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We define a 2-cocycle on Γ as follows. For γ, δ ∈ Γ, let
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X =
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where xγ (γ ∈ Γ) are formal symbols, with relations given by:

xγ · xδ = c(γ, δ) xγδ

xγ · e = γ(e) xγ,

for γ, δ ∈ Γ, e ∈ E .
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If f is a primitive non-CM form of weight at least 2, then

Xf
∼= X .

Proof:

k = 2 Momose and Ribet ∼ 1980-81.

k > 2 Brown-Ghate ∼ 2003.

Aside: What is the structure of Xf when f has CM?
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Brauer class of Xf

Let F = E Γ. Then X is a central simple algebra over F .

Question (Ribet)

What is the Brauer class of X = Xf in Br(F )?

Note: X ∈ 2Br(F ).

Proof: If X acts on an E -vector space V with dimE (V ) = m,
then X ∈ mBr(F ). Now take V = MB = Betti realization of
Mf , and note dimE (MB) = 2.

Remark: It suffices to specify X locally! Recall:

2Br(F ) ↪→
⊕
v |F

( 2Br(Fv ) = Z/2)

X 7→

(
Xv = X ⊗F Fv =

{
0 if Xv splits,

1 if Xv ramifies.

)
v
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Infinite places

NB: F ⊂ E is a totally real field since

f̄ = f ⊗ ε−1 =⇒ cx. conj. ∈ Γ.

Theorem (Momose ∼ 1981)

Say v |∞ is a real place of F . Then

Xv ≡ k mod 2.

Thus X is either totally indefinite or totally definite depending
on whether k is even or odd.

Aside: So X fits into Albert’s classification of algebras with
involution. What is the involution on X ?
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Good reduction

Say v is a prime of good reduction, that is v |p but p 6 |N .

Claim: a2
pε
−1(p) ∈ F .

Proof: (a2
pε(p)−1)γ = (χγ(p)ap)2ε(p)−γ = a2

pε(p)−1 (εγ = χ2
γε).

Theorem
Say v |p 6 |N. If ap 6= 0, then:

Xv ≡ v(a2
pε(p)−1) mod 2.

NB: Normalization is v = [Fv : Qp] · v0, with v0(p) = 1.
Proof:

k = 2 and v(a2
pε(p)−1) = 0: Ribet ∼ 1981

k ≥ 2, p > 2, χγ quadratic: Brown-Ghate ∼ 2003

k ≥ 2, p > 2, χγ arbitrary: Ghate-Gonzalez-Quer ∼ 2005

k ≥ 2, p ≥ 2, χγ arbitrary: Banerjee-Ghate (recent work).
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Xv ≡ v(a2
pε(p)−1) mod 2.
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Proof:

k = 2 and v(a2
pε(p)−1) = 0: Ribet ∼ 1981
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k ≥ 2, p ≥ 2, χγ arbitrary: Banerjee-Ghate (recent work).
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Adjoint lifts

Let π be the automorphic form corresponding to f .

Let Π be the the adjoint lift of f .

So if
ρπ : Gal(Q̄/Q)→ GL2(Ew ),

then
ρΠ : Gal(Q̄/Q)→ GL4(Ew ),

and is defined via

ρΠ(g)(X ) = ρπ(g) · X · ρπ(g)−1,

for X ∈ M2x2(Ew ).
We now make the following simple observation:

Lemma

Let ν be the cyclotomic character. Then

trace((ρΠ ⊗ νk−1)(Frobp)) = a2
pε(p)−1.
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Adjoint lifts continued

Proof: Say ρπ(Frobp) =

(
α 0
0 β

)
.

Then

ρΠ(Frobp) =

(
α/β

1
β/α

1

)
.

So trace(ρΠ(Frobp)) =
α2 + β2 + 2αβ

αβ
=

(α + β)2

αβ
= a2

p/ε(p)pk−1.

Theorem (Reinterpretation of previous result)
The ramification of Xf at a prime of good reduction v is
completely determined by the

parity of the slope at v

of the (k − 1)-th twist of the adjoint lift of f , if the slope is finite.
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Bad reduction

These are places v of F with v |p and p|N .

The above reinterpretation in terms of the adjoint lift has
recently allowed us to further our study at the bad primes.

Some notation:

Let Np = exponent of p in N .

Let Cp = exponent of p in C = cond(ε).

So Np ≥ Cp. We consider three cases:
1 Np = Cp: πp is in the ramified principal series
2 Np = 1 and Cp = 0: πp is an unramified twist of Steinberg
3 other Np 6= Cp cases: this includes

twists of the above cases, and,
cases when πp is supercuspidal.
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p-adic Hodge theory

Let Gp be the decomposition group at p.

Recall:

Theorem (Colmez-Fontaine)

There is an equivalence of categories between two-dimensional
potentially semi-stable p-adic representations of Gp and
admissible filtered (φ,N)-modules of rank two.

Let Dw := Dst(ρπ|GK ) be the filtered (φ,N)-module at p, for
an appropriate finite extension K/Qp.

Theorem (Saito)

The eigenvalues α and β of `-adic Frobenius are also the roots
of the crystalline Frobenius φ : Dw → Dw .

Thus, we should try and understand the roots of φ in the
cases of bad reduction as well!
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Ramified principal series

Say Np = Cp and πp is in the ramified principal series.

Decompose ε = ε′ · εp where

ε′ has conductor prime-to-p, and,

εp has conductor a p-power.

Let λ(a) be the unramified character of Gp taking Frobp to a.

Theorem (Langlands)

We have:

ρπ|Gp ∼
(
λ(āpε

′(p)) · εp 0
0 λ(ap)

)
.

The corresponding filtered module was written down explicitly
in Ghate-Mézard ∼ 2009.
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RPS continued

One sees that the roots of crystalline Frobenius are:

α = āpε
′(p) and β = ap.

Note αβ = apāpε
′(p) = pk−1ε′(p). We compute:(

(α + β)2

αβ

)
· pk−1 =

a2
p + ā2

pε
′(p)2 + 2ε′(p)pk−1

ε′(p)pk−1
· pk−1

= a2
pε
′(p)−1 + ā2

pε
′(p) + 2pk−1.

Conjecture (Banerjee-Ghate)

Let p > 2. Say v |p|N and Np = Cp. Then

Xv ≡ v(a2
pε
′(p)−1 + ā2

pε
′(p) + 2pk−1) mod 2,

if the right hand side is finite.
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pε
′(p)2 + 2ε′(p)pk−1

ε′(p)pk−1
· pk−1

= a2
pε
′(p)−1 + ā2
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′(p) = pk−1ε′(p). We compute:(

(α + β)2

αβ

)
· pk−1 =

a2
p + ā2
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pε
′(p) + 2pk−1) mod 2,

if the right hand side is finite.



RPS continued

Theorem (GGQ ∼ 2005)

Let v |p|N with Np = Cp.

Let 0 ≤ q = r
s
< (k − 1)/2, s odd.

If, for each place w of E lying over v , either

w(ap) = q or w̄(ap) = q,

then Xv ≡ 0 mod 2.

Proof: Let Dv = ⊕w |vDw . The characteristic polynomial of
crystalline Frobenius on Dv is∏

w |v

NormEw |Qp((x − ap)(x − āpε
′(p)).

By hypothesis, this has two distinct slopes, namely q and
k − 1− q, each occurring with equal multiplicity. This breaks
the crystal into two pieces, and using s odd, one shows Xv ≡ 0
mod 2.
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′(p)).

By hypothesis, this has two distinct slopes, namely q and
k − 1− q, each occurring with equal multiplicity.

This breaks
the crystal into two pieces, and using s odd, one shows Xv ≡ 0
mod 2.



RPS continued

Theorem (GGQ ∼ 2005)

Let v |p|N with Np = Cp. Let 0 ≤ q = r
s
< (k − 1)/2, s odd.

If, for each place w of E lying over v , either

w(ap) = q or w̄(ap) = q,

then Xv ≡ 0 mod 2.

Proof: Let Dv = ⊕w |vDw . The characteristic polynomial of
crystalline Frobenius on Dv is∏

w |v

NormEw |Qp((x − ap)(x − āpε
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RPS continued

Remark

If p > 2, then Conjecture =⇒ previous Theorem.

Proof: Conj: Xv ≡ v(a2
pε
′(p)−1 + ā2

pε
′(p) + 2pk−1) mod 2.

By hypothesis, the first two terms on the RHS have valuations

2q < k − 1 and 2(k − 1− q) > k − 1,

and the last k − 1. These are all distinct. After multiplying by
[Fv : Qp], we see RHS = min = [Fv : Qp](2q) ≡ 0 mod 2.

Proposition (Banerjee-Ghate)

If p > 2, F = Q and εp is wild, then the Conjecture is true.

Remarks: The conjecture
is also numerically true when p > 2, F = Q, εp is tame.
is (slightly!) false for p = 2.
should be stated a bit differently when F 6= Q.
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Steinberg case

Say now Np 6= Cp, with Np = 1 and Cp = 0.
So πp is an unramified twist of Steinberg.

Theorem (Langlands)

We have:

ρπ|Gp ∼
(
λ(p · ap) ∗

0 λ(ap)

)
.

So the roots of crystalline Frobenius are

α = pap and β = ap.

Note: αβ = pa2
p = ε′(p)pk−1. We compute:(

(α + β)2

αβ

)
· pk−1 =

(ap(1 + p))2

ε′(p)pk−1
· pk−1 = a2

pε
′(p)−1(1 + p)2

= pk−2(1 + p)2.
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Steinberg case continued

Theorem (Banerjee-Ghate)

Say v |p|N and Np = 1, Cp = 0.

Then

Xv = [Fv : Qp] · (k − 2) mod 2.

Remarks:

In fact Ribet ∼ 1981 proves X = 0 when k = 2.
Proof: X acts on the character group of the connected

part of the reduced abelian variety M̃0
f , a torus, hence on

its character group V . But dimE (V ) = 1, so X ∈ 1Br(F ).

In Brown-Ghate ∼ 2003 it was shown that Xv for v |p
sometimes ramifies when the weight is odd! (Weird).

The formula above completely specifies the ramification
at the Steinberg places, in all weights.



Steinberg case continued

Theorem (Banerjee-Ghate)

Say v |p|N and Np = 1, Cp = 0. Then

Xv = [Fv : Qp] · (k − 2) mod 2.

Remarks:

In fact Ribet ∼ 1981 proves X = 0 when k = 2.
Proof: X acts on the character group of the connected

part of the reduced abelian variety M̃0
f , a torus, hence on

its character group V . But dimE (V ) = 1, so X ∈ 1Br(F ).

In Brown-Ghate ∼ 2003 it was shown that Xv for v |p
sometimes ramifies when the weight is odd! (Weird).

The formula above completely specifies the ramification
at the Steinberg places, in all weights.



Steinberg case continued

Theorem (Banerjee-Ghate)

Say v |p|N and Np = 1, Cp = 0. Then

Xv = [Fv : Qp] · (k − 2) mod 2.

Remarks:

In fact Ribet ∼ 1981 proves X = 0 when k = 2.

Proof: X acts on the character group of the connected

part of the reduced abelian variety M̃0
f , a torus, hence on

its character group V . But dimE (V ) = 1, so X ∈ 1Br(F ).

In Brown-Ghate ∼ 2003 it was shown that Xv for v |p
sometimes ramifies when the weight is odd! (Weird).

The formula above completely specifies the ramification
at the Steinberg places, in all weights.
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Remaining cases

What about the other Np 6= Cp cases?

Now ap = 0 and slope =∞!

If πp is a twist of a previous case, then can often reduce to
those cases by noting:

Proposition

Xf⊗χ ∼= Xf .

If πp is supercuspidal, cannot do this. So, we pose:

Question (Infinite slope)

Say p is a prime of either good or bad reduction, with ap = 0.
Is it possible to give a purely local criterion which specifies the
ramification of Xv , for v |p?
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Other cases continued

In the good reduction case, one can prove:

Theorem
Let v |p with p 6 |N, and suppose ap = 0.

Choose q such that
aq 6= 0 and q ≡ p mod N. Then

Xv ≡ v(a2
qε
−1(q)) mod 2.

This is not in terms of a slope at p! However, one knows:

Theorem (Breuil)
Say p 6 |N and ap = 0. Then

ρπ|Gp ∼ Ind
Qp

Qp2
(νk−1

2 )⊗ λ(
√
−1)⊗ λ(

√
ε(p)),

where ν2 : GQp2 → Z×
p2 comes from Lubin-Tate theory.

Q: Is this useful in determining Xv when p 6 |N and ap = 0??
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Thank you

See you in Goa in August, 2010
(Two ICM satellite conferences in Number Theory)


