Modular forms, p-adic Hodge Theory \& Applications

Adjoint Lifts and Modular Endomorphism Algebras

Eknath Ghate
School of Mathematics
Tata Institute of Fundamental Research Mumbai

Roscoff, 2009

Theme of today's talk

Arithmetic information about an object attached to a modular form is sometimes contained in the Fourier coefficients of a suitable lift of the original form.

Shimura-Shintani-Waldspurger Correspondence

For example, the

$$
\begin{aligned}
& \text { twisted central critical } L \text {-values of a form } f \\
& \text { of integral weight }
\end{aligned}
$$

occur as the Fourier coefficients of
the half-integral weight lift g of f

Shimura-Shintani-Waldspurger Correspondence

For example, the

$$
\begin{aligned}
& \text { twisted central critical } L \text {-values of a form } f \\
& \text { of integral weight }
\end{aligned}
$$

occur as the Fourier coefficients of

$$
\text { the half-integral weight lift } g \text { of } f
$$

under the
Shimura-Shintani-Waldspurger correspondence:

$$
\begin{aligned}
\mathrm{PGL}_{2} & \mapsto \widetilde{\mathrm{SL}}_{2} \\
f & \mapsto g=\mathrm{HI}(f)
\end{aligned}
$$

Today

We show that the ramification of the
Brauer class of the endomorphism algebra of the motive attached to a cusp form f of integral weight
tends to be controlled by the Fourier coefficients of
the adjoint lift g of f

Today

We show that the ramification of the
Brauer class of the endomorphism algebra of the motive attached to a cusp form f of integral weight
tends to be controlled by the Fourier coefficients of the adjoint lift g of f
under the
Gelbart-Jacquet map:

$$
\begin{aligned}
\mathrm{GL}_{2} & \mapsto \mathrm{GL}_{4} \\
f & \mapsto g=\operatorname{Ad}(f)
\end{aligned}
$$

Modular forms and motives

Let $f=\sum_{n=1}^{\infty} a_{n} q^{n}$ be a primitive classical cusp form of

- weight $k \geq 2$,
- level $N \geq 1$, and,
- character ϵ.

Modular forms and motives

Let $f=\sum_{n=1}^{\infty} a_{n} q^{n}$ be a primitive classical cusp form of

- weight $k \geq 2$,
- level $N \geq 1$, and,
- character ϵ.

We assume that f does not have complex multiplication!

Modular forms and motives

Let $f=\sum_{n=1}^{\infty} a_{n} q^{n}$ be a primitive classical cusp form of

- weight $k \geq 2$,
- level $N \geq 1$, and,
- character ϵ.

We assume that f does not have complex multiplication!
Let M_{f} be the

- abelian variety,
- Grothendieck motive,
attached to f

Modular forms and motives

Let $f=\sum_{n=1}^{\infty} a_{n} q^{n}$ be a primitive classical cusp form of

- weight $k \geq 2$,
- level $N \geq 1$, and,
- character ϵ.

We assume that f does not have complex multiplication!
Let M_{f} be the

- abelian variety,
- Grothendieck motive, attached to f if
- $k=2$, by Shimura,
- $k>2$, by Scholl.

Modular forms and motives

Let $f=\sum_{n=1}^{\infty} a_{n} q^{n}$ be a primitive classical cusp form of

- weight $k \geq 2$,
- level $N \geq 1$, and,
- character ϵ.

We assume that f does not have complex multiplication!
Let M_{f} be the

- abelian variety,
- Grothendieck motive, attached to f if
- $k=2$, by Shimura,
- $k>2$, by Scholl.
M_{f} is a rank 2 motive over \mathbb{Q} with coefficients in $E=\mathbb{Q}\left(a_{n}\right)$.

Modular endomorphism algebras

Modular endomorphism algebras

Let

$$
X_{f}=\operatorname{End}_{\overline{\mathbb{Q}}}\left(M_{f}\right) \otimes \mathbb{Q}
$$

be the \mathbb{Q}-algebra of endomorphisms of the motive M_{f}.

Modular endomorphism algebras

Let

$$
X_{f}=\operatorname{End}_{\overline{\mathbb{Q}}}\left(M_{f}\right) \otimes \mathbb{Q}
$$

be the \mathbb{Q}-algebra of endomorphisms of the motive M_{f}.
Goal: To study X_{f} !

Modular endomorphism algebras

Let

$$
X_{f}=\operatorname{End}_{\overline{\mathbb{Q}}}\left(M_{f}\right) \otimes \mathbb{Q}
$$

be the \mathbb{Q}-algebra of endomorphisms of the motive M_{f}.
Goal: To study X_{f} !
In particular, we study its:
(1) Crossed product structure
(2) Brauer class.

Extra twists

Definition

A pair $\left(\gamma, \chi_{\gamma}\right)$ where

- $\gamma \in \operatorname{Aut}(E)$, and
- χ_{γ} is an E-valued Dirichlet character is said to be an extra twist for f

Extra twists

Definition

A pair $\left(\gamma, \chi_{\gamma}\right)$ where

- $\gamma \in \operatorname{Aut}(E)$, and
- χ_{γ} is an E-valued Dirichlet character is said to be an extra twist for f if

$$
f^{\gamma}=f \otimes \chi_{\gamma},
$$

Extra twists

Definition

A pair $\left(\gamma, \chi_{\gamma}\right)$ where

- $\gamma \in \operatorname{Aut}(E)$, and
- χ_{γ} is an E-valued Dirichlet character is said to be an extra twist for f if

$$
f^{\gamma}=f \otimes \chi_{\gamma},
$$

i.e.,

$$
a_{p}^{\gamma}=a_{p} \cdot \chi_{\gamma}(p)
$$

for all primes $p \times N$.

Extra twists

Definition

A pair $\left(\gamma, \chi_{\gamma}\right)$ where

- $\gamma \in \operatorname{Aut}(E)$, and
- χ_{γ} is an E-valued Dirichlet character is said to be an extra twist for f if

$$
f^{\gamma}=f \otimes \chi_{\gamma},
$$

i.e.,

$$
a_{p}^{\gamma}=a_{p} \cdot \chi_{\gamma}(p)
$$

for all primes $p \backslash N$.
Let
$\Gamma:=\left\{\gamma \in \operatorname{Aut}(E) \mid\left(\gamma, \chi_{\gamma}\right)\right.$ is an extra twist for $\left.f\right\}=$ abelian group.

Crossed product algebra

We define a 2 -cocycle on Γ as follows. For $\gamma, \delta \in \Gamma$, let

$$
c(\gamma, \delta)=\frac{G\left(\chi_{\gamma}^{-1}\right) G\left(\chi_{\delta}^{-\gamma}\right)}{G\left(\chi_{\gamma \delta}^{-1}\right)} \in E
$$

where $G(\chi)$ is the Gauss sum of χ.

Crossed product algebra

We define a 2 -cocycle on Γ as follows. For $\gamma, \delta \in \Gamma$, let

$$
c(\gamma, \delta)=\frac{G\left(\chi_{\gamma}^{-1}\right) G\left(\chi_{\delta}^{-\gamma}\right)}{G\left(\chi_{\gamma \delta}^{-1}\right)} \in E
$$

where $G(\chi)$ is the Gauss sum of χ.
Consider the crossed product algebra corresponding to c :

$$
X=\bigoplus_{\gamma \in \Gamma} E \cdot x_{\gamma},
$$

where $x_{\gamma}(\gamma \in \Gamma)$ are formal symbols,

Crossed product algebra

We define a 2 -cocycle on Γ as follows. For $\gamma, \delta \in \Gamma$, let

$$
c(\gamma, \delta)=\frac{G\left(\chi_{\gamma}^{-1}\right) G\left(\chi_{\delta}^{-\gamma}\right)}{G\left(\chi_{\gamma \delta}^{-1}\right)} \in E
$$

where $G(\chi)$ is the Gauss sum of χ.
Consider the crossed product algebra corresponding to c :

$$
X=\bigoplus_{\gamma \in \Gamma} E \cdot x_{\gamma},
$$

where $x_{\gamma}(\gamma \in \Gamma)$ are formal symbols, with relations given by:

$$
x_{\gamma} \cdot x_{\delta}=c(\gamma, \delta) x_{\gamma \delta}
$$

Crossed product algebra

We define a 2 -cocycle on Γ as follows. For $\gamma, \delta \in \Gamma$, let

$$
c(\gamma, \delta)=\frac{G\left(\chi_{\gamma}^{-1}\right) G\left(\chi_{\delta}^{-\gamma}\right)}{G\left(\chi_{\gamma \delta}^{-1}\right)} \in E
$$

where $G(\chi)$ is the Gauss sum of χ.
Consider the crossed product algebra corresponding to c :

$$
X=\bigoplus_{\gamma \in \Gamma} E \cdot x_{\gamma},
$$

where $x_{\gamma}(\gamma \in \Gamma)$ are formal symbols, with relations given by:

$$
\begin{aligned}
x_{\gamma} \cdot x_{\delta} & =c(\gamma, \delta) x_{\gamma \delta} \\
x_{\gamma} \cdot e & =\gamma(e) x_{\gamma},
\end{aligned}
$$

for $\gamma, \delta \in \Gamma, e \in E$.

Crossed product structure of X_{f}

Theorem

If f is a primitive non-CM form of weight at least 2 , then

$$
X_{f} \cong X
$$

Crossed product structure of X_{f}

Theorem

If f is a primitive non-CM form of weight at least 2, then

$$
X_{f} \cong X
$$

Proof:

- $k=2$ Momose and Ribet $\sim 1980-81$.
- $k>2$ Brown-Ghate ~ 2003.

Crossed product structure of X_{f}

Theorem

If f is a primitive non-CM form of weight at least 2 , then

$$
X_{f} \cong X .
$$

Proof:

- $k=2$ Momose and Ribet $\sim 1980-81$.
- $k>2$ Brown-Ghate ~ 2003.

Aside: What is the structure of X_{f} when f has CM?

Brauer class of X_{f}

Let $F=E^{\ulcorner }$. Then X is a central simple algebra over F.

Brauer class of X_{f}

Let $F=E^{\ulcorner }$. Then X is a central simple algebra over F.
Question (Ribet)
What is the Brauer class of $X=X_{f}$ in $\operatorname{Br}(F)$?

Brauer class of X_{f}

Let $F=E^{\ulcorner }$. Then X is a central simple algebra over F.
Question (Ribet)
What is the Brauer class of $X=X_{f}$ in $\operatorname{Br}(F)$?

Note: $X \in{ }_{2} \operatorname{Br}(F)$.

Brauer class of X_{f}

Let $F=E^{\ulcorner }$. Then X is a central simple algebra over F.

Question (Ribet)

What is the Brauer class of $X=X_{f}$ in $\operatorname{Br}(F)$?

Note: $X \in{ }_{2} \operatorname{Br}(F)$.
Proof: If X acts on an E-vector space V with $\operatorname{dim}_{E}(V)=m$, then $X \in{ }_{m} \operatorname{Br}(F)$.

Brauer class of X_{f}

Let $F=E^{\ulcorner }$. Then X is a central simple algebra over F.

Question (Ribet)

What is the Brauer class of $X=X_{f}$ in $\operatorname{Br}(F)$?
Note: $X \in{ }_{2} \operatorname{Br}(F)$.
Proof: If X acts on an E-vector space V with $\operatorname{dim}_{E}(V)=m$, then $X \in{ }_{m} \operatorname{Br}(F)$. Now take $V=M_{B}=$ Betti realization of M_{f}, and note $\operatorname{dim}_{E}\left(M_{B}\right)=2$.

Brauer class of X_{f}

Let $F=E^{\ulcorner }$. Then X is a central simple algebra over F.

Question (Ribet)

What is the Brauer class of $X=X_{f}$ in $\operatorname{Br}(F)$?
Note: $X \in{ }_{2} \operatorname{Br}(F)$.
Proof: If X acts on an E-vector space V with $\operatorname{dim}_{E}(V)=m$, then $X \in{ }_{m} \operatorname{Br}(F)$. Now take $V=M_{B}=$ Betti realization of M_{f}, and note $\operatorname{dim}_{E}\left(M_{B}\right)=2$.
Remark: It suffices to specify X locally!

Brauer class of X_{f}

Let $F=E^{\ulcorner }$. Then X is a central simple algebra over F.

Question (Ribet)

What is the Brauer class of $X=X_{f}$ in $\operatorname{Br}(F)$?
Note: $X \in{ }_{2} \operatorname{Br}(F)$.
Proof: If X acts on an E-vector space V with $\operatorname{dim}_{E}(V)=m$, then $X \in{ }_{m} \operatorname{Br}(F)$. Now take $V=M_{B}=$ Betti realization of M_{f}, and note $\operatorname{dim}_{E}\left(M_{B}\right)=2$.
Remark: It suffices to specify X locally! Recall:

$$
\begin{aligned}
{ }_{2} \operatorname{Br}(F) & \hookrightarrow \bigoplus_{v / F}\left({ }_{2} \operatorname{Br}\left(F_{v}\right)=\mathbb{Z} / 2\right) \\
X & \mapsto\left(X_{v}=X \otimes_{F} F_{v}=\left\{\begin{array}{ll}
0 & \text { if } X_{v} \text { splits, } \\
1 & \text { if } X_{v} \text { ramifies. }
\end{array}\right)_{v}\right.
\end{aligned}
$$

Infinite places

NB: $F \subset E$ is a totally real field since

$$
\bar{f}=f \otimes \epsilon^{-1} \Longrightarrow c x . \text { conj. } \in \Gamma \text {. }
$$

Infinite places

NB: $F \subset E$ is a totally real field since

$$
\bar{f}=f \otimes \epsilon^{-1} \Longrightarrow c x . \text { conj. } \in \Gamma .
$$

Theorem (Momose ~1981)

Say $v \mid \infty$ is a real place of F. Then

$$
X_{v} \equiv k \quad \bmod 2
$$

Infinite places

NB: $F \subset E$ is a totally real field since

$$
\bar{f}=f \otimes \epsilon^{-1} \Longrightarrow c x . \text { conj. } \in \Gamma \text {. }
$$

Theorem (Momose ~1981)

Say $v \mid \infty$ is a real place of F. Then

$$
X_{v} \equiv k \quad \bmod 2
$$

Thus X is either totally indefinite or totally definite depending on whether k is even or odd.

Infinite places

NB: $F \subset E$ is a totally real field since

$$
\bar{f}=f \otimes \epsilon^{-1} \Longrightarrow c x . \text { conj. } \in \Gamma \text {. }
$$

Theorem (Momose ~1981)

Say $v \mid \infty$ is a real place of F. Then

$$
X_{v} \equiv k \quad \bmod 2
$$

Thus X is either totally indefinite or totally definite depending on whether k is even or odd.

Aside: So X fits into Albert's classification of algebras with involution. What is the involution on X ?

Good reduction

Say v is a prime of good reduction, that is $v \mid p$ but $p \nmid N$.

Good reduction

Say v is a prime of good reduction, that is $v \mid p$ but $p X N$.
Claim: $a_{p}^{2} \epsilon^{-1}(p) \in F$.

Good reduction

Say v is a prime of good reduction, that is $v \mid p$ but $p \nmid N$.
Claim: $a_{p}^{2} \epsilon^{-1}(p) \in F$.
Proof: $\left(a_{p}^{2} \epsilon(p)^{-1}\right)^{\gamma}=$

Good reduction

Say v is a prime of good reduction, that is $v \mid p$ but $p \nmid N$.
Claim: $a_{p}^{2} \epsilon^{-1}(p) \in F$.
Proof: $\left(a_{p}^{2} \epsilon(p)^{-1}\right)^{\gamma}=\left(\chi_{\gamma}(p) a_{p}\right)^{2} \epsilon(p)^{-\gamma}=$

Good reduction

Say v is a prime of good reduction, that is $v \mid p$ but $p \nmid N$.
Claim: $a_{p}^{2} \epsilon^{-1}(p) \in F$.
Proof: $\left(a_{p}^{2} \epsilon(p)^{-1}\right)^{\gamma}=\left(\chi_{\gamma}(p) a_{p}\right)^{2} \epsilon(p)^{-\gamma}=a_{p}^{2} \epsilon(p)^{-1}$

Good reduction

Say v is a prime of good reduction, that is $v \mid p$ but $p \nmid N$.
Claim: $a_{p}^{2} \epsilon^{-1}(p) \in F$.
Proof: $\left(a_{p}^{2} \epsilon(p)^{-1}\right)^{\gamma}=\left(\chi_{\gamma}(p) a_{p}\right)^{2} \epsilon(p)^{-\gamma}=a_{p}^{2} \epsilon(p)^{-1}\left(\epsilon^{\gamma}=\chi_{\gamma}^{2} \epsilon\right)$.

Good reduction

Say v is a prime of good reduction, that is $v \mid p$ but $p X N$.
Claim: $a_{\rho}^{2} \epsilon^{-1}(p) \in F$.
Proof: $\left(a_{p}^{2} \epsilon(p)^{-1}\right)^{\gamma}=\left(\chi_{\gamma}(p) a_{p}\right)^{2} \epsilon(p)^{-\gamma}=a_{p}^{2} \epsilon(p)^{-1}\left(\epsilon^{\gamma}=\chi_{\gamma}^{2} \epsilon\right)$.

Theorem

Say $v \mid p$ XN.

Good reduction

Say v is a prime of good reduction, that is $v \mid p$ but $p \nmid N$.
Claim: $a_{\rho}^{2} \epsilon^{-1}(p) \in F$.
Proof: $\left(a_{p}^{2} \epsilon(p)^{-1}\right)^{\gamma}=\left(\chi_{\gamma}(p) a_{p}\right)^{2} \epsilon(p)^{-\gamma}=a_{p}^{2} \epsilon(p)^{-1}\left(\epsilon^{\gamma}=\chi_{\gamma}^{2} \epsilon\right)$.

Theorem

Say $v \mid p$ XN. If $a_{p} \neq 0$, then:

$$
X_{v} \equiv v\left(a_{p}^{2} \epsilon(p)^{-1}\right) \quad \bmod 2 .
$$

Good reduction

Say v is a prime of good reduction, that is $v \mid p$ but $p X N$.
Claim: $a_{p}^{2} \epsilon^{-1}(p) \in F$.
Proof: $\left(a_{p}^{2} \epsilon(p)^{-1}\right)^{\gamma}=\left(\chi_{\gamma}(p) a_{p}\right)^{2} \epsilon(p)^{-\gamma}=a_{p}^{2} \epsilon(p)^{-1}\left(\epsilon^{\gamma}=\chi_{\gamma}^{2} \epsilon\right)$.

Theorem

Say $v \mid p$ XN. If $a_{p} \neq 0$, then:

$$
X_{v} \equiv v\left(a_{\rho}^{2} \epsilon(p)^{-1}\right) \quad \bmod 2 .
$$

NB: Normalization is $v=\left[F_{v}: \mathbb{Q}_{p}\right] \cdot v_{0}$, with $v_{0}(p)=1$.

Good reduction

Say v is a prime of good reduction, that is $v \mid p$ but $p \nmid N$.
Claim: $a_{p}^{2} \epsilon^{-1}(p) \in F$.
Proof: $\left(a_{p}^{2} \epsilon(p)^{-1}\right)^{\gamma}=\left(\chi_{\gamma}(p) a_{p}\right)^{2} \epsilon(p)^{-\gamma}=a_{p}^{2} \epsilon(p)^{-1}\left(\epsilon^{\gamma}=\chi_{\gamma}^{2} \epsilon\right)$.

Theorem

Say $v \mid p$ XN. If $a_{p} \neq 0$, then:

$$
X_{v} \equiv v\left(a_{p}^{2} \epsilon(p)^{-1}\right) \quad \bmod 2
$$

NB: Normalization is $v=\left[F_{v}: \mathbb{Q}_{p}\right] \cdot v_{0}$, with $v_{0}(p)=1$. Proof:

- $k=2$ and $v\left(a_{\rho}^{2} \epsilon(p)^{-1}\right)=0$: Ribet ~ 1981

Good reduction

Say v is a prime of good reduction, that is $v \mid p$ but $p \nmid N$.
Claim: $a_{p}^{2} \epsilon^{-1}(p) \in F$.
Proof: $\left(a_{p}^{2} \epsilon(p)^{-1}\right)^{\gamma}=\left(\chi_{\gamma}(p) a_{p}\right)^{2} \epsilon(p)^{-\gamma}=a_{p}^{2} \epsilon(p)^{-1}\left(\epsilon^{\gamma}=\chi_{\gamma}^{2} \epsilon\right)$.

Theorem

Say $v \mid p$ XN. If $a_{p} \neq 0$, then:

$$
X_{v} \equiv v\left(a_{p}^{2} \epsilon(p)^{-1}\right) \quad \bmod 2
$$

NB: Normalization is $v=\left[F_{v}: \mathbb{Q}_{p}\right] \cdot v_{0}$, with $v_{0}(p)=1$. Proof:

- $k=2$ and $v\left(a_{\rho}^{2} \epsilon(p)^{-1}\right)=0$: Ribet ~ 1981
- $k \geq 2, p>2, \chi_{\gamma}$ quadratic: Brown-Ghate ~ 2003

Good reduction

Say v is a prime of good reduction, that is $v \mid p$ but $p \nmid N$.
Claim: $a_{p}^{2} \epsilon^{-1}(p) \in F$.
Proof: $\left(a_{p}^{2} \epsilon(p)^{-1}\right)^{\gamma}=\left(\chi_{\gamma}(p) a_{p}\right)^{2} \epsilon(p)^{-\gamma}=a_{p}^{2} \epsilon(p)^{-1}\left(\epsilon^{\gamma}=\chi_{\gamma}^{2} \epsilon\right)$.

Theorem

Say $v \mid p$ XN. If $a_{p} \neq 0$, then:

$$
X_{v} \equiv v\left(a_{p}^{2} \epsilon(p)^{-1}\right) \quad \bmod 2
$$

NB: Normalization is $v=\left[F_{v}: \mathbb{Q}_{p}\right] \cdot v_{0}$, with $v_{0}(p)=1$. Proof:

- $k=2$ and $v\left(a_{\rho}^{2} \epsilon(p)^{-1}\right)=0$: Ribet ~ 1981
- $k \geq 2, p>2, \chi_{\gamma}$ quadratic: Brown-Ghate ~ 2003
- $k \geq 2, p>2, \chi_{\gamma}$ arbitrary: Ghate-Gonzalez-Quer ~ 2005

Good reduction

Say v is a prime of good reduction, that is $v \mid p$ but $p X N$.
Claim: $a_{p}^{2} \epsilon^{-1}(p) \in F$.
Proof: $\left(a_{p}^{2} \epsilon(p)^{-1}\right)^{\gamma}=\left(\chi_{\gamma}(p) a_{p}\right)^{2} \epsilon(p)^{-\gamma}=a_{p}^{2} \epsilon(p)^{-1}\left(\epsilon^{\gamma}=\chi_{\gamma}^{2} \epsilon\right)$.

Theorem

Say $v \mid p$ XN. If $a_{p} \neq 0$, then:

$$
X_{v} \equiv v\left(a_{\rho}^{2} \epsilon(p)^{-1}\right) \quad \bmod 2 .
$$

NB: Normalization is $v=\left[F_{v}: \mathbb{Q}_{p}\right] \cdot v_{0}$, with $v_{0}(p)=1$. Proof:

- $k=2$ and $v\left(a_{\rho}^{2} \epsilon(p)^{-1}\right)=0$: Ribet ~ 1981
- $k \geq 2, p>2, \chi_{\gamma}$ quadratic: Brown-Ghate ~ 2003
- $k \geq 2, p>2, \chi_{\gamma}$ arbitrary: Ghate-Gonzalez-Quer ~ 2005
- $k \geq 2, p \geq 2, \chi_{\gamma}$ arbitrary: Banerjee-Ghate (recent work).

Adjoint lifts

Let π be the automorphic form corresponding to f ．

Adjoint lifts

Let π be the automorphic form corresponding to f.
Let Π be the the adjoint lift of f.

Adjoint lifts

Let π be the automorphic form corresponding to f.
Let Π be the the adjoint lift of f.
So if

$$
\rho_{\pi}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(E_{w}\right)
$$

then

$$
\rho_{\Pi}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{4}\left(E_{w}\right)
$$

Adjoint lifts

Let π be the automorphic form corresponding to f.
Let Π be the the adjoint lift of f.
So if

$$
\rho_{\pi}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{GL}_{2}\left(E_{w}\right),
$$

then

$$
\rho_{\Pi}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{4}\left(E_{w}\right)
$$

and is defined via

$$
\rho_{\Pi}(g)(X)=\rho_{\pi}(g) \cdot X \cdot \rho_{\pi}(g)^{-1}
$$

for $X \in M_{2 \times 2}\left(E_{w}\right)$.

Adjoint lifts

Let π be the automorphic form corresponding to f.
Let Π be the the adjoint lift of f.
So if

$$
\rho_{\pi}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(E_{w}\right)
$$

then

$$
\rho_{\Pi}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{4}\left(E_{w}\right)
$$

and is defined via

$$
\rho_{\Pi}(g)(X)=\rho_{\pi}(g) \cdot X \cdot \rho_{\pi}(g)^{-1}
$$

for $X \in M_{2 \times 2}\left(E_{w}\right)$.
We now make the following simple observation:

Adjoint lifts

Let π be the automorphic form corresponding to f.
Let Π be the the adjoint lift of f.
So if

$$
\rho_{\pi}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(E_{w}\right)
$$

then

$$
\rho_{\Pi}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{4}\left(E_{w}\right)
$$

and is defined via

$$
\rho_{\Pi}(g)(X)=\rho_{\pi}(g) \cdot X \cdot \rho_{\pi}(g)^{-1}
$$

for $X \in M_{2 \times 2}\left(E_{w}\right)$.
We now make the following simple observation:

Lemma

Let ν be the cyclotomic character. Then

$$
\operatorname{trace}\left(\left(\rho_{\Pi} \otimes \nu^{k-1}\right)\left(\operatorname{Frob}_{p}\right)\right)=a_{p}^{2} \epsilon(p)^{-1}
$$

Adjoint lifts continued

Proof: Say $\rho_{\pi}\left(\operatorname{Frob}_{p}\right)=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$.

Adjoint lifts continued

Proof: Say $\rho_{\pi}\left(\right.$ Frob $\left._{p}\right)=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$. Then

$$
\rho_{\Pi}\left(\operatorname{Frob}_{p}\right)=\left(\begin{array}{cccc}
\alpha / \beta & & & \\
& 1 & & \\
& & \beta / \alpha & \\
& & & 1
\end{array}\right) .
$$

Adjoint lifts continued

Proof: Say $\rho_{\pi}\left(\right.$ Frob $\left._{p}\right)=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$. Then

$$
\rho_{\Pi}\left(\operatorname{Frob}_{p}\right)=\left(\begin{array}{cccc}
\alpha / \beta & & & \\
& 1 & & \\
& & \beta / \alpha & \\
& & & 1
\end{array}\right) .
$$

So trace $\left(\rho_{\Pi}\left(\operatorname{Frob}_{p}\right)\right)=$

Adjoint lifts continued

Proof: Say $\rho_{\pi}\left(\right.$ Frob $\left._{p}\right)=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$. Then

$$
\rho_{\Pi}\left(\operatorname{Frob}_{p}\right)=\left(\begin{array}{cccc}
\alpha / \beta & & & \\
& 1 & & \\
& & \beta / \alpha & \\
& & & 1
\end{array}\right) .
$$

So $\operatorname{trace}\left(\rho_{\Pi}\left(\operatorname{Frob}_{p}\right)\right)=\frac{\alpha^{2}+\beta^{2}+2 \alpha \beta}{\alpha \beta}=$

Adjoint lifts continued

Proof: Say $\rho_{\pi}\left(\right.$ Frob $\left._{p}\right)=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$. Then

$$
\rho_{\Pi}\left(\operatorname{Frob}_{p}\right)=\left(\begin{array}{cccc}
\alpha / \beta & & & \\
& 1 & & \\
& & \beta / \alpha & \\
& & & 1
\end{array}\right) .
$$

So $\operatorname{trace}\left(\rho_{\Pi}\left(\operatorname{Frob}_{p}\right)\right)=\frac{\alpha^{2}+\beta^{2}+2 \alpha \beta}{\alpha \beta}=\frac{(\alpha+\beta)^{2}}{\alpha \beta}=$

Adjoint lifts continued

Proof: Say $\rho_{\pi}\left(\right.$ Frob $\left._{p}\right)=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$. Then

$$
\rho_{\Pi}\left(\operatorname{Frob}_{p}\right)=\left(\begin{array}{cccc}
\alpha / \beta & & & \\
& 1 & & \\
& & \beta / \alpha & \\
& & & 1
\end{array}\right) .
$$

So $\operatorname{trace}\left(\rho_{\Pi}\left(\operatorname{Frob}_{p}\right)\right)=\frac{\alpha^{2}+\beta^{2}+2 \alpha \beta}{\alpha \beta}=\frac{(\alpha+\beta)^{2}}{\alpha \beta}=a_{p}^{2} / \epsilon(p) p^{k-1}$.

Adjoint lifts continued

Proof: Say $\rho_{\pi}\left(\right.$ Frob $\left._{p}\right)=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$. Then

$$
\rho_{\Pi}\left(\operatorname{Frob}_{p}\right)=\left(\begin{array}{cccc}
\alpha / \beta & & & \\
& 1 & & \\
& & \beta / \alpha & \\
& & & 1
\end{array}\right) .
$$

So $\operatorname{trace}\left(\rho_{\Pi}\left(\operatorname{Frob}_{p}\right)\right)=\frac{\alpha^{2}+\beta^{2}+2 \alpha \beta}{\alpha \beta}=\frac{(\alpha+\beta)^{2}}{\alpha \beta}=a_{p}^{2} / \epsilon(p) p^{k-1}$.

Theorem (Reinterpretation of previous result)

The ramification of X_{f} at a prime of good reduction v

Adjoint lifts continued

Proof: Say $\rho_{\pi}\left(\right.$ Frob $\left._{p}\right)=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$. Then

$$
\rho_{\Pi}\left(\operatorname{Frob}_{p}\right)=\left(\begin{array}{cccc}
\alpha / \beta & & & \\
& 1 & & \\
& & \beta / \alpha & \\
& & & 1
\end{array}\right) .
$$

So $\operatorname{trace}\left(\rho_{\Pi}\left(\operatorname{Frob}_{p}\right)\right)=\frac{\alpha^{2}+\beta^{2}+2 \alpha \beta}{\alpha \beta}=\frac{(\alpha+\beta)^{2}}{\alpha \beta}=a_{p}^{2} / \epsilon(p) p^{k-1}$.

Theorem (Reinterpretation of previous result)

The ramification of X_{f} at a prime of good reduction v is completely determined by the

Adjoint lifts continued

Proof: Say $\rho_{\pi}\left(\right.$ Frob $\left._{p}\right)=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$. Then

$$
\rho_{\Pi}\left(\operatorname{Frob}_{p}\right)=\left(\begin{array}{cccc}
\alpha / \beta & & & \\
& 1 & & \\
& & \beta / \alpha & \\
& & & 1
\end{array}\right)
$$

So $\operatorname{trace}\left(\rho_{\Pi}\left(\operatorname{Frob}_{p}\right)\right)=\frac{\alpha^{2}+\beta^{2}+2 \alpha \beta}{\alpha \beta}=\frac{(\alpha+\beta)^{2}}{\alpha \beta}=a_{p}^{2} / \epsilon(p) p^{k-1}$.

Theorem (Reinterpretation of previous result)

The ramification of X_{f} at a prime of good reduction v is completely determined by the
parity of the slope at v
of the $(k-1)$-th twist of the adjoint lift of f,

Adjoint lifts continued

Proof: Say $\rho_{\pi}\left(\right.$ Frob $\left._{p}\right)=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$. Then

$$
\rho_{\Pi}\left(\operatorname{Frob}_{p}\right)=\left(\begin{array}{cccc}
\alpha / \beta & & & \\
& 1 & & \\
& & \beta / \alpha & \\
& & & 1
\end{array}\right) .
$$

So $\operatorname{trace}\left(\rho_{\Pi}\left(\operatorname{Frob}_{p}\right)\right)=\frac{\alpha^{2}+\beta^{2}+2 \alpha \beta}{\alpha \beta}=\frac{(\alpha+\beta)^{2}}{\alpha \beta}=a_{p}^{2} / \epsilon(p) p^{k-1}$.

Theorem (Reinterpretation of previous result)

The ramification of X_{f} at a prime of good reduction v is completely determined by the
parity of the slope at v
of the $(k-1)$-th twist of the adjoint lift of f, if the slope is finite.

Bad reduction

Bad reduction

These are places v of F with $v \mid p$ and $p \mid N$.

Bad reduction

These are places v of F with $v \mid p$ and $p \mid N$.
The above reinterpretation in terms of the adjoint lift has recently allowed us to further our study at the bad primes.

Bad reduction

These are places v of F with $v \mid p$ and $p \mid N$.
The above reinterpretation in terms of the adjoint lift has recently allowed us to further our study at the bad primes.

Some notation:

Bad reduction

These are places v of F with $v \mid p$ and $p \mid N$.
The above reinterpretation in terms of the adjoint lift has recently allowed us to further our study at the bad primes.
Some notation:
Let $N_{p}=$ exponent of p in N.

Bad reduction

These are places v of F with $v \mid p$ and $p \mid N$.
The above reinterpretation in terms of the adjoint lift has recently allowed us to further our study at the bad primes.

Some notation:

Let $N_{p}=$ exponent of p in N.
Let $C_{p}=$ exponent of p in $C=\operatorname{cond}(\epsilon)$.

Bad reduction

These are places v of F with $v \mid p$ and $p \mid N$.
The above reinterpretation in terms of the adjoint lift has recently allowed us to further our study at the bad primes.

Some notation:
Let $N_{p}=$ exponent of p in N.
Let $C_{p}=$ exponent of p in $C=\operatorname{cond}(\epsilon)$.
So $N_{p} \geq C_{p}$.

Bad reduction

These are places v of F with $v \mid p$ and $p \mid N$.
The above reinterpretation in terms of the adjoint lift has recently allowed us to further our study at the bad primes.

Some notation:
Let $N_{p}=$ exponent of p in N.
Let $C_{p}=$ exponent of p in $C=\operatorname{cond}(\epsilon)$.
So $N_{p} \geq C_{p}$. We consider three cases:
(1) $N_{p}=C_{p}: \pi_{p}$ is in the ramified principal series

Bad reduction

These are places v of F with $v \mid p$ and $p \mid N$.
The above reinterpretation in terms of the adjoint lift has recently allowed us to further our study at the bad primes.

Some notation:

Let $N_{p}=$ exponent of p in N.
Let $C_{p}=$ exponent of p in $C=\operatorname{cond}(\epsilon)$.
So $N_{p} \geq C_{p}$. We consider three cases:
(1) $N_{p}=C_{p}: \pi_{p}$ is in the ramified principal series
(2) $N_{p}=1$ and $C_{p}=0: \pi_{p}$ is an unramified twist of Steinberg

Bad reduction

These are places v of F with $v \mid p$ and $p \mid N$.
The above reinterpretation in terms of the adjoint lift has recently allowed us to further our study at the bad primes.

Some notation:

Let $N_{p}=$ exponent of p in N.
Let $C_{p}=$ exponent of p in $C=\operatorname{cond}(\epsilon)$.
So $N_{p} \geq C_{p}$. We consider three cases:
(1) $N_{p}=C_{p}: \pi_{p}$ is in the ramified principal series
(2) $N_{p}=1$ and $C_{p}=0: \pi_{p}$ is an unramified twist of Steinberg
(3) other $N_{p} \neq C_{p}$ cases: this includes twists of the above cases, and,

Bad reduction

These are places v of F with $v \mid p$ and $p \mid N$.
The above reinterpretation in terms of the adjoint lift has recently allowed us to further our study at the bad primes.

Some notation:

Let $N_{p}=$ exponent of p in N.
Let $C_{p}=$ exponent of p in $C=\operatorname{cond}(\epsilon)$.
So $N_{p} \geq C_{p}$. We consider three cases:
(1) $N_{p}=C_{p}: \pi_{p}$ is in the ramified principal series
(2) $N_{p}=1$ and $C_{p}=0: \pi_{p}$ is an unramified twist of Steinberg
(3) other $N_{p} \neq C_{p}$ cases: this includes twists of the above cases, and, cases when π_{p} is supercuspidal.

p-adic Hodge theory

Let G_{p} be the decomposition group at p.

p-adic Hodge theory

Let G_{p} be the decomposition group at p. Recall:

Theorem (Colmez-Fontaine)

There is an equivalence of categories between two-dimensional potentially semi-stable p-adic representations of G_{p} and admissible filtered (ϕ, N)-modules of rank two.

p-adic Hodge theory

Let G_{p} be the decomposition group at p. Recall:

Theorem (Colmez-Fontaine)

There is an equivalence of categories between two-dimensional potentially semi-stable p-adic representations of G_{p} and admissible filtered (ϕ, N)-modules of rank two.

Let $D_{w}:=D_{\text {st }}\left(\rho_{\pi} \mid G_{K}\right)$ be the filtered (ϕ, N)-module at p, for an appropriate finite extension K / \mathbb{Q}_{p}.

p-adic Hodge theory

Let G_{p} be the decomposition group at p. Recall:

Theorem (Colmez-Fontaine)

There is an equivalence of categories between two-dimensional potentially semi-stable p-adic representations of G_{p} and admissible filtered (ϕ, N)-modules of rank two.

Let $D_{w}:=D_{\text {st }}\left(\rho_{\pi} \mid G_{K}\right)$ be the filtered (ϕ, N)-module at p, for an appropriate finite extension K / \mathbb{Q}_{p}.

Theorem (Saito)

The eigenvalues α and β of ℓ-adic Frobenius are also the roots of the crystalline Frobenius $\phi: D_{w} \rightarrow D_{w}$.

p-adic Hodge theory

Let G_{p} be the decomposition group at p. Recall:

Theorem (Colmez-Fontaine)

There is an equivalence of categories between two-dimensional potentially semi-stable p-adic representations of G_{p} and admissible filtered (ϕ, N)-modules of rank two.

Let $D_{w}:=D_{\text {st }}\left(\rho_{\pi} \mid G_{K}\right)$ be the filtered (ϕ, N)-module at p, for an appropriate finite extension K / \mathbb{Q}_{p}.

Theorem (Saito)

The eigenvalues α and β of ℓ-adic Frobenius are also the roots of the crystalline Frobenius $\phi: D_{w} \rightarrow D_{w}$.

Thus, we should try and understand the roots of ϕ in the cases of bad reduction as well!

Ramified principal series

Say $N_{p}=C_{p}$ and π_{p} is in the ramified principal series.

Ramified principal series

Say $N_{p}=C_{p}$ and π_{p} is in the ramified principal series.
Decompose $\epsilon=\epsilon^{\prime} \cdot \epsilon_{p}$ where

- ϵ^{\prime} has conductor prime-to- p, and,
- ϵ_{p} has conductor a p-power.

Ramified principal series

Say $N_{p}=C_{p}$ and π_{p} is in the ramified principal series.
Decompose $\epsilon=\epsilon^{\prime} \cdot \epsilon_{p}$ where

- ϵ^{\prime} has conductor prime-to- p, and,
- ϵ_{p} has conductor a p-power.

Let $\lambda(a)$ be the unramified character of G_{p} taking Frob $_{p}$ to a.

Ramified principal series

Say $N_{p}=C_{p}$ and π_{p} is in the ramified principal series.
Decompose $\epsilon=\epsilon^{\prime} \cdot \epsilon_{p}$ where

- ϵ^{\prime} has conductor prime-to- p, and,
- ϵ_{p} has conductor a p-power.

Let $\lambda(a)$ be the unramified character of G_{p} taking Frob_{p} to a.

Theorem (Langlands)

We have:

$$
\left.\rho_{\pi}\right|_{G_{p}} \sim\left(\begin{array}{cc}
\lambda\left(\bar{a}_{p} \epsilon^{\prime}(p)\right) \cdot \epsilon_{p} & 0 \\
0 & \lambda\left(a_{p}\right)
\end{array}\right) .
$$

Ramified principal series

Say $N_{p}=C_{p}$ and π_{p} is in the ramified principal series.
Decompose $\epsilon=\epsilon^{\prime} \cdot \epsilon_{p}$ where

- ϵ^{\prime} has conductor prime-to- p, and,
- ϵ_{p} has conductor a p-power.

Let $\lambda(a)$ be the unramified character of G_{p} taking Frob $_{p}$ to a.

Theorem (Langlands)

We have:

$$
\rho_{\pi} \left\lvert\, G_{p} \sim\left(\begin{array}{cc}
\lambda\left(\bar{a}_{p} \epsilon^{\prime}(p)\right) \cdot \epsilon_{p} & 0 \\
0 & \lambda\left(a_{p}\right)
\end{array}\right) .\right.
$$

The corresponding filtered module was written down explicitly in Ghate-Mézard ~ 2009.

RPS continued

One sees that the roots of crystalline Frobenius are:

$$
\alpha=\bar{a}_{p} \epsilon^{\prime}(p) \quad \text { and } \quad \beta=a_{p}
$$

RPS continued

One sees that the roots of crystalline Frobenius are:

$$
\alpha=\bar{a}_{p} \epsilon^{\prime}(p) \quad \text { and } \quad \beta=a_{p}
$$

Note $\alpha \beta=a_{p} \bar{a}_{p} \epsilon^{\prime}(p)=p^{k-1} \epsilon^{\prime}(p)$.

RPS continued

One sees that the roots of crystalline Frobenius are:

$$
\alpha=\bar{a}_{p} \epsilon^{\prime}(p) \quad \text { and } \quad \beta=a_{p}
$$

Note $\alpha \beta=a_{p} \bar{a}_{p} \epsilon^{\prime}(p)=p^{k-1} \epsilon^{\prime}(p)$. We compute:

RPS continued

One sees that the roots of crystalline Frobenius are:

$$
\alpha=\bar{a}_{p} \epsilon^{\prime}(p) \quad \text { and } \quad \beta=a_{p}
$$

Note $\alpha \beta=a_{p} \bar{a}_{p} \epsilon^{\prime}(p)=p^{k-1} \epsilon^{\prime}(p)$. We compute:

$$
\left(\frac{(\alpha+\beta)^{2}}{\alpha \beta}\right) \cdot p^{k-1}
$$

RPS continued

One sees that the roots of crystalline Frobenius are:

$$
\alpha=\bar{a}_{p} \epsilon^{\prime}(p) \quad \text { and } \quad \beta=a_{p}
$$

Note $\alpha \beta=a_{p} \bar{a}_{p} \epsilon^{\prime}(p)=p^{k-1} \epsilon^{\prime}(p)$. We compute:

$$
\left(\frac{(\alpha+\beta)^{2}}{\alpha \beta}\right) \cdot p^{k-1}=\frac{a_{p}^{2}+\bar{a}_{p}^{2} \epsilon^{\prime}(p)^{2}+2 \epsilon^{\prime}(p) p^{k-1}}{\epsilon^{\prime}(p) p^{k-1}} \cdot p^{k-1}
$$

RPS continued

One sees that the roots of crystalline Frobenius are:

$$
\alpha=\bar{a}_{p} \epsilon^{\prime}(p) \quad \text { and } \quad \beta=a_{p}
$$

Note $\alpha \beta=a_{p} \bar{a}_{p} \epsilon^{\prime}(p)=p^{k-1} \epsilon^{\prime}(p)$. We compute:

$$
\begin{aligned}
\left(\frac{(\alpha+\beta)^{2}}{\alpha \beta}\right) \cdot p^{k-1} & =\frac{a_{p}^{2}+\bar{a}_{p}^{2} \epsilon^{\prime}(p)^{2}+2 \epsilon^{\prime}(p) p^{k-1}}{\epsilon^{\prime}(p) p^{k-1}} \cdot p^{k-1} \\
& =a_{p}^{2} \epsilon^{\prime}(p)^{-1}+\bar{a}_{p}^{2} \epsilon^{\prime}(p)+2 p^{k-1}
\end{aligned}
$$

RPS continued

One sees that the roots of crystalline Frobenius are:

$$
\alpha=\bar{a}_{p} \epsilon^{\prime}(p) \quad \text { and } \quad \beta=a_{p}
$$

Note $\alpha \beta=a_{p} \bar{a}_{p} \epsilon^{\prime}(p)=p^{k-1} \epsilon^{\prime}(p)$. We compute:

$$
\begin{aligned}
\left(\frac{(\alpha+\beta)^{2}}{\alpha \beta}\right) \cdot p^{k-1} & =\frac{a_{p}^{2}+\bar{a}_{p}^{2} \epsilon^{\prime}(p)^{2}+2 \epsilon^{\prime}(p) p^{k-1}}{\epsilon^{\prime}(p) p^{k-1}} \cdot p^{k-1} \\
& =a_{p}^{2} \epsilon^{\prime}(p)^{-1}+\bar{a}_{p}^{2} \epsilon^{\prime}(p)+2 p^{k-1}
\end{aligned}
$$

Conjecture (Banerjee-Ghate)
Let $p>2$. Say $v|p| N$ and $N_{p}=C_{p}$.

RPS continued

One sees that the roots of crystalline Frobenius are:

$$
\alpha=\bar{a}_{p} \epsilon^{\prime}(p) \quad \text { and } \quad \beta=a_{p}
$$

Note $\alpha \beta=a_{p} \bar{a}_{p} \epsilon^{\prime}(p)=p^{k-1} \epsilon^{\prime}(p)$. We compute:

$$
\begin{aligned}
\left(\frac{(\alpha+\beta)^{2}}{\alpha \beta}\right) \cdot p^{k-1} & =\frac{a_{p}^{2}+\bar{a}_{p}^{2} \epsilon^{\prime}(p)^{2}+2 \epsilon^{\prime}(p) p^{k-1}}{\epsilon^{\prime}(p) p^{k-1}} \cdot p^{k-1} \\
& =a_{p}^{2} \epsilon^{\prime}(p)^{-1}+\bar{a}_{p}^{2} \epsilon^{\prime}(p)+2 p^{k-1}
\end{aligned}
$$

Conjecture (Banerjee-Ghate)

Let $p>2$. Say $v|p| N$ and $N_{p}=C_{p}$. Then

$$
X_{v} \equiv v\left(a_{p}^{2} \epsilon^{\prime}(p)^{-1}+\bar{a}_{p}^{2} \epsilon^{\prime}(p)+2 p^{k-1}\right) \quad \bmod 2
$$

RPS continued

One sees that the roots of crystalline Frobenius are:

$$
\alpha=\bar{a}_{p} \epsilon^{\prime}(p) \quad \text { and } \quad \beta=a_{p}
$$

Note $\alpha \beta=a_{p} \bar{a}_{p} \epsilon^{\prime}(p)=p^{k-1} \epsilon^{\prime}(p)$. We compute:

$$
\begin{aligned}
\left(\frac{(\alpha+\beta)^{2}}{\alpha \beta}\right) \cdot p^{k-1} & =\frac{a_{p}^{2}+\bar{a}_{p}^{2} \epsilon^{\prime}(p)^{2}+2 \epsilon^{\prime}(p) p^{k-1}}{\epsilon^{\prime}(p) p^{k-1}} \cdot p^{k-1} \\
& =a_{p}^{2} \epsilon^{\prime}(p)^{-1}+\bar{a}_{p}^{2} \epsilon^{\prime}(p)+2 p^{k-1}
\end{aligned}
$$

Conjecture (Banerjee-Ghate)

Let $p>2$. Say $v|p| N$ and $N_{p}=C_{p}$. Then

$$
X_{v} \equiv v\left(a_{p}^{2} \epsilon^{\prime}(p)^{-1}+\bar{a}_{p}^{2} \epsilon^{\prime}(p)+2 p^{k-1}\right) \quad \bmod 2
$$

if the right hand side is finite.

RPS continued

Theorem (GGQ ~ 2005)
 Let $v|p| N$ with $N_{p}=C_{p}$.

RPS continued

> Theorem $(\mathrm{GGQ} \sim 2005)$
> Let $v|p| N$ with $N_{p}=C_{p}$. Let $0 \leq q=\frac{r}{s}<(k-1) / 2$, s odd.

RPS continued

Theorem (GGQ ~ 2005)

Let $v|p| N$ with $N_{p}=C_{p}$. Let $0 \leq q=\frac{r}{s}<(k-1) / 2$, s odd. If, for each place w of E lying over v, either

$$
w\left(a_{p}\right)=q \text { or } \bar{w}\left(a_{p}\right)=q,
$$

RPS continued

Theorem (GGQ ~ 2005)

Let $v|p| N$ with $N_{p}=C_{p}$. Let $0 \leq q=\frac{r}{s}<(k-1) / 2$, s odd. If, for each place w of E lying over v, either

$$
w\left(a_{p}\right)=q \text { or } \bar{w}\left(a_{p}\right)=q
$$

then $X_{v} \equiv 0 \bmod 2$.

RPS continued

Theorem (GGQ ~ 2005)

Let $v|p| N$ with $N_{p}=C_{p}$. Let $0 \leq q=\frac{r}{s}<(k-1) / 2$, s odd. If, for each place w of E lying over v, either

$$
w\left(a_{p}\right)=q \text { or } \bar{w}\left(a_{p}\right)=q
$$

then $X_{v} \equiv 0 \bmod 2$.
Proof: Let $D_{v}=\oplus_{w \mid v} D_{w}$.

RPS continued

Theorem (GGQ ~ 2005)

Let $v|p| N$ with $N_{p}=C_{p}$. Let $0 \leq q=\frac{r}{s}<(k-1) / 2$, s odd. If, for each place w of E lying over v, either

$$
w\left(a_{p}\right)=q \text { or } \bar{w}\left(a_{p}\right)=q
$$

then $X_{v} \equiv 0 \bmod 2$.
Proof: Let $D_{v}=\oplus_{w \mid v} D_{w}$. The characteristic polynomial of crystalline Frobenius on D_{v} is

$$
\prod_{w \mid v} \operatorname{Norm}_{E_{w} \mid \mathbb{Q}_{p}}\left(\left(x-a_{p}\right)\left(x-\bar{a}_{p} \epsilon^{\prime}(p)\right)\right.
$$

RPS continued

Theorem (GGQ ~ 2005)

Let $v|p| N$ with $N_{p}=C_{p}$. Let $0 \leq q=\frac{r}{s}<(k-1) / 2$, s odd. If, for each place w of E lying over v, either

$$
w\left(a_{p}\right)=q \text { or } \bar{w}\left(a_{p}\right)=q
$$

then $X_{v} \equiv 0 \bmod 2$.
Proof: Let $D_{v}=\oplus_{w \mid v} D_{w}$. The characteristic polynomial of crystalline Frobenius on D_{v} is

$$
\prod_{w \mid v} \operatorname{Norm}_{E_{w} \mid \mathbb{Q}_{p}}\left(\left(x-a_{p}\right)\left(x-\bar{a}_{p} \epsilon^{\prime}(p)\right)\right.
$$

By hypothesis, this has two distinct slopes, namely q and $k-1-q$, each occurring with equal multiplicity.

RPS continued

Theorem (GGQ ~ 2005)

Let $v|p| N$ with $N_{p}=C_{p}$. Let $0 \leq q=\frac{r}{s}<(k-1) / 2$, s odd. If, for each place w of E lying over v, either

$$
w\left(a_{p}\right)=q \text { or } \bar{w}\left(a_{p}\right)=q
$$

then $X_{v} \equiv 0 \bmod 2$.
Proof: Let $D_{v}=\oplus_{w \mid v} D_{w}$. The characteristic polynomial of crystalline Frobenius on D_{v} is

$$
\prod_{w \mid v} \operatorname{Norm}_{E_{w} \mid \mathbb{Q}_{p}}\left(\left(x-a_{p}\right)\left(x-\bar{a}_{p} \epsilon^{\prime}(p)\right)\right.
$$

By hypothesis, this has two distinct slopes, namely q and $k-1-q$, each occurring with equal multiplicity. This breaks the crystal into two pieces,

RPS continued

Theorem (GGQ ~ 2005)

Let $v|p| N$ with $N_{p}=C_{p}$. Let $0 \leq q=\frac{r}{s}<(k-1) / 2$, s odd. If, for each place w of E lying over v, either

$$
w\left(a_{p}\right)=q \text { or } \bar{w}\left(a_{p}\right)=q
$$

then $X_{v} \equiv 0 \bmod 2$.
Proof: Let $D_{v}=\oplus_{w \mid v} D_{w}$. The characteristic polynomial of crystalline Frobenius on D_{v} is

$$
\prod_{w \mid v} \operatorname{Norm}_{E_{w} \mid \mathbb{Q}_{p}}\left(\left(x-a_{p}\right)\left(x-\bar{a}_{p} \epsilon^{\prime}(p)\right)\right.
$$

By hypothesis, this has two distinct slopes, namely q and $k-1-q$, each occurring with equal multiplicity. This breaks the crystal into two pieces, and using s odd, one shows $X_{v} \equiv 0$ $\bmod 2$.

RPS continued

Remark

If $p>2$, then Conjecture \Longrightarrow previous Theorem.

RPS continued

Remark

If $p>2$, then Conjecture \Longrightarrow previous Theorem.
Proof: Conj: $X_{v} \equiv v\left(a_{p}^{2} \epsilon^{\prime}(p)^{-1}+\bar{a}_{p}^{2} \epsilon^{\prime}(p)+2 p^{k-1}\right) \bmod 2$.

RPS continued

Remark

If $p>2$, then Conjecture \Longrightarrow previous Theorem.
Proof: Conj: $X_{v} \equiv v\left(a_{p}^{2} \epsilon^{\prime}(p)^{-1}+\bar{a}_{p}^{2} \epsilon^{\prime}(p)+2 p^{k-1}\right) \bmod 2$. By hypothesis, the first two terms on the RHS have valuations

$$
2 q<k-1 \quad \text { and } \quad 2(k-1-q)>k-1
$$

and the last $k-1$.

RPS continued

Remark

If $p>2$, then Conjecture \Longrightarrow previous Theorem.
Proof: Conj: $X_{v} \equiv v\left(a_{p}^{2} \epsilon^{\prime}(p)^{-1}+\bar{a}_{p}^{2} \epsilon^{\prime}(p)+2 p^{k-1}\right) \bmod 2$. By hypothesis, the first two terms on the RHS have valuations

$$
2 q<k-1 \quad \text { and } \quad 2(k-1-q)>k-1
$$

and the last $k-1$. These are all distinct.

RPS continued

Remark

If $p>2$, then Conjecture \Longrightarrow previous Theorem.
Proof: Conj: $X_{v} \equiv v\left(a_{p}^{2} \epsilon^{\prime}(p)^{-1}+\bar{a}_{p}^{2} \epsilon^{\prime}(p)+2 p^{k-1}\right) \bmod 2$. By hypothesis, the first two terms on the RHS have valuations

$$
2 q<k-1 \quad \text { and } \quad 2(k-1-q)>k-1
$$

and the last $k-1$. These are all distinct. After multiplying by $\left[F_{v}: \mathbb{Q}_{p}\right]$, we see RHS $=\min =\left[F_{v}: \mathbb{Q}_{p}\right](2 q) \equiv 0 \bmod 2$.

RPS continued

Remark

If $p>2$, then Conjecture \Longrightarrow previous Theorem.
Proof: Conj: $X_{v} \equiv v\left(a_{p}^{2} \epsilon^{\prime}(p)^{-1}+\bar{a}_{\rho}^{2} \epsilon^{\prime}(p)+2 p^{k-1}\right) \bmod 2$. By hypothesis, the first two terms on the RHS have valuations

$$
2 q<k-1 \quad \text { and } \quad 2(k-1-q)>k-1,
$$

and the last $k-1$. These are all distinct. After multiplying by $\left[F_{v}: \mathbb{Q}_{p}\right]$, we see RHS $=\min =\left[F_{v}: \mathbb{Q}_{p}\right](2 q) \equiv 0 \bmod 2$.

Proposition (Banerjee-Ghate)

If $p>2, F=\mathbb{Q}$ and ϵ_{p} is wild, then the Conjecture is true.

RPS continued

Remark

If $p>2$, then Conjecture \Longrightarrow previous Theorem.
Proof: Conj: $X_{v} \equiv v\left(a_{\rho}^{2} \epsilon^{\prime}(p)^{-1}+\bar{a}_{\rho}^{2} \epsilon^{\prime}(p)+2 p^{k-1}\right) \bmod 2$. By hypothesis, the first two terms on the RHS have valuations

$$
2 q<k-1 \quad \text { and } \quad 2(k-1-q)>k-1,
$$

and the last $k-1$. These are all distinct. After multiplying by $\left[F_{v}: \mathbb{Q}_{p}\right]$, we see RHS $=\min =\left[F_{v}: \mathbb{Q}_{p}\right](2 q) \equiv 0 \bmod 2$.

Proposition (Banerjee-Ghate)

If $p>2, F=\mathbb{Q}$ and ϵ_{p} is wild, then the Conjecture is true.
Remarks: The conjecture

- is also numerically true when $p>2, F=\mathbb{Q}, \epsilon_{p}$ is tame.

RPS continued

Remark

If $p>2$, then Conjecture \Longrightarrow previous Theorem.
Proof: Conj: $X_{v} \equiv v\left(a_{p}^{2} \epsilon^{\prime}(p)^{-1}+\bar{a}_{p}^{2} \epsilon^{\prime}(p)+2 p^{k-1}\right) \bmod 2$. By hypothesis, the first two terms on the RHS have valuations

$$
2 q<k-1 \quad \text { and } \quad 2(k-1-q)>k-1
$$

and the last $k-1$. These are all distinct. After multiplying by $\left[F_{v}: \mathbb{Q}_{p}\right]$, we see RHS $=\min =\left[F_{v}: \mathbb{Q}_{p}\right](2 q) \equiv 0 \bmod 2$.

Proposition (Banerjee-Ghate)

If $p>2, F=\mathbb{Q}$ and ϵ_{p} is wild, then the Conjecture is true.
Remarks: The conjecture

- is also numerically true when $p>2, F=\mathbb{Q}, \epsilon_{p}$ is tame.
- is (slightly!) false for $p=2$.

RPS continued

Remark

If $p>2$, then Conjecture \Longrightarrow previous Theorem.
Proof: Conj: $X_{v} \equiv v\left(a_{p}^{2} \epsilon^{\prime}(p)^{-1}+\bar{a}_{p}^{2} \epsilon^{\prime}(p)+2 p^{k-1}\right) \bmod 2$. By hypothesis, the first two terms on the RHS have valuations

$$
2 q<k-1 \quad \text { and } \quad 2(k-1-q)>k-1
$$

and the last $k-1$. These are all distinct. After multiplying by $\left[F_{v}: \mathbb{Q}_{p}\right]$, we see RHS $=\min =\left[F_{v}: \mathbb{Q}_{p}\right](2 q) \equiv 0 \bmod 2$.

Proposition (Banerjee-Ghate)

If $p>2, F=\mathbb{Q}$ and ϵ_{p} is wild, then the Conjecture is true.
Remarks: The conjecture

- is also numerically true when $p>2, F=\mathbb{Q}, \epsilon_{p}$ is tame.
- is (slightly!) false for $p=2$.
- should be stated a bit differently when $F \neq \mathbb{Q}$.

RPS continued

Remark

If $p>2$, then Conjecture \Longrightarrow previous Theorem.
Proof: Conj: $X_{v} \equiv v\left(a_{p}^{2} \epsilon^{\prime}(p)^{-1}+\bar{a}_{p}^{2} \epsilon^{\prime}(p)+2 p^{k-1}\right) \bmod 2$. By hypothesis, the first two terms on the RHS have valuations

$$
2 q<k-1 \quad \text { and } \quad 2(k-1-q)>k-1
$$

and the last $k-1$. These are all distinct. After multiplying by $\left[F_{v}: \mathbb{Q}_{p}\right]$, we see RHS $=\min =\left[F_{v}: \mathbb{Q}_{p}\right](2 q) \equiv 0 \bmod 2$.

Proposition (Banerjee-Ghate)

If $p>2, F=\mathbb{Q}$ and ϵ_{p} is wild, then the Conjecture is true.
Remarks: The conjecture

- is also numerically true when $p>2, F=\mathbb{Q}, \epsilon_{p}$ is tame.
- is (slightly!) false for $p=2$.
- should be stated a bit differently when $F \neq \mathbb{Q}$.

Steinberg case

Say now $N_{p} \neq C_{p}$, with $N_{p}=1$ and $C_{p}=0$. So π_{p} is an unramified twist of Steinberg.

Steinberg case

Say now $N_{p} \neq C_{p}$, with $N_{p}=1$ and $C_{p}=0$. So π_{p} is an unramified twist of Steinberg.

Theorem (Langlands)

We have:

$$
\left.\rho_{\pi}\right|_{G_{p}} \sim\left(\begin{array}{cc}
\lambda\left(p \cdot a_{p}\right) & * \\
0 & \lambda\left(a_{p}\right)
\end{array}\right) .
$$

Steinberg case

Say now $N_{p} \neq C_{p}$, with $N_{p}=1$ and $C_{p}=0$. So π_{p} is an unramified twist of Steinberg.

Theorem (Langlands)

We have:

$$
\left.\rho_{\pi}\right|_{G_{p}} \sim\left(\begin{array}{cc}
\lambda\left(p \cdot a_{p}\right) & * \\
0 & \lambda\left(a_{p}\right)
\end{array}\right) .
$$

So the roots of crystalline Frobenius are

$$
\alpha=p a_{p} \quad \text { and } \quad \beta=a_{p}
$$

Steinberg case

Say now $N_{p} \neq C_{p}$, with $N_{p}=1$ and $C_{p}=0$. So π_{p} is an unramified twist of Steinberg.

Theorem (Langlands)

We have:

$$
\left.\rho_{\pi}\right|_{G_{p}} \sim\left(\begin{array}{cc}
\lambda\left(p \cdot a_{p}\right) & * \\
0 & \lambda\left(a_{p}\right)
\end{array}\right) .
$$

So the roots of crystalline Frobenius are

$$
\alpha=p a_{p} \quad \text { and } \quad \beta=a_{p}
$$

Note: $\alpha \beta=p a_{p}^{2}=\epsilon^{\prime}(p) p^{k-1}$.

Steinberg case

Say now $N_{p} \neq C_{p}$, with $N_{p}=1$ and $C_{p}=0$. So π_{p} is an unramified twist of Steinberg.

Theorem (Langlands)

We have:

$$
\left.\rho_{\pi}\right|_{G_{p}} \sim\left(\begin{array}{cc}
\lambda\left(p \cdot a_{p}\right) & * \\
0 & \lambda\left(a_{p}\right)
\end{array}\right) .
$$

So the roots of crystalline Frobenius are

$$
\alpha=p a_{p} \quad \text { and } \quad \beta=a_{p}
$$

Note: $\alpha \beta=p a_{p}^{2}=\epsilon^{\prime}(p) p^{k-1}$. We compute:

Steinberg case

Say now $N_{p} \neq C_{p}$, with $N_{p}=1$ and $C_{p}=0$. So π_{p} is an unramified twist of Steinberg.

Theorem (Langlands)

We have:

$$
\left.\rho_{\pi}\right|_{G_{p}} \sim\left(\begin{array}{cc}
\lambda\left(p \cdot a_{p}\right) & * \\
0 & \lambda\left(a_{p}\right)
\end{array}\right) .
$$

So the roots of crystalline Frobenius are

$$
\alpha=p a_{p} \quad \text { and } \quad \beta=a_{p}
$$

Note: $\alpha \beta=p a_{p}^{2}=\epsilon^{\prime}(p) p^{k-1}$. We compute:

$$
\left(\frac{(\alpha+\beta)^{2}}{\alpha \beta}\right) \cdot p^{k-1}
$$

Steinberg case

Say now $N_{p} \neq C_{p}$, with $N_{p}=1$ and $C_{p}=0$. So π_{p} is an unramified twist of Steinberg.

Theorem (Langlands)

We have:

$$
\left.\rho_{\pi}\right|_{G_{p}} \sim\left(\begin{array}{cc}
\lambda\left(p \cdot a_{p}\right) & * \\
0 & \lambda\left(a_{p}\right)
\end{array}\right) .
$$

So the roots of crystalline Frobenius are

$$
\alpha=p a_{p} \quad \text { and } \quad \beta=a_{p}
$$

Note: $\alpha \beta=p a_{p}^{2}=\epsilon^{\prime}(p) p^{k-1}$. We compute:

$$
\left(\frac{(\alpha+\beta)^{2}}{\alpha \beta}\right) \cdot p^{k-1}=\frac{\left(a_{p}(1+p)\right)^{2}}{\epsilon^{\prime}(p) p^{k-1}} \cdot p^{k-1}=
$$

Steinberg case

Say now $N_{p} \neq C_{p}$, with $N_{p}=1$ and $C_{p}=0$. So π_{p} is an unramified twist of Steinberg.

Theorem (Langlands)

We have:

$$
\left.\rho_{\pi}\right|_{G_{p}} \sim\left(\begin{array}{cc}
\lambda\left(p \cdot a_{p}\right) & * \\
0 & \lambda\left(a_{p}\right)
\end{array}\right) .
$$

So the roots of crystalline Frobenius are

$$
\alpha=p a_{p} \quad \text { and } \quad \beta=a_{p}
$$

Note: $\alpha \beta=p a_{p}^{2}=\epsilon^{\prime}(p) p^{k-1}$. We compute:

$$
\left(\frac{(\alpha+\beta)^{2}}{\alpha \beta}\right) \cdot p^{k-1}=\frac{\left(a_{p}(1+p)\right)^{2}}{\epsilon^{\prime}(p) p^{k-1}} \cdot p^{k-1}=a_{p}^{2} \epsilon^{\prime}(p)^{-1}(1+p)^{2}
$$

Steinberg case

Say now $N_{p} \neq C_{p}$, with $N_{p}=1$ and $C_{p}=0$. So π_{p} is an unramified twist of Steinberg.

Theorem (Langlands)

We have:

$$
\left.\rho_{\pi}\right|_{G_{p}} \sim\left(\begin{array}{cc}
\lambda\left(p \cdot a_{p}\right) & * \\
0 & \lambda\left(a_{p}\right)
\end{array}\right) .
$$

So the roots of crystalline Frobenius are

$$
\alpha=p a_{p} \quad \text { and } \quad \beta=a_{p}
$$

Note: $\alpha \beta=p a_{p}^{2}=\epsilon^{\prime}(p) p^{k-1}$. We compute:

$$
\begin{aligned}
\left(\frac{(\alpha+\beta)^{2}}{\alpha \beta}\right) \cdot p^{k-1} & =\frac{\left(a_{p}(1+p)\right)^{2}}{\epsilon^{\prime}(p) p^{k-1}} \cdot p^{k-1}=a_{p}^{2} \epsilon^{\prime}(p)^{-1}(1+p)^{2} \\
& =p^{k-2}(1+p)^{2}
\end{aligned}
$$

Steinberg case continued

Theorem (Banerjee-Ghate)
 Say $v|p| N$ and $N_{p}=1, C_{p}=0$.

Steinberg case continued

Theorem (Banerjee-Ghate)

Say $v|p| N$ and $N_{p}=1, C_{p}=0$. Then

$$
X_{v}=\left[F_{v}: \mathbb{Q}_{p}\right] \cdot(k-2) \quad \bmod 2
$$

Steinberg case continued

Theorem (Banerjee-Ghate)

$$
\text { Say } v|p| N \text { and } N_{p}=1, C_{p}=0 \text {. Then }
$$

$$
X_{v}=\left[F_{v}: \mathbb{Q}_{p}\right] \cdot(k-2) \quad \bmod 2 .
$$

Remarks:

- In fact Ribet ~ 1981 proves $X=0$ when $k=2$.

Steinberg case continued

Theorem (Banerjee-Ghate)
Say $v|p| N$ and $N_{p}=1, C_{p}=0$. Then

$$
X_{v}=\left[F_{v}: \mathbb{Q}_{p}\right] \cdot(k-2) \quad \bmod 2 .
$$

Remarks:

- In fact Ribet ~ 1981 proves $X=0$ when $k=2$.

Proof: X acts on the character group of the connected part of the reduced abelian variety \tilde{M}_{f}^{0}, a torus, hence on its character group V.

Steinberg case continued

Theorem (Banerjee-Ghate)
Say $v|p| N$ and $N_{p}=1, C_{p}=0$. Then

$$
X_{v}=\left[F_{v}: \mathbb{Q}_{p}\right] \cdot(k-2) \quad \bmod 2 .
$$

Remarks:

- In fact Ribet ~ 1981 proves $X=0$ when $k=2$.

Proof: X acts on the character group of the connected part of the reduced abelian variety \tilde{M}_{f}^{0}, a torus, hence on its character group V. But $\operatorname{dim}_{E}(V)=1$, so $X \in{ }_{1} \operatorname{Br}(F)$.

Steinberg case continued

Theorem (Banerjee-Ghate)
Say $v|p| N$ and $N_{p}=1, C_{p}=0$. Then

$$
X_{v}=\left[F_{v}: \mathbb{Q}_{p}\right] \cdot(k-2) \quad \bmod 2 .
$$

Remarks:

- In fact Ribet ~ 1981 proves $X=0$ when $k=2$.

Proof: X acts on the character group of the connected part of the reduced abelian variety \tilde{M}_{f}^{0}, a torus, hence on its character group V. But $\operatorname{dim}_{E}(V)=1$, so $X \in{ }_{1} \operatorname{Br}(F)$.

- In Brown-Ghate ~ 2003 it was shown that X_{v} for $v \mid p$ sometimes ramifies when the weight is odd!

Steinberg case continued

Theorem (Banerjee-Ghate)
Say $v|p| N$ and $N_{p}=1, C_{p}=0$. Then

$$
X_{v}=\left[F_{v}: \mathbb{Q}_{p}\right] \cdot(k-2) \quad \bmod 2 .
$$

Remarks:

- In fact Ribet ~ 1981 proves $X=0$ when $k=2$.

Proof: X acts on the character group of the connected part of the reduced abelian variety \tilde{M}_{f}^{0}, a torus, hence on its character group V. But $\operatorname{dim}_{E}(V)=1$, so $X \in{ }_{1} \operatorname{Br}(F)$.

- In Brown-Ghate ~ 2003 it was shown that X_{v} for $v \mid p$ sometimes ramifies when the weight is odd! (Weird).

Steinberg case continued

Theorem (Banerjee-Ghate)

Say $v|p| N$ and $N_{p}=1, C_{p}=0$. Then

$$
X_{v}=\left[F_{v}: \mathbb{Q}_{p}\right] \cdot(k-2) \quad \bmod 2 .
$$

Remarks:

- In fact Ribet ~ 1981 proves $X=0$ when $k=2$.

Proof: X acts on the character group of the connected part of the reduced abelian variety \tilde{M}_{f}^{0}, a torus, hence on its character group V. But $\operatorname{dim}_{E}(V)=1$, so $X \in{ }_{1} \operatorname{Br}(F)$.

- In Brown-Ghate ~ 2003 it was shown that X_{v} for $v \mid p$ sometimes ramifies when the weight is odd! (Weird).
- The formula above completely specifies the ramification at the Steinberg places, in all weights.

Remaining cases

What about the other $N_{p} \neq C_{p}$ cases?

Remaining cases

What about the other $N_{p} \neq C_{p}$ cases?
Now $a_{p}=0$ and slope $=\infty$!

Remaining cases

What about the other $N_{p} \neq C_{p}$ cases?
Now $a_{p}=0$ and slope $=\infty$!
If π_{p} is a twist of a previous case, then can often reduce to those cases by noting:
Proposition

$$
X_{f \otimes \chi} \cong X_{f} .
$$

Remaining cases

What about the other $N_{p} \neq C_{p}$ cases?
Now $a_{p}=0$ and slope $=\infty$!
If π_{p} is a twist of a previous case, then can often reduce to those cases by noting:

Proposition

$$
X_{f \otimes \chi} \cong X_{f} .
$$

If π_{p} is supercuspidal, cannot do this.

Remaining cases

What about the other $N_{p} \neq C_{p}$ cases?
Now $a_{p}=0$ and slope $=\infty$!
If π_{p} is a twist of a previous case, then can often reduce to those cases by noting:
Proposition

$$
X_{f \otimes \chi} \cong X_{f} .
$$

If π_{p} is supercuspidal, cannot do this. So, we pose:

Question (Infinite slope)

Say p is a prime of either good or bad reduction, with $a_{p}=0$.

Remaining cases

What about the other $N_{p} \neq C_{p}$ cases?
Now $a_{p}=0$ and slope $=\infty$!
If π_{p} is a twist of a previous case, then can often reduce to those cases by noting:
Proposition

$$
X_{f \otimes \chi} \cong X_{f} .
$$

If π_{p} is supercuspidal, cannot do this. So, we pose:

Question (Infinite slope)

Say p is a prime of either good or bad reduction, with $a_{p}=0$. Is it possible to give a purely local criterion which specifies the ramification of X_{v}, for $v \mid p$?

Other cases continued

In the good reduction case, one can prove:

Theorem

Let $v \mid p$ with $p \nmid N$, and suppose $a_{p}=0$.

Other cases continued

In the good reduction case, one can prove:

Theorem

Let $v \mid p$ with $p \nmid N$, and suppose $a_{p}=0$. Choose q such that $a_{q} \neq 0$ and $q \equiv p \bmod N$.

Other cases continued

In the good reduction case, one can prove:

Theorem

Let $v \mid p$ with $p \nmid N$, and suppose $a_{p}=0$. Choose q such that $a_{q} \neq 0$ and $q \equiv p \bmod N$. Then

$$
X_{v} \equiv v\left(a_{q}^{2} \epsilon^{-1}(q)\right) \quad \bmod 2
$$

Other cases continued

In the good reduction case, one can prove:

Theorem

Let $v \mid p$ with $p \nmid N$, and suppose $a_{p}=0$. Choose q such that $a_{q} \neq 0$ and $q \equiv p \bmod N$. Then

$$
X_{v} \equiv v\left(a_{q}^{2} \epsilon^{-1}(q)\right) \quad \bmod 2
$$

This is not in terms of a slope at $p!$

Other cases continued

In the good reduction case, one can prove:

Theorem

Let $v \mid p$ with $p \nmid N$, and suppose $a_{p}=0$. Choose q such that $a_{q} \neq 0$ and $q \equiv p \bmod N$. Then

$$
X_{v} \equiv v\left(a_{q}^{2} \epsilon^{-1}(q)\right) \quad \bmod 2
$$

This is not in terms of a slope at p ! However, one knows:

Theorem (Breuil)

Say $p \nmid N$ and $a_{p}=0$. Then

$$
\left.\rho_{\pi}\right|_{G_{p}} \sim \operatorname{Ind}_{\mathbb{Q}_{p^{2}}}^{\mathbb{Q}_{p}}\left(\nu_{2}^{k-1}\right) \otimes \lambda(\sqrt{-1}) \otimes \lambda(\sqrt{\epsilon(p)}),
$$

where $\nu_{2}: G_{\mathbb{Q}_{p^{2}}} \rightarrow \mathbb{Z}_{p^{2}}^{\times}$comes from Lubin-Tate theory.

Other cases continued

In the good reduction case, one can prove:

Theorem

Let $v \mid p$ with $p \nmid N$, and suppose $a_{p}=0$. Choose q such that $a_{q} \neq 0$ and $q \equiv p \bmod N$. Then

$$
X_{v} \equiv v\left(a_{q}^{2} \epsilon^{-1}(q)\right) \quad \bmod 2
$$

This is not in terms of a slope at p ! However, one knows:

Theorem (Breuil)

Say $p \nmid N$ and $a_{p}=0$. Then

$$
\rho_{\pi} \mid G_{p} \sim \operatorname{Ind}_{\mathbb{Q}_{p^{2}}}^{\mathbb{Q}_{p}}\left(\nu_{2}^{k-1}\right) \otimes \lambda(\sqrt{-1}) \otimes \lambda(\sqrt{\epsilon(p)}),
$$

where $\nu_{2}: G_{\mathbb{Q}_{p^{2}}} \rightarrow \mathbb{Z}_{p^{2}}^{\times}$comes from Lubin-Tate theory.
Q: Is this useful in determining X_{v} when $p X N$ and $a_{p}=0$??

Thank you

ICM 2010

See you in Goa in August, 2010
(Two ICM satellite conferences in Number Theory)

