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1 Introduction

These are some brief notes on the famous Kronecker-Weber theorem, which
says that cyclotomic extensions of Q capture all abelian extension of Q.
Kronecker stated this theorem in 1853, but his proof was incomplete. Weber
gave a proof in 1886, but apparently there was still a gap in it. Correct proofs
were given soon after by Hilbert and Speiser.

In these notes we shall derive the theorem as a consequence of the theo-
rems of (global) class field theory. The main reference we use is Janusz’ book
[1]. This is a good first introduction to class field theory - it derives most of
the main theorems with minimal use of heavy machinery, and I recommend
it to you for further study.

If time permits, I will give another proof of the Kronecker-Weber theo-
rem: namely the one given in Chapter 14 of Washington’s book [7]. In this
approach, the theorem is deduced from the corresponding statement for lo-
cal fields, which, in turn, is proved using only ‘elementary’ facts about the
structure of local fields and their extensions. Since the exposition in Wash-
ington is good, I will not reproduce this proof in these notes. A word of
warning though: one needs to be fairly well acquainted with local fields to
enjoy Washington’s proof. As an excellent background builder for this, and
for many other things, I recommend reading Serre’s book [2].

2 Cyclotomic extensions of Q

Let us start by describing what cyclotomic fields, the objects of study of this
summer school, look and smell like.
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Let ζn denote a fixed primitive nth root of unity, and let Q(ζn) be the
number field generated by all the nth roots of unity. The field Q(ζn) is called
the nth cyclotomic field. Most of you have probably already met these fields
in the course of working out the proof of the following theorem, which I
suggest you now (re-)try and prove for yourself as a warm-up exercise:

Theorem 1 Let φ(n) denote the cardinality of (Z/n)×. Then Q(ζn) is an
abelian extension of Q of degree φ(n). More precisely, there is an isomor-
phism:

(Z/n)×
∼

−→ Gal(Q(ζn)/Q)

a (mod n) 7→ σa,

where σa(ζn) = ζa
n.

Since a sub-extension of an abelian extension is also abelian, cyclotomic
fields and their sub-fields already give us an abundant supply of abelian
extensions of Q. The obvious question that is now begging to be asked is
whether or not there are any more. The answer is a resounding NO!!! More
formally, we have the

Theorem 2 (Kronecker-Weber) Every finite abelian extension of Q is
contained in a cyclotomic field.

The rest of these notes will sketch a proof of this beautiful fact using class
field theory. But, before we embark on this, let us make a small diversion.
At this stage, you may be wondering as to whether every finite abelian group
actually occurs as a Galois group of some Galois extension of Q. This is in
fact true, and to give you an idea of how one might prove it, let us work out
an example.

Let us construct a Galois extension of Q with Galois group G = Z/7 ×
Z/13 × Z/13. The idea is to construct Galois extensions which realize each
of the cyclic factors of G. If we can do this in such a way so that these
extensions are linearly disjoint, then we have won the game, because we can
then just take the compositum of these extensions. So let us first construct
an extension with Galois group Z/7. The trick is to choose a prime p such
that p ≡ 1(mod 7). The first prime that works is p = 29. Now consider the
extension Q(ζ29)/Q. By Theorem 1, it is an abelian extension with Galois
group Z/28. Clearly, since 7|28, it has a sub-field K1 whose Galois group is
Z/7.
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So far so good. We now can similarly construct another extension K2/Q

with Galois group Z/13. This time we note that 53 ≡ 1(mod 13), that
Gal(Q(ζ53)/Q) = Z/52, and that 13|52. So the field K2 with Gal(K2/Q) =
Z/13 exists.

Now we have only one more factor to worry about, the ‘second’ factor of
Z/13 in G. This time we choose a different prime congruent to 1 (mod 13).
In fact 79 seems to work. As above, in Q(ζ79) there is a sub-field K3 with
Gal(K3/Q) = Z/13.

Now note that K1, K2 and K3 are linearly disjoint, that is, the intersection
of any two of these fields is Q. This is because they each lie in cyclotomic
fields Q(ζp), for different p, which themselves are linearly disjoint. (You
could try and use ramification theory to prove this - as a hint note that only
p ramifies in Q(ζp)). We now choose K = K1K2K3. Then some Galois theory
shows Gal(K/Q) = G, and we are done.

By now, you probably know what to do in general. So why not now try
and prove the following theorem:

Theorem 3 Every finite abelian group is the Galois group of some Galois
extension of Q.

The following interesting fact may come in handy in the course of your proof:

Theorem 4 (Dirichlet) There are infinitely many primes in every arith-
metic progression.

Now don’t be asking whether all finite groups can be realized as Galois
groups...! This is one of the hardest problems in mathematics, and is an
active area of current research. Let us state it as

Question 1 (Inverse Galois Problem) Is every finite group the Galois
group of a finite Galois extension of Q?

3 Class field theory

Let us now give a short ‘proof’ of the Kronecker-Weber theorem using class
field theory. That this theory should yield a proof at all is hardly sur-
prising, because CLASS FIELD THEORY FOR Q = THE THEORY OF
ABELIAN EXTENSIONS OF Q. However, I should mention up front that
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class field theory is a rather broad subject, one that has undergone many
re-formulations in terms of both the language and tools it has used to state
and prove its main results. To do it justice would require the better part of
a year of course work - a time frame somewhat beyond the scope of our five
lectures!

Nonetheless, rather than despair, let us be brave, and try and at least get
a flavour of some of the statements of the more important theorems of the
theory. We shall derive the Kronecker-Weber theorem as an easy consequence
of these theorems.

3.1 The Artin Map

The basic object around which most of the statements of class field theory
revolve is the Artin map, which has already been introduced by Sury in his
lectures. Let us recall its definition.

Let L/K be an abelian extension of number fields. Let IK denote the
group of fractional ideals of K. Let S denote a finite set of prime ideals of
K, including all the primes that ramify in L, and let IS

K denote the subgroup
of IK generated by all the prime ideals outside S. For each fractional ideal
A in IS

K , write A =
∏

p
pa(p), and set

φL/K(A) =
∏

p

[L/K

p

]
a(p)

.

Here
[

L/K
p

]

∈ Gal(L/K) is the Frobenius element at p. That is, if P is a

prime of L lying over p, then
[

L/K
p

]

is the element σ in Gal(L/K) character-

ized by the property

σ(x) ≡ xN(p) (mod P), for all x in OL , (1)

where OL is the ring of integers of L, and N(p), the norm of p, is the cardi-
nality of the residue field of p.

The homomorphism φL/K : IS
K → Gal(L/K) is called the Artin map for

the extension L/K. The first deep theorem about it is:

Theorem 5 The Artin map φL/K is surjective.
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We shall not say anything about the proof of this theorem, except that
one possible approach to it is, funnily enough, via analysis (L-Series and
Density Theorems are catchwords here).

Another important theorem that we shall need, that can also be estab-
lished by analytic methods, is the following:

Theorem 6 Let L1 and L2 be two finite Galois (not necessarily abelian)
extensions of K, and let S1 and S2 denote the sets of primes of K which
split completely in L1 and L2 respectively. Then S1 ⊂ S2 (except for a set of
density 0) if and only if L2 ⊂ L1.

Again, we shall not define what it means for a set of primes to have
density 0; suffice it to say that sets of finite cardinality have density 0, and
it is only such exceptional sets that will appear in the application we have in
mind below.

3.2 The kernel of φL/K

One of the aims of class field theory is to describe the kernel of the Artin map
explicitly. Note that a prime ideal p ∈ ker φL/K if and only if the Frobenius
element at p is trivial, that is:

[L/K

p

]

= 1.

Since you know that the Frobenius element has order f(P/p), the residue
degree of P|p, we see that, in this case, both e(P/p) = f(P/p) = 1. This
forces g(P/p) = [L : K], which is to say that p splits completely in the
extension L/K. Thus, apart from a finite set of primes, the primes in the
kernel of the Artin map are exactly the primes that split completely.

Definition 1 A modulus for K is a formal product

m =
∏

p

pn(p)

taken over all primes (including the infinite primes) of K. The exponents
n(p) are non-negative integers, and are positive for only a finite number of p.
Furthermore n(p) = 0 or 1 when p is real, and n(p) = 0 when p is complex.
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A modulus m may be written as mfm∞, where the first (resp. second)
factor is divisible only by the finite (resp. infinite) places. Now let OK denote
the ring of integers of K. Set

Km = {a/b | a, b ∈ OK , (a), (b) relatively prime to mf} ,

Km,1 = {α ∈ Km | α ≡ 1 (mod m)}

Here the condition α ≡ 1 (mod m) means the following: for each finite p

dividing mf , we require that vp(α − 1) ≥ n(p), and for each real prime p

dividing m∞, we require α to be positive at this place.
Write Im

K for the group IS
K where S is the set of primes dividing mf . We

assume that mf is divisible by all the finite primes that ramify in L. Note
that, via the map x 7→ (x), Km,1 may be thought of as a subgroup of Im

K .

Definition 2 The quotient

Im

K

Km,1

is called the ray class group modulo m. Note that when m = 1 this is just the
usual class group of K.

Each prime in K may also be viewed as a product of primes in L. In this
way m may also be considered as a modulus for L, and so it makes sense to
speak of the group Im

L . Moreover, there is a natural norm map

NL/K : Im

L → Im

K ,

P 7→ pf ,

where f = f(P/p). The first approximation to the kernel of the Artin map
is given by the following proposition:

Proposition 1 Let L/K be a finite abelian extension, and let m be any
modulus of K such that mf is divisible by all the primes of K which ramify
in L. Then NL/K(Im

L ) ⊂ ker φL/K .

Proof: This follows immediately from the fact that the Artin map maps pf

to
[

L/K
p

]f

= 1.

The following key theorem now tells us exactly what the ‘missing part’
of the kernel of the Artin map is.
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Theorem 7 (Artin Reciprocity Theorem) Let L/K be a finite abelian
extension. Then there exists a modulus m divisible by at least the primes of
K which ramify in L such that the kernel of the Artin map is given by:

ker φL/K = NL/K(Im

L ) · Km,1. (2)

Let us say that the modulus m divides m′ (and write m|m′) if each place
that occurs in m occurs in m′ with equal or larger exponent. It is a fact that
if (2) holds for m then it holds for all moduli m′ which are divisible by m. So
the following definition is rather natural:

Definition 3 The greatest common divisor of all the moduli m such that (2)
holds is called the conductor of L/K.

Note: It is not clear that, so defined, the conductor of L/K is divisible by
all the ramified primes, but this is in fact true.

3.3 An example

It is about time that we gave an example to illustrate the above concepts.
What better place to start than with cyclotomic fields? So let us set K = Q,
and L = Q(ζn), for some fixed n.

We will show that the Artin reciprocity theorem (Theorem 7) holds for
Q(ζn)/Q with the modulus m = n · ∞, where ∞ is the unique real infinite
place of Q. We must include ∞ in the modulus since ∞ ramifies in the
totally imaginary field Q(ζn).

Let p be a prime not dividing n. Then the ideal (p) is unramified in
L. Moreover, σp (see Theorem 1 for notation) satisfies the condition (1)
characterizing the Frobenius at p, so we see that φQ(ζn)/Q(p) = σp. This
shows that for any two positive integers a and b relatively prime to n,

φQ(ζn)/Q(a/b) = σab∗ , (3)

where b∗ is a positive integer prime to n with bb∗ ≡ 1(mod n). This formula
allows us to compute the kernel of the Artin map. Indeed, we may easily
compute that

ker φQ(ζn)/Q = {(a/b) | a, b positive, a ≡ b (mod n)} = Qm,1. (4)
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The surjectivity of the Artin map is of course something we are assuming
(see Theorem 5). But note that in this case the surjectivity is essentially
equivalent to Dirichlet’s theorem that there are infinitely many primes in
every arithmetic progression (see Theorem 4).

Putting things together, we see that the Artin map induces an isomor-
phism between the ray class group modulo m = n · ∞, and Gal(Q(ζn)/Q) =
(Z/n)×.

As it turns out m = n · ∞ is in fact the greatest common divisor of all
the moduli such that (2) above holds, and so it is also the conductor of the
extension Q(ζn)/Q.

3.4 The Kronecker-Weber theorem

We can now derive the Kronecker-Weber theorem. We need one last result:

Proposition 2 Let L/K be an abelian extension and m a modulus so that
(2) above holds. Let E/K be an arbitrary Galois extension such that

NE/K(Im

E ) ⊂ NL/K(Im

L ) · Km,1. (5)

Then L ⊂ E.

Proof: Say p is a prime of K that does not divide mf . Then, if p splits
completely in E, it is trivially the norm of a prime of E, and so p ∈ NE/K(Im

E ).
By (5) and Theorem 7 above, we see that p ∈ ker φL/K , so that p splits
completely in L. We now apply Theorem 6 to see that L ⊂ E.

Proof of Kronecker-Weber: Say that L is an arbitrary abelian extension
of Q. We want to show that L ⊂ Q(ζn), for some n. Now Theorem 7, applied
to L, yields a modulus m over Q such that (2) holds. We may suppose that
m = n · ∞, for some n. Now set E = Q(ζn). Then, by (4), ker φE/Q = Qm,1

and so

NE/Q(Im

E) ⊂ NE/Q(Im

E) · Qm,1 = Qm,1 ⊂ NL/Q(Im

L ) · Qm,1 = ker φL/Q.

By Proposition 2, we obtain L ⊂ E = Q(ζn) as desired.
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3.5 Existence theorem

Though we have now ‘proved’ the Kronecker-Weber theorem, let us pick up
some loose ends and round off our whirlwind survey of class field theory.
We return to the general situation: L/K will denote an abelian extension of
number fields.

Note that if K 6= Q, then so far, no part of the discussion above guarantees
the existence of even one abelian extension L of K! This is remedied by the
following:

Theorem 8 (Existence Theorem) Let m be a modulus. Then there exists
a finite abelian extension L/K, such that every prime of K that ramifies in
L occurs in mf , and such that (2) above holds.

This modulus m may not be the conductor of the extension L/K, but by
definition, the conductor certainly divides it. Also, curiously, some moduli
may never be conductors at all (example: m = ∞ is never the conductor of
any finite abelian extension of Q). However, once a modulus m occurs as a
conductor, it is a fact that there is a maximal finite abelian extension, Lm,
having m as its conductor. It turns out that in this case ker φLm/K = Km,1.

Definition 4 Lm is called the ray class field of conductor m.

Note that via the Artin map, the Galois group of the ray class field of
conductor m is just the ray class group modulo m. Also note that every
abelian extension L of K sits inside a ray class field, namely the one whose
conductor is the conductor of L. Finally, in the case when K = Q (see
Section 3.3), we see that the cyclotomic fields are the ray class fields (of
conductor m = n · ∞).

3.6 Classification theorem

We now wish to state the climactic theorem of class field theory - the Classi-
fication theorem - which says roughly that the abelian extensions L of K are
parameterized by gadgets constructed purely out of K! Let us make some
preliminary definitions:

Definition 5 A group H is said to be a congruence subgroup of level m if
it satisfies

Km,1 ⊂ H ⊂ Im

K ,
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for some modulus m.

The key example of a congruence subgroup of course is the following: if
L/K is a finite abelian extension of K, then the Artin reciprocity theorem
says that H = ker φL/K , is a congruence subgroup of level m for some modulus
m.

To rid us of the somewhat unpleasant dependence on the modulus m, we
now put an equivalence relation ∼ on the set of congruence subgroups.

But first let us make a remark. Let m and m′ be two moduli, with m′|m.
Then Im

K is a subgroup of Im
′

K . If H ′ is a congruence subgroup of level m′

then there may or may not be a congruence subgroup H of level m such that
H = Im

K ∩H ′. If this does happen then we say that the congruence subgroup
H is the restriction of the congruence subgroup H ′.

Now say (H1, m1) and (H2, m2) are two congruence subgroups. We set
H1 ∼ H2, if there exists a modulus m, with mi

∣

∣ m, for i = 1, 2, and so that
Im

K ∩ H1 = Im

K ∩ H2 as restricted congruence subgroups of level m.

Definition 6 An ideal group [H ] is an equivalence class of congruence sub-
groups (H, m) with respect to the equivalence relation ∼.

The ideal groups are the ‘gadgets’ referred to above which parameterize
abelian extensions of K. In fact we have:

Theorem 9 (Classification Theorem) The map

L/K 7→ [ker φL/K ]

is an inclusion reversing bijection between the set of abelian extensions L of
K and the set of ideal groups of K.

Here ‘inclusion reversing’ means that if the abelian extensions L1 and L2

correspond to the ideal groups [H1] and [H2] respectively, then

L1 ⊂ L2 ⇐⇒ [H2] ⊂ [H1].

(Note: [H2] ⊂ [H1] simply means that there are congruence subgroups H ∈
[H2] and H ′ ∈ [H1] of the same level such that H ⊂ H ′; one needs to check
that this is well defined).
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3.7 Hilbert class field

There is one particular ray class field that is the simplest and most impor-
tant. This is the Hilbert class field. It is defined to be the ray class field
of conductor m = 1. We shall denote it by U . The following theorem now
follows easily, after the discussion above.

Theorem 10 The Hilbert class field U is the maximal finite everywhere un-
ramified abelian extension of K. Moreover, the Artin map establishes an
isomorphism between the class group of K and Gal(U/K). In particular the
class number of K is just [U : K].

As a consequence of this theorem we see that a prime p of K splits
completely in U if and only if it is a principal ideal of K. This is not to be
confused with the following theorem, which was proved by Furtwangler.

Theorem 11 (Principal Ideal Theorem) Every ideal of K becomes prin-
cipal in U .

Obviously, the Hilbert class field of Q is just Q itself, since Q has class
number 1. But the above theorems show that the Hilbert class field for a
number field with non-trivial class number is a very interesting object. We
shall say a little more about the Hilbert class field of an imaginary quadratic
situation in the next section.

3.8 Complex multiplication

We have seen that the ray class field of Q of conductor m = n · ∞ is exactly
the cyclotomic field Q(ζn), and that every abelian extension of Q sits in one
of these ray class fields. This is indeed a very satisfying result since we can
generate explicitly all the abelian extension of Q by values of the exponential
function e2πiz at certain division points z ∈ Q/Z.

A central problem in class field theory is to be able to similarly generate
the abelian extensions of an arbitrary number field by values of transcen-
dental functions. In fact this problem has its origins in Kronecker’s famous
‘Jugendtraum’ (= youthful dream, in German).

When K is an imaginary quadratic field, this problem has been completely
solved by the so called theory of ‘complex multiplication’. Essentially the idea
is that the ray class fields are generated by values of the famous j function at
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points in the imaginary quadratic field K, as well as by values of the Weber
function w, at division points of an elliptic curve with complex multiplication
by K. It would take us too far afield from the purpose of these notes to make
this any more precise. However, to get our toes wet, let us at least describe
how to generate the Hilbert class field of K.

For each z ∈ C with positive imaginary part, let j(z) be the corresponding
value of the elliptic modular function, defined by

j(z) = 1728 ·
g2(z)3

g2(z)3 − 27g3(z)2
,

where

g2(z) = 60
∑

(0,0)6=(m,n)∈Z2

1

(mz + n)4
, g3(z) = 140

∑

(0,0)6=(m,n)∈Z2

1

(mz + n)6
.

Then we have the beautiful theorem:

Theorem 12 Let Let K be an imaginary quadratic field, with ring of integers
OK = Z + Zτ . Then j(τ) is an algebraic integer, and U = K(j(τ)) is the
Hilbert class field of K.

3.9 Hilbert’s twelfth problem

The generation of ray class fields by the values of transcendental functions
was emphasized by Hilbert in his ‘twelfth problem’ presented at the Paris
International Congress of Mathematicians in 1900. He wrote

“The extension of Kronecker’s theorem to the case that in place of
the realm of rational numbers or of the imaginary quadratic field
any algebraic field whatever is laid down as realm of rationality,
seems to me of the greatest importance. I regard this problem
as one of the most profound and far reaching in the theory of
numbers and of functions.”

So far very little progress has been made on the problem in general. How-
ever, in closing these notes, let us at least mention some additional special
cases that have been partially treated:
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3.9.1 CM fields

From the point of view of ‘complex multiplication’ the most natural way to
to generalize the results obtained for imaginary quadratic fields is to replace
elliptic curves by higher dimensional abelian varieties. This was done by
Shimura and Taniyama, who managed to generate class fields of ‘CM fields’.
A CM field is the higher analog of an imaginary quadratic field: it is a totally
imaginary quadratic extensions of a totally real field. It must be pointed out
that unfortunately not all abelian extension of CM fields can be generated
by this method.

Shimura and Taniyama’s theory is exposed in their book [5]. There is
also a new edition, [4], now on the market.1

See also Wafa Wei’s (unpublished) thesis, where she gives some informa-
tion about the maximal abelian extension of a CM field that can be generated
by the values of automorphic functions [8].

3.9.2 Real quadratic fields

Some partial results have been obtained by Shimura in this case using abelian
varieties with real multiplication. For more details see the last chapter of his
book [3].

3.9.3 Stark’s method

Another approach to Hilbert’s twelfth problem has been proposed by Stark,
who has shown that certain abelian extensions of arbitrary number fields can
be generated by the values of Artin L-functions at s = 0. You could look at
Tate’s efficient monograph [6] for more details.
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