρ̄f is of
the form (

ω ∗
0 1

)
which has projective image a group of order divisible by p − 1. On the other
hand, if f is non-ordinary at p, then by Fontaine’s theorem ([4], Theorem 2.6)
(which applies, since the Serre weight k satisfies 2 ≤ k ≤ p + 1), ρ̄f on Ip has
the form (

ω2 0
0 ωp2

)
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which has projective image a cyclic group of order p+1. If the global projective
image of ρ̄f is of exceptional type, then, in either case, this cyclic group cannot
have cardinality larger than 5, so p ≥ 7 cannot occur.

Now suppose that p exactly divides N . Assume ρ̄f has exceptional projective
image. If there is no Nebentypus at p, then f is of Steinberg type at p, and
in particular ordinary, so the projective image on Ip is again of order divisible
by p − 1, and so p ≤ 5. So we may assume that the Nebentypus at p is ωj

with 1 ≤ j ≤ p − 2. Then, by Proposition 6.18 of [30], ρ̄f on Ip has one of the
following three shapes:



(
ωj+1 ∗

0 1

)
if vp(ap) = 0,(

ω ∗
0 ωj

)
if vp(ap) = 1,(

ωj+1
2 0
0 ω

p(j+1)
2

)
if 0 < vp(ap) < 1.

In the first case we see that the order of ωj+1 must be smaller than 5, so that
the order of ωj is ≥ p−1

5 . In particular d ≥ ϕ(p−1
5 ). Thus if p > O(d1+ε), then

the exceptional case does not occur. In the second case, the projective image
of Ip on the diagonal is the image of ωj−1 and a similar argument applies. In
the last case, the projective image of Ip is the image of θ := ω

(p−1)(j+1)
2 . We

claim that if this has order at most 5, then ωj has order at least p−1
3 , so that

we are again done, except in one case which we treat separately below. Indeed,
the order of θ is p+1

g where g is the greatest common divisor of j + 1 and p+ 1.
If the order of θ is at most 5, then p+1

5 ≤ g ≤ p+1
2 . Writing j + 1 = mg and

p+1 = ng, for some 1 ≤ m < n ≤ 5 (note j+1 < p+1), we have j+1 = m(p+1)
n

for 2 ≤ n ≤ 5 and 1 ≤ m < n, with (m,n) = 1. An easy check shows that
for these finitely many values of j, the greatest common divisor of j and p− 1
is at most 3, so that the order of ωj is at least p−1

3 , as desired, except when
j + 1 = p+1

2 , in which case θ is quadratic, but ωj is also quadratic.
We claim, however that this last subcase cannot occur for sufficiently large p.

To see this suppose that there is an exceptional type form in S2(Γ0(Mp), χ),
where M is prime to p and the p-part χp of χ is quadratic. Then consider
the Teichmüller lift of the associated mod p representation (this exists since for
p > 5 the mod p representation has order prime to p, since it is an extension
of an exceptional group by a subgroup of scalars of order pn − 1, for some n).
We obtain an odd finite image representation into GL2(W ), with W is the ring
of Witt vectors of the residue field, which by the recent proof of Artin’s con-
jecture (which in turn follows from the proof due to Khare-Wintenberger/Kisin
of Serre’s conjecture [14], and Khare’s proof that Serre implies Artin [13]), we
know comes from a form in S1(Γ0(Mp), χ′). Comparing determinants mod p
we see that the p-part of χ′ must be ω(p+1)/2. But an elementary argument (see
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[1], Proposition 5.1) shows that the Nebentypus at p of an exceptional weight 1
form which is tamely ramified at p must be of bounded order, which is clearly
impossible if p is large.

This completes the proof.

3 Borel subgroups and irregular primes

We check part (b) of Theorem 1.4. We know from the work of K. L. Jensen ([12];
or [38], Theorem 5.17) that there are an infinite number of irregular primes,
that is, primes p dividing the order of the class group Cp of the cyclotomic
field Q(µp). Kummer proved that they are exactly the primes dividing the
numerator of some Bernoulli number Bk with k even, 2 ≤ k ≤ p − 3, and
Herbrand showed more precisely that if p divides the order of the ω1−k-isotypic
component Cp(ω1−k) of Cp mod p, then p divides Bk (where ω is as before the
cyclotomic character). In his celebrated and seminal paper [23] Ribet proved
the converse to Herbrand’s criterion, and to that end he showed that when p|Bk,
there is a newform f in Snew

2 (Γ0(p), ωk−2) whose associated abelian variety Af
has a p-isogeny. We claim these abelian varieties are not of CM type. One way
to see this goes as follows. Assuming f is CM, level considerations show that the
associated quadratic imaginary field K has discriminant −p. As p ramifies in K,
the classical theory of complex multiplication implies f is supersingular above p.
Now Ribet’s representation has semi-simplification 1⊕ωk−1, with 2 ≤ k ≤ p−3
(see [23], Proposition 4.2). Therefore Af has (Zp-étale subgroups of) p-torsion
points, and cannot be supersingular at p. Invoking finally the fact that

dim(J1(p)) = (p− 5)(p− 7)/24

(this follows for instance from [36], Chapter 2) we conclude the proof.

Remark 3.1 Of course Ribet’s representation shows the existence of p-torsion
points, not only a p-isogeny, on Af .

Remark 3.2 If we can choose k and p such that ωk−2 has order tending to
infinity, then, the above construction gives an infinite sequence of abelian va-
rieties of GL2-type of dimension tending to ∞, which are residually mod p of
Borel type, with p tending to ∞.

4 Dihedral cases

4.1 Using level raising

We prove part (c) of Theorem 1.4.

Proposition 4.1 There exists an absolute constant C such that, for each prime
p ≡ 3 mod 4 (respectively, p ≡ 1 mod 4), there is a non-CM abelian variety
with a normalizer of nonsplit Cartan (respectively, split Cartan) Galois structure
mod p and dimension d ≤ C · p5.5.
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Proof Let D be the discriminant of an imaginary quadratic number field K
with ring of integers OK . Let A be a simple Q-abelian variety of GL2-type
having complex multiplication by OK (take for instance the Weil restriction to Q
of the Galois conjugacy class of elliptic curves over the Hilbert class field HK

of K, having CM by OK) and let f =
∑
n an(f)qn be one of the conjugate

CM newforms associated with A, with conductor ND. Assume for simplicity
that f has trivial Nebentypus. Let p be a prime which does not divide ND.
For ` another prime such that ` ≡ −1 mod p and ` remains inert in K one has
a`(f) = 0 ≡ (`+1) mod p, so Ribet’s theorem ([27], Theorem 1) shows that p is
a congruence prime between f ∈ Snew

2 (Γ0(ND)) and some g ∈ Snew
2 (Γ0(`ND)).

Let B be the abelian variety over Q associated with g. Having semi-stable bad
reduction at `, it cannot have complex multiplication. The dimension of B
is bounded above by dim(Snew

2 (Γ0(`ND))), which is of shape λ`ND + o(`ND)
for some λ ∈ Q ([36], Chapter 2). Now Linnik’s theorem, in the improved
explicit version proved by Heath-Brown, shows that one can take ` ≤ c · p5.5,
for some constant c depending only on D (see e.g., [11], Theorem 18.1, and the
references therein). Fix for instance D = −4 in the above, and take for A the
elliptic curve over Q with j-invariant 1728, conductor 26, having multiplication
by the Gaussian integers Z[i]. The condition p ≡ 3 mod 4 (respectively, p ≡ 1
mod 4) ensures B has a normalizer-of-nonsplit-Cartan Galois structure mod p
(respectively, normalizer-of-split-Cartan Galois structure), and our statement
follows. �

Remark 4.2 We understand from [11], Chapter 18 that the exponent 5.5 used
here in Linnik’s theorem is conjecturally improvable, but not under 2. We will
see in the next section that some elementary Hida theory allows us to produce
examples of abelian varieties with projectively dihedral Galois structure mod p,
and dimension bounded above by O(p2). On the other hand, these techniques
do not allow us to distinguish easily between the split and nonsplit cases.

4.2 Using Hida families

We first recall a few standard facts on Λ-adic modular forms. Fix p an odd
prime number, and an embedding Q ↪→ Qp (which will allow us to think of
elements of Q as living in Qp). Set Λ = Zp[[X]] and let L be the ring of
integers of a finite extension of Frac(Λ). An arithmetic point Pk,ζr is a morphism
L→ Qp of Zp-algebras extending the algebra homomorphism Λ→ Qp induced
by X 7→ ζr(1 + p)k−1 − 1, with 2 ≤ k ∈ N and ζr a primitive pr−1-th root of
unity, r ≥ 1. If N = N0p with gcd(N0, p) = 1, let ψ : (Z/N0pZ)∗ → Q∗ be a
Dirichlet character. Let χζr : (Z/prZ)∗ → Q∗ be the character which, under the
decomposition

(Z/prZ)∗ ' Z/(p− 1)Z× Z/pr−1Z,

maps the first factor to 1 and the generator (1 + p) of the second factor to ζr.
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A Λ-adic cusp form of tame character ψ is a formal series

F (X, q) =
∑
n≥0

an(X)qn ∈ L[[X]]

such that the specialization fk,ζr at any arithmetic point Pk,ζr belongs to the
space of modular forms Sk(Γ0(Npr), ψω1−kχζr ). (This is the weight normaliza-
tion adapted to “deformations of weight 1”.) Such a form is said to be a Λ-adic
newform if all its arithmetic specializations are p-stablilized N0-newforms. A
fundamental theorem of Hida [7] asserts that one can attach to such an eigen-
form F a representation

ρF : Gal(Q/Q)→ GL2(Frac(L))

which can be seen as a family Pk,ζr (ρF ) = ρPk,ζr(F ) = ρfk,ζr of representations
interpolating those associated by Eichler-Shimura and Deligne to the classical
eigenforms fk,ζr at arithmetic points. The weight 1 specializations do give rise to
Galois representations too, but they might or might not correspond to classical
modular forms via Deligne-Serre theory. One checks that the restriction to an
inertia group Ip at p is of shape

ρF |Ip '
(
ψκ ∗
0 1

)
where κ is the character κ : Gal(Q̄/Q) � Gal(Q(µp∞)/Q) � Gal(Q∞/Q)→ Λ∗

which maps the topological generator 1+p of 1+pZp ' Gal(Q∞/Q) to (1+X) ∈
Λ∗. The mod p representations ρfk,ζr := ρfk,ζr mod p are all isomorphic when
irreducible (and, in any case, have the same semi-simplification).

Let us finally prove part (d) of Theorem 1.4. Let p be a prime number equal
to 3 mod 4, so that Q(

√
−p), whose ring of integers we denote by OQ(

√
−p), has

discriminant −p. Let α−p :=
(−p
·
)

be the corresponding quadratic character.
The class number formula shows that h(OQ(

√
−p)) is prime to p, as it is bounded

above by p−1
2 . The Brauer-Siegel theorem in the case of imaginary quadratic

fields actually yields that, for any ε > 0,

p1/2−ε < h(OQ(
√
−p)) < p1/2+ε

if p is large enough, so that in particular h(OQ(
√
−p)) is non-trivial (and, again,

prime to p) for large enough p. Choose

Ψ: Gal(H(Q(
√
−p))/Q(

√
−p))→ Q∗ ⊆ Q∗p

a non-trivial (hence not self-conjugate, cf. Remark 4.3) character, whereH(Q(
√
−p))

is the Hilbert class field of Q(
√
−p). Let

fΨ(q) =
∑

A⊂OQ(
√
−p)

Ψ(A)qN(A)
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be the theta series associated with Ψ. This is a (classical) ordinary eigenform
of level p, weight 1 and Nebentypus α−p (cf. e.g., [8], paragraph 7.6). The
associated Galois representation ρfΨ is IndQ

Q(
√
−p)(Ψ), whose image is included

in the normalizer of a Cartan subgroup, but not the Cartan itself (and as Ψ has
prime-to-p order, the same is true for ρfΨ

= ρfΨ mod p).
A result of Wiles ([39], Theorem 3), generalizing Hida theory for arithmetic

points, says that such classical eigenforms of weight 1 can also be embedded in
Λ-adic eigenfamilies. Let F be one such form passing through fΨ. This F does
not have complex multiplication (i.e., no arithmetic member has complex mul-
tiplication), for similar reasons as in paragraph 3. Indeed, assuming F has CM,
a look at the ramification shows that the CM field would have to be Q(

√
−p), in

which p ramifies: so the weight 2 members of the family would be supersingular,
whereas arithmetic specialization of a Hida family are ordinary. Let ψω1−kχζr
be the decomposition of the Nebentypus at Pk,ζr , using the same notations as
in the beginning of this paragraph. The tame level N0 of F is 1 and ψ is some
power ωa of the Teichmüller character ω. Together with the fact that fΨ has
Nebentypus α−p, we see that a = (p−1)/2, which implies that P2,1(F ) is a new-
form in S2(Γ0(p), ω(p−3)/2) ⊆ S2(Γ1(p)). We have therefore built some rational
simple abelian variety A of GL2-type, endowed with a nontrivial normalizer-of-
Cartan structure mod p, which is isogenous to a quotient of J1(p). The shape of
the Nebentypus and the known dimension of J1(p) give the announced bounds

ϕ

(
p− 1

2

)
≤ dim(A) ≤ (p− 5)(p− 7)

24
. �

Remark 4.3 Note that dihedral groups are ambiguously defined in the case
when the projective image is the Klein 4-group (Z/2Z)2, when there are three
possible choices for the cyclic subgroup, but this is not the case for the Galois
group built here. Indeed, if it were, one would have two quadratic subextensions
of Gal(Q(A[p])/Q) apart from Q(

√
−p). But the only allowed ramification locus

for these number fields is p, a contradiction. Of course, this yields a somewhat
artificial proof that h(OQ(

√
−p)) is odd when p ≡ 3 mod 4, a classical fact (see

e.g., [3], Théorème 4 on p. 388).

Remark 4.4 Let A be a GL2-type abelian variety as in Question 1.3, endowed
with a projectively dihedral Galois structure mod P. Then ρA,P is the in-
duced representation IndQ

K(ψ) of some character ψ with values in a finite field
F. Let ψ : Gal(Q/Q)→ Q∗ be the character deduced from ψ by Teichmüller lift.
If K is an imaginary quadratic field (as is necessarily the case, for instance, for
nonsplit dihedral structures when A is an elliptic curve, as one checks by look-
ing at the image of a complex conjugation) then ψ gives rise to a CM abelian
variety Aψ, whose induced representation ρAψ,P is IndQ

K(ψ). It is known since
Hecke that Aψ is modular and, as noticed in the Introduction, it follows from
Ribet and Khare-Wintenberger/Kisin that the same is true for A. Denoting
by N and Nψ the conductors of A and Aψ respectively, one checks that Nψ|N ,
so both abelian varieties can be seen as irreducible components in the spec-
trum Spec(TΓ1(N)) of the full Hecke algebra TΓ1(N) for Γ1(N) in weight 2, and
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by construction these components intersect in characteristic p (which therefore
is a congruence prime for the cuspforms fA and fAψ associated to A and Aψ).

Question 1.3 then specializes to: if a non-CM irreducible component of
some Spec(TΓ1(N)) intersects a CM one in characteristic p, is it true that the
degree d of the former component has to be such that BSP(d) or BNSP(d) are
larger than p? We note in passing that sharp bounds for congruence primes of
irreducible components of degree one (that is, elliptic curves) are closely related
to deep problems such as the modular degree conjecture, or the abc conjecture
(see e.g., [5] or [19]). Of course, the connectedness of Hecke’s algebra spectra in
weight 2 (“spaghetti principle”, see [17], Proposition 10.6) shows that some in-
tersection between CM and non-CM components has to occur - but quantifying
the primes of fusion is the hard part of the story. We understand that experi-
mental data seem to indicate that a large part of fusion occurs in characteristic
2 (cf., e.g., the remark on page 11 of [20]. A typical drawing of the situation
can be found in [29], pp. 40-41).
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Études Sci. Publ. Math. 54 (1981), 123–201.
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