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Abstract. The endomorphism algebra X f attached to a non-CM primitive cusp
form f of weight at least two is a 2-torsion element in the Brauer group of a
number field F. We give formulas for the ramification of X f locally at primes
lying above the odd supercuspidal primes of f . We show that the local Brauer
class is determined by the underlying local Galois representation together with
an auxiliary Fourier coefficient.

1. Introduction

Let f =
∑∞

n=1 anqn ∈ S k(N, ε) be a primitive non-CM cusp form of weight k ≥ 2
and level N ≥ 1. Let M f denote the abelian variety (k = 2) or the Grothendieck
motive (k > 2) attached to f . The Q-algebra of endomorphisms of M f is denoted
by

X = X f := EndQ̄(M f ) ⊗Z Q.

The Hecke field E = Q(an) is either a totally real or CM number field. Let F denote
the subfield of E generated by all the elements of the form a2

nε
−1(n) with (n,N) = 1.

Then F is a totally real number field, and may be thought of as the Hecke field of
the adjoint lift of f . The algebra X has the structure of a crossed product algebra
over F defined in terms of the inner twists of f , as proved in [Ri80] and [Ri81]
for k = 2, and generalized to higher weight forms in [BG03] and [GGQ05]. The
class of X is a 2-torsion element in the Brauer group Br(F) of F. Ribet has asked
whether one can determine the class [X] ∈ Br(F) explicitly.

The Brauer class of X can be studied locally under the map Br(F) ↪→ ⊕vBr(Fv),
where v varies over all the primes in F. The algebra Xv := X ⊗F Fv is central
simple over Fv and its class [Xv] ∈ 2Br(Fv) � Z/2. When this class is trivial, Xv is
a matrix algebra over Fv and Xv is said to be unramified, and when it is non-trivial,
Xv is Brauer-equivalent to a quaternion division algebra over Fv and Xv is said to
be ramified. The Brauer class of X is determined by the Brauer classes of all the
Xv, only finitely many of which can be non-trivial.

For v lying above a prime p of good reduction, a Steinberg prime p, or a ramified
principal series prime p, with ap , 0, the class [Xv] is essentially determined
by the parity of the slope at p of the twisted adjoint lift of f . For instance, if
p - N, then [Xv] is essentially determined by the v-adic valuation of a2

pε
−1(p) ∈ F∗.

See [BG13]. In particular, if ρ f is the `-adic Galois representation attached to f ,
then the Q̄`-isomorphism class of the local representation ρ f |Gp at p essentially
determines the Brauer class [Xv], for ` , p. Thus, if the Fourier coefficient ap , 0,
then it essentially determines [Xv].
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Assume, therefore, that ap = 0. For v lying above a prime p of good reduction
with ap = 0, the slope of the twisted adjoint lift of f at p is not finite. Moreover, the
local `-adic Galois representation ρ f |Gp does not determine the class [Xv], even if
` = p. However, in [BG13, Thm. 11] it is shown that [Xv] is essentially determined
by a Fourier coefficient ap† , 0 at an auxiliary prime p† - N. More precisely,
[Xv] is essentially determined by the v-adic valuation of a2

p†
ε−1(p†), the Fourier

coefficient of the twisted adjoint lift of f at p† .
Assume now that v lies over a prime p of bad reduction with ap = 0. Since

the Brauer class of [X f ] is invariant under twisting f by Dirichlet characters, we
may as well assume that f is p-minimal, in which case p is a supercuspidal prime.
Almost nothing is known about the ramification of Xv in this case. Again the Q̄`-
isomorphism class of ρ f |Gp does not determine [Xv]; see Example 1 in Section 8.
In this paper, we obtain formulas for [Xv] in terms of a Fourier coefficient at an
auxiliary prime related to p, as in the good reduction case. It turns out that the Q̄`-
isomorphism class of ρ f |Gp , for ` , p, together with this coefficient, determines
[Xv] completely. This solves the problem of determining the Brauer classes at the
odd supercuspidal primes (under an extra hypothesis in the level 0 case).

2. Statement of results

Throughout this article, p will denote an odd prime. Let f ∈ S k(N, ε) be a non-
CM primitive cusp form of weight k ≥ 2, level N and nebentypus ε. We write
N = pNp N′, such that p - N′, and ε = εp · ε

′, where εp is a Dirichlet character of
conductor pCp for some Cp ≤ Np, and the conductor of ε′ divides N′. If f is p-
minimal and if Cp < Np ≥ 2, then p is a supercuspidal prime for f and ap = 0. Let
(K, θ) be an admissible pair attached to f at p, where K is a quadratic extension
of Qp and θ is a continuous character of K∗. The prime p is called a ramified
(or unramified) supercuspidal prime for f , if K|Qp is a ramified (or unramified)
extension. When Cp < Np = 2, then p is an unramified supercuspidal prime
and θ is a tamely ramified character of K∗. The corresponding local automorphic
representation has level 0, and we say p is supercuspidal of level 0. When K|Qp is
unramified, we let s denote a fixed primitive (p2 − 1)-th root of unity in K∗. For
any quadratic field extension K1|K2, and for an arbitrary x ∈ K∗2 , let

(x,K1|K2) :=

−1, if x < NK1 |K2(K1)∗,
1, otherwise.

For a prime v in F lying above p, let fv := f (Fv|Qp) be the residue degree and let
ev := e(Fv|Qp) be the ramification index. Let υ : F∗v → Z be the standard surjective
valuation.

Since f is non-CM, there exist infinitely many primes with non-zero Fourier
coefficient in any congruence class modulo N. Let us choose two primes p′ and
p′′, both coprime to N, satisfying:

(∗) p′ ≡ 1 mod pNp , p′ ≡ p mod N′ and ap′ , 0.
(∗∗) p′′ ≡ 1 mod N′, p′′ has order (p − 1) in

(
Z/pNpZ

)∗
and ap′′ , 0.

The Fourier coefficients of the twisted adjoint lift of f at p′ and p′′, namely
a2

p′ε
−1(p′) and a2

p′′ε
−1(p′′), give elements of F∗/(F∗)2 which do not depend on

the choice of p′ and p′′. Let us write

[Xv] ∼

−1, if Xv is ramified,
1, if Xv is unramified.
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With notation as above, our main result is as follows.

Theorem 2.1. Let v be a prime of F lying over a prime p , 2.
(a) If p is an unramified supercuspidal prime, and θ(s) + θ(s)p , 0 if the p-

minimal twist of f is of level 0, then

[Xv] ∼ (−1) fv · υ(a2
p′ε
−1(p′))

.

(b) If p ≡ 1 mod 4 is a ramified supercuspidal prime, then

[Xv] ∼ (−1) fv · υ(a2
p′ε
−1(p′))

.

(c) If p ≡ 3 mod 4 is a ramified supercuspidal prime, then

[Xv] ∼
(
(−1)k · a2

p′′ε
−1(p′′),KFv|Fv

)
.

Remark One reason behind the similarity and simplicity of the formulas in (a)
and (b) above is that in both cases the extension KFv|Fv turns out to be unramified,
and hence the symbol

(
a2

p′ε
−1(p′),KFv|Fv

)
= (−1)υ(a2

p′ ε
−1(p′)). On the other hand,

we will see that in case (c), the extension KFv|Fv can be ramified.
We list some interesting consequences of the theorem.

Corollary 2.2. Suppose we are in case (a) or (b) of the theorem. If either

(1) N′ = 1 (i.e., N is a prime power) or if p has odd order in
(
Z

N′Z

)∗
, or,

(2) v - disc(E|F),
then Xv is unramified.

Corollary 2.3. Suppose we are in case (a) or (c) of the theorem. If K ⊆ Fv, then
Xv is unramified.

We will show that (p − 1) divides 2ev, if p is a ramified supercuspidal prime.

Corollary 2.4. Suppose we are in case (b) of the theorem. If K = Qp(
√

p), then

[Xv] ∼ εp(−1)2[Fv:Qp]/(p−1).

3. Endomorphism algebra and its cocycle class

Let f and E be as above. Then Aut(E) contains an abelian subgroup defined by
Γ := {γ ∈ Aut(E) | ∃ a Dirichlet character χγ such that aγp = ap · χγ(p),∀p - N}.
The subfield of E fixed by Γ equals the field F mentioned in Section 1. As f is
non-CM, for each γ ∈ Γ, the character χγ is unique, and is called an ‘inner twist’
of f . For a fixed g ∈ GQ, the map γ 7→ χγ(g) is a 1-cocycle. By Hilbert’s theorem
90, ∃α(g) ∈ E∗ such that for all γ ∈ Γ,

(1) χγ(g) = α(g)γ−1.

Thus we get a well-defined continuous character α̃ : GQ → E∗/F∗, sending each g
to α(g) mod F∗. Let ρ f denote the λ-adic representation attached to f by Deligne,
for some prime λ | ` of E. The following result of Ribet [Ri04, Thm. 5.5] for
k = 2, holds for all weights k ≥ 2.

Proposition 3.1. Let α be any lift of the character α̃ to E∗. Then
(1) For all g ∈ GQ, α2(g) ≡ ε(g) mod F∗.
(2) For all g ∈ GQ, α(g) ≡ Trace(ρ f (g)) mod F∗, provided that the trace is

non-zero.
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For any continuous lift α of α̃ to E∗, the 2-cocycle cα defined by cα(g, h) =

α(g)α(h)α−1(gh) gives a 2-torsion class [cα] in H2(GF , F̄∗) � Br(F). The class
[cα] ∈ H2(GF , F̄∗) corresponds to the global Brauer class [X f ] ∈ Br(F). Similarly
the local Brauer class [Xv] is determined by the restriction [cα|GFv

] ∈ H2(GFv , F̄
∗
v),

for any prime v of F.
Let Gp be the decomposition group at p. If p is a supercuspidal prime, then

the local Galois representation ρ f |Gp is induced from a character of GK for some
quadratic extension K of Qp. This implies that for any lift g ∈ Gp of the generator
of Gal(K|Qp), the trace in part (2) always vanishes, so one cannot use Proposition
3.1 to compute α(g). In fact, the auxiliary primes p′ and p′′ introduced in the
previous section are chosen in such a way that there is a lift g for which α(g) ≡ ap′

or ap′′ mod F∗.

4. Galois representations and Langlands correspondence

The pair (K, θ) is called an ‘admissible pair’, if K is a quadratic extension of Qp
and θ : K∗ → Q̄∗ ⊆ Q̄∗` is a (continuous) character of K∗ satisfying

(1) θ does not factor through the norm map NK|Qp : K∗ → Q∗p,
(2) If K|Qp is ramified, then even θ|U(1)

K
does not factor through NK|Qp .

Here U(i)
K denotes the i-th step in the standard filtration of the units of K. Two

pairs (K1, θ1) and (K2, θ2) are equivalent if there is a Qp-isomorphism ι : K1 → K2
with θ2 ◦ ι = θ1. The equivalence classes of admissible pairs are in bijection with
Q̄`-isomorphism classes of irreducible 2-dimensional representations of Gp as well
as with Q̄`-isomorphism classes of supercuspidal representations of GL2(Qp) (for
p , 2).

If p is a supercuspidal prime for f , then ρ f |Gp is absolutely irreducible. We call
(K, θ) to be an admissible pair attached to f at p, if

ρ f |Gp ∼ IndGp
GK
θ.

Given a supercuspidal prime p (, 2) for f , the quadratic extension K is unique,
though it is not easy to determine the admissible pair (K, θ) attached to f at p
explicitly, see [LW12].

For L|Qp a finite extension and an `-adic representation ρ of GL, let c(ρ) be the
conductor of the corresponding representation of the Weil group of L. It equals
the Artin conductor of a suitable unramified twist of ρ. For the character θ of GK ,
it equals the usual c(θ) = min{i : θ|U(i)

K
≡ 1}. By [CF10, Prop. 4(b), §4.3, Ch.

6], we get c
(
IndGp

GK
θ
)

= υp(δ(K|Qp)) + f (K|Qp)c(θ), where υp is the normalized
valuation on Q∗p, δ(K|Qp) stands for the discriminant, and f (K|Qp) is the residue
degree. Applying this formula in our setting, we get

(2) Np =

2c(θ), if K = Qp2 is unramified,
1 + c(θ), if K|Qp is ramified.

Thus if K = Qp2 , then Np is even. A newform f of level N = pNp N′ is said to be
p-minimal, if Np is the smallest among all possible twists f ⊗ χ of f by Dirichlet
characters χ. If f is a p-minimal form for which p is a supercuspidal prime, then
by [AL78, Thms. 4.3, 4.3′], Cp ≤ bNp/2c ≥ 1; moreover, if Np is even, then K|Qp
is unramified.

While proving the `-adic local Langlands correspondence for GL2(Qp), the ‘su-
percuspidals of level zero’ are always treated separately. They are exactly the su-
percuspidal representations attached to some admissible pairs (K, θ) with c(θ) = 1,
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hence Np = 2. By the definition of an admissible pair, c(θ) = 1 forces K to be
unramified. For the exact definition of the level of a supercuspidal representation
we refer to [BH06, §12.6]. The next lemma will be used to investigate the case of
supercuspidal primes of positive level.

Let σ be any lift of the generator of Gal(K|Qp) to Gp, and let θσ denote the
conjugate character of θ by σ. Then we have

Lemma 4.1. Let p be a supercuspidal prime for f with Np ≥ 3 and suppose ε is
tamely ramified at p. Then there is an element τ ∈ Iw(K), the wild inertia group of
K, satisfying:

(1) θ(τ) = ζp and θσ(τ) = ζ−1
p , where ζp is some primitive p-th root of unity.

(2) α(τ) ≡ (ζp + ζ−1
p ) ≡ 1 mod F∗.

Thus Q(ζp + ζ−1
p ) ⊆ F. In particular, (p − 1)/2 divides e(Fv|Qp) = ev, for all v | p.

Proof. By equation (2) above, Np ≥ 3 ⇒ c(θ) > 1, so θ|U(1)
K
, 1. So ∃ τ ∈ Iw(K)

with θ(τ) = ζp, for some primitive p-th root of unity ζp. As εp is tame, ε(τ) = 1,
and χ2

γ(τ) = ε(τ)γ−1 = 1, for all γ ∈ Γ. But since τ is an element of a pro-p group,
and p is odd, we conclude that χγ(τ) = 1, for all γ ∈ Γ. In other words, α(τ) ≡ 1
mod F∗.

Both θ(τ) and θσ(τ) have some p-power order. The sum of two roots of unity
of odd order cannot be zero. Hence by Proposition 3.1, α(τ) ≡ (θ + θσ)(τ) ≡ 1
mod F∗. Since F is totally real, θ(τ) and θσ(τ) are two roots of unity whose sum is
a non-zero real number. Hence they are complex conjugates. �

Lemma 4.2. If p , 2 is a supercuspidal prime of level > 0 for a p-minimal f , then
F contains Q(ζp + ζ−1

p ) and ev is a multiple of (p − 1)/2, for each prime v in F
above p.

Proof. Since p is odd, we can twist f by a suitable character to make the neben-
typus tame at p, without changing the field F. As f was p-minimal, Np ≥ 3 must
hold even after twisting. Now apply the previous lemma. �

We know that det(ρ f ) = χk−1
`
ε, where χ` is the `-adic cyclotomic character. The

nebentypus character ε may be adelized as follows. For x ∈ Q∗p, let [x] denote
the corresponding element (1, · · · , x, · · · , 1) ∈ A∗

Q
. Then the idèlic character ε,

restricted to Q∗p is given by the following formula. For any m ∈ Z and u ∈ Z∗p,

(3) ε([pmu]) = ε′(p)mεp(u)−1.

The Galois character ε|Gp is also determined by this formula via the norm residue
map of class field theory, which maps Q∗p ⊆ A

∗
Q

onto a dense subset of the decom-
position group Gp at p.

The local Langlands correspondence for GL2 is described using the theory of
admissible pairs. In [BH06], for any admissible pair (K, θ) the authors construct an
automorphic representation πθ with central character θ, as well as a 2-dimensional
Galois representation, say ρθ, both unique up to isomorphism. Let p be a super-
cuspidal prime for f and (K, θ) be an admissible pair attached to f at p. There
exists a character ∆θ of K∗, such that (K, θ∆θ) is also an admissible pair, and the
supercuspidal representation πθ∆θ of GL2(Qp) is in Langlands correspondence with
ρ f |Gp . Equating the central character with the determinant on the Galois side, we
get

(θ∆θ)|Q∗p = (χk−1
` ε)|Q∗p .
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We refer to [BH06, §34], for the explicit description of ∆θ. But let us mention
here that it is a quadratic character unless we are in case (c) of Theorem 2.1 (in
which case ∆θ has order 4), and that ∆θ|Q∗p is always the unique non-trivial character
factoring through NK|Qp(K∗). Using the equations above, we get that for any u ∈
Z∗p,

(4) θ(u) =

εp(u)−1, if K = Qp2 ,(
u,K|Qp

)
· εp(u)−1, if K|Qp is ramified.

5. Local symbols

We use the same notations as in the previous section. Consider the nebentypus ε
as a Galois character, and fix a square root

√
ε(g), for each g ∈ GQ. For all γ ∈ GF ,

there exists a unique quadratic (of order 1 or 2) Dirichlet character ψγ, such that
∀ g ∈ GQ,

(5) χγ(g) =
√
ε(g)

γ−1
ψγ(g).

Note that here χγ means the inner twist corresponding to the image of γ ∈ GF in its
quotient Γ = Gal(E|F). For any γ ∈ GF , let tγ denote the fundamental discriminant
corresponding to the character ψγ. The set A = {ψγ : γ ∈ GF} is an elementary
2-group. Let Γ0 ⊆ GF be a fixed subset such that {ψγ : γ ∈ Γ0} forms a basis for
the group A. For each γ ∈ Γ0, choose a square-free positive integer nγ prime to N,
with anγ , 0, and such that for all γ′ ∈ Γ0,

(6) ψγ′(nγ) =

−1, if γ′ = γ

1, otherwise.

For each nγ, set znγ := a2
nγε
−1(nγ) ∈ F∗. Let v be a prime in F above some odd

prime p. Let [cε]v denote the class of the cocycle cε ∈ Z2(GFv , {±1}) defined by

cε(g, h) =
√
ε(g)
√
ε(h)

√
ε(gh)

−1
. It follows from [Qu98] that,

(7) [cε]v ∼ εv(−1) = εp(−1)[Fv:Qp].

For any two elements a, b ∈ F∗v , let us write a = πυ(a)
v · a′ and b = πυ(b)

v · b′, where
πv is a uniformizer in Fv. Then the local symbol (a, b)v, which is independent of
the choice of πv, is given by the following equation:

(8) (a, b)v = (−1)υ(a)υ(b)(Nv−1)/2 ·

(
b′

v

)υ(a)

·

(
a′

v

)υ(b)

,

where
(
·
v

)
is the standard quadratic residue symbol in the residue field of Fv. The

next formula expressing the local Brauer class in terms of symbols follows from
[GGQ05, Thm. 4.1].

Theorem 5.1. The local Brauer class is given by

[Xv] ∼ [cε]v ⊗
⊗
γ∈Γ0

(znγ , tγ)v.

Note that each tγ must divide N. If p divides N, p∗ :=
(
−1
p

)
· p may or may not

divide tγ for a given γ ∈ Γ0. For a fixed set Γ0 as above, let S := {tγ : γ ∈ Γ0}. Let
us write S as a disjoint union of three sets: S = S p ∪ S − ∪ S +, where

S p = {tγ ∈ S : p∗ | tγ}, S − = {tγ ∈ S \S p :
(
tγ
p

)
= −1}, S + = {tγ ∈ S \S p :

(
tγ
p

)
= 1}.
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The statement of Theorem 5.1 is true for any choice of Γ0 ⊆ GF , as long as
{ψγ : γ ∈ Γ0} forms a basis of the elementary 2-group A. If S p consists of more than
one element, we can choose some tγ0 ∈ S p and multiply the (quadratic) characters
corresponding to all other elements of S p by ψγ0 , to construct a new basis of A, for
which S p is singleton. Similarly we can multiply ψγ0 by a character corresponding
to any element of S −, if necessary, and then assume that Γ0 satisfies the following
two conditions:

(a) If S p , ∅, then it is singleton; denote the unique element of S p by tγ0 ,

(b) If S p = {tγ0} , ∅ and S − , ∅ too, then
(

t̃γ0
p

)
= 1, where t̃γ0 := tγ0/p∗.

When S p , ∅, we split the symbol (znγ0
, tγ0)v involved in the statement of Theorem

5.1 into a p-part and a prime-to-p part

(znγ0
, tγ0)v = (znγ0

, p∗)v ·

(
t̃γ0

v

)υ(znγ0
)

.

Let p′ be as in Section 2, satisfying (∗). Then the following general lemma
computes the prime-to-p part of the formula for [Xv] in Theorem 5.1.

Lemma 5.2. If Γ0 satisfies the conditions (a) and (b) above, then we have

(9)
(
t̃γ0

v

)υ(znγ0
)

⊗
⊗

tγ∈S \S p

(znγ , tγ)v = (−1) fv·υ(a2
p′ ε
−1(p′))

.

(If S p = ∅, then the first symbol on the left hand side is assumed to be 1.)

Proof. Note that if tγ < S p, then υ(tγ) = 0, hence (znγ , tγ)v =
( tγ

v

)υ(znγ )
=

( tγ
p

) fv·υ(znγ )
,

by equation (8).
First we consider the case where S − = ∅. Hence S \ S p = S +, and so (znγ , tγ)v =( tγ

p

) fv·υ(znγ )
= 1, for all tγ ∈ S \ S p. Thus the left hand side of (9) reduces to just the

first symbol, which is
(

t̃γ0
v

)υ(znγ0
)

=

(
t̃γ0
p

) fv·υ(znγ0
)
. If either S p = ∅ or if S p = {tγ0}

with
(

t̃γ0
p

)
= 1, then we use (∗) and the condition (a) on Γ0 to check that ψγ(p′) =( tγ

p′
)

= 1, ∀ γ ∈ Γ0. Hence ψγ(p′)
(5)
=

 χγ(p′)√
ε(p′)

γ−1

=

 ap′√
ε(p′)

γ−1

= 1, ∀ γ ∈ GF ,

as the characters ψγ for γ ∈ Γ0 generates the group {ψγ : γ ∈ GF}. Therefore
ap′√
ε(p′)

∈ F∗ and υ(a2
p′ε
−1(p′)) ≡ 0 mod 2. Thus, both sides of equation (9)

equal 1. On the other hand, if S p , ∅ and
(

t̃γ0
p

)
= −1, then one checks that p′ is a

candidate for the integer nγ0 defined in (6). Hence
(

t̃γ0
p

) fv·υ(znγ0
)

= (−1) fv·υ(a2
p′ ε
−1(p′)),

as desired.
So now assume that S − = {tγ1 = t1, · · · , tγm = tm} , ∅. By condition (b) on Γ0,

we have the first symbol
(

t̃γ0
v

)υ(znγ0
)

= 1 in this case. Choose distinct primes r j, with
ar j , 0, for j = 0, 1, 2, · · · ,m − 1 recursively, satisfying the following properties:

(1) r0 = p′,

(2)
(

tγ
r j

)
= 1, for all tγ ∈ S + ∪ S p,

(3)
(

ti
r j

)
= (−1)δi j

(
ti

r j−1

)
, for all i = 1, 2, · · · ,m (and j ≥ 1).
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Note that our choice of r0 is consistent with property (2) above. Indeed, if S p , ∅,

then by condition (b),
( tγ0

p′
) (∗)

=

(
t̃γ0
p

)
= 1, and if tγ ∈ S +, then

( tγ
p′
) (∗)

=
( tγ

p

)
= 1.

Next we define ni :=

ri−1ri, if 1 ≤ i ≤ m − 1,
rm−1, if i = m.

It can be checked that each ni satisfies the criterion given in (6) for nγi . By the
telescoping argument used in the proof of [GGQ05, Thm. 4.3] or [BG03, Thm.
4.1.11], we get⊗

tγ∈S \S p

(znγ , tγ)v =
∏

tγ∈S −∪S +

(
tγ
p

) fv·υ(znγ )

=

m∏
i=1

(−1) fv·υ(zni ) = (−1) fv·υ(a2
p′ ε
−1(p′))

.

�

Applying equation (7) and Lemma 5.2, we get the following simplification of
Theorem 5.1:

(10) [Xv] ∼ εp(−1)[Fv:Qp] · (znγ0
, p∗)v · (−1) fv·υ(a2

p′ ε
−1(p′))

,

where, by equation (8), the middle symbol

(11) (znγ0
, p∗)v = (−1)υ(znγ0

)ev(p fv−1)/2
·

(
(p∗)′

v

)υ(znγ0
)

·

z′nγ0

v

ev

,

when S p = {tγ0}, and is taken to be trivial when S p = ∅. The formulas (10)
and (11) will be the starting point in our computation of the local Brauer class
at a supercuspidal prime. Note that these formulas depend on the choice of Γ0
satisfying the conditions (a) and (b) stated before Lemma 5.2.

6. Unramified supercuspidal primes

In this section, we will prove Theorem 2.1 (a) in two parts, and then study some
of its consequences.

Theorem 6.1. Let p be an odd unramified supercuspidal prime with θ(s) + θ(s)p ,

0. Then, we have [Xv] ∼ (−1) fv·υ(a2
p′ ε
−1(p′)), for v | p.

Proof. Let the set Γ0 satisfy the two conditions before Lemma 5.2.
Suppose S p = {tγ0} , ∅, then by equation (10) it is enough to show that

εp(−1)[Fv:Qp] · (znγ0
, p∗)v = 1. Let gs ∈ Gp2 be an element which is mapped to

s ∈ Q∗
p2 under the reciprocity map. By local class field theory, we have ψ(gs) =

ψ([NQp2 |Qp(s)]), for any Dirichlet (or idèlic) character ψ. Note that p divides the
conductor of a quadratic character ψ if and only if ψ is non-trivial on (Z/pZ)∗. The
norm NQp2 |Qp(s) = sp+1 = x, say, is a generator of the group (Z/pZ)∗ inside Z∗p.
Hence for any γ ∈ Γ0, ψγ(gs) = −1⇐⇒ p∗|tγ ⇐⇒ γ = γ0, where the last implica-
tion follows from condition (a) on Γ0. Looking at the definition of nγ0 given in (6),
we conclude that ∀ γ ∈ Γ0 and hence ∀ γ ∈ GF , ψγ(gs) = ψγ(nγ0). Hence it follows

from (1) and (5) that

 α(gs)√
ε(gs)

γ−1

=

 anγ0√
ε(nγ0)

γ−1

, for all γ ∈ GF . So we have

znγ0
=

a2
nγ0

ε(nγ0)
≡
α2(gs)
ε(gs)

≡
(θ(s) + θ(s)p)2

ε−1
p (x)

mod F∗2,

where the last congruence is by part (2) of Proposition 3.1, noting that the trace
θ(s)+θ(s)p is non-zero by assumption. As θ(s)+θ(s)p = TrQp2 |Qp(θ(s)) ∈ Q∗p ⊆ F∗v ,
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we get znγ0
≡ εp(x) mod (F∗v)2, and υ(znγ0

) ≡ 0 mod 2. By equation (11), we

get (znγ0
, p∗)v =

( z′nγ0
v

)ev

=
(
εp(x)

v

)ev
=

(
εp(x)

p

) fvev
=

(
εp(x)(p−1)/2

)ev fv
= εp(−1)ev fv ,

therefore εp(−1)[Fv:Qp] · (znγ0
, p∗)v =

(
εp(−1)ev fv

)2
= 1.

If S p = ∅, then ψγ(gs) = 1 for all γ ∈ GF , and a similar argument shows that
(θ(s) + θ(s)p)2 ≡ ε−1

p (x) mod F∗2. Thus we get εp(x) ∈ F∗2v , which implies that(
εp(x)

v

)
=

(
εp(x)

p

) fv
= εp(−1) fv = 1. Hence εp(−1)[Fv:Qp] = 1, and the result follows

by equation (10). �

Note that if p is a supercuspidal prime of level zero, then by the regularity con-
dition (1) on θ in the definition of an admissible pair, we have θ(s)p−1 , 1. The
condition on θ(s) in the hypothesis of Theorem 6.1 is equivalent to θ(s)p−1 , −1.
However, for an unramified supercuspidal prime of positive level we remove this
condition now.

Theorem 6.2. Let p be an odd unramified supercuspidal prime of level > 0 for a
p-minimal non-CM newform f . Then, we have [Xv] ∼ (−1) fv·υ(a2

p′ ε
−1(p′)), for v | p.

Proof. Since p is an unramified supercuspidal prime of level > 0, Np ≥ 4. We
twist f by a suitable character at p if necessary, and assume that εp is tame. Note
that the formula to be proved is invariant under twist by a character of p-power
conductor. As f was p-minimal to begin with, Np cannot decrease by twisting.
Thus the hypothesis of Lemma 4.1 is satisfied. If θ(s) + θ(s)p , 0, we are done by
Theorem 6.1. So assume θ(s) + θ(s)p = 0, i.e., θ(s)p−1 = −1.

As explained in the proof of Theorem 6.1, if S p , ∅, then

(12) znγ0
=

a2
nγ0

ε(nγ0)
≡
α2(gs)
ε(gs)

mod (F∗)2.

Note that θσ(s) = θ(s)p = −θ(s). By Lemma 4.1, ∃ τ ∈ Iw(K), such that

(13) α(gs) ≡ α(gsτ) ≡ (θ + θσ)(gsτ) ≡ θ(s)(ζp − ζ
−1
p ) mod F∗.

Using equations (3) and (4), we get

(14) ε(gs) = ε([NQp2 |Qp(s)]) = ε−1
p (sp+1) = θ(sp+1).

By the equations (12), (13), and (14) and using that θ(s)p−1 = −1, we get

(15) znγ0
≡ −(ζp − ζ

−1
p )2 ≡ −p2(ζp − ζ

−1
p )2 mod (F∗)2.

Suppose p ≡ 3 mod 4, then
√
−p(ζp − ζ

−1
p ) is a totally real element in Q(ζp),

hence it is contained in the field Q(ζp + ζ−1
p ) ⊆ F, by Lemma 4.1. Thus we have

−p(ζp − ζ
−1
p )2 ∈ (F∗)2, hence

(16)

z′nγ0

v

 =

 (−p2(ζp − ζ
−1
p )2)′

v

 =

(
(p)′

v

)
,

where we write (p)′ for the prime-to-πv part of p to distinguish it from the auxiliary
prime p′. From equation (15), we have the valuation

(17) υ(znγ0
) ≡ υ

(
−(ζp − ζ

−1
p )2

)
= 2ev/(p − 1) ≡ ev mod 2.

As p ≡ 3 mod 4, (Nv − 1)/2 = (p fv − 1)/2 ≡ fv mod 2. Hence by (11) and (16),
(znγ0

, p∗)v = (−1)evev fv ·
( (−p)′

v

)ev
·
( (p)′

v

)ev
= (−1)ev fv ·

(
−1
v

)ev
= (−1)ev fv ·

(
−1
p

)ev fv
= 1.
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By (4), εp(−1) = θ(−1) = θ(s)(p2−1)/2 = (θ(s)p−1)(p+1)/2 = (−1)(p+1)/2 = 1, and

therefore by (10), we get [Xv] ∼ (−1) fv·υ(a2
p′ ε
−1(p′))

.
Now suppose p ≡ 1 mod 4. By Lemma 4.1, we get that ev is even, and

√
p =

√
p∗ ∈ Qp(ζp + ζ−1

p )∗ ⊆ F∗v , hence
( (p∗)′

v

)
= 1. As all the other symbols involved in

εp(−1)[Fv:Qp] ·(znγ0
, p∗)v have an ev in the exponent, we get [Xv] ∼ (−1) fv·υ(a2

p′ ε
−1(p′)),

by equation (10).
If S p = ∅, then the result follows trivially from the fact that εp(−1)[Fv:Qp] = 1 in

all cases, as shown above. �

Remark The result above is false in general for supercuspidal primes of level zero.
There exist p-minimal newforms with Cp < Np = 2, with θ(s) + θ(s)p = 0, such
that fv is even, but Xv is ramified at some v | p; see Example 5 in the last section.

Theorems 6.1 and 6.2 imply Theorem 2.1 (a). Indeed, if θ(s) + θ(s)p , 0, the
first theorem applies. Otherwise, θ(s) + θ(s)p vanishes. By the hypothesis made in
Theorem 2.1, we may assume that the p-minimal twist of f has positive level, and
the second theorem applies. We remark here that the vanishing of θ(s) + θ(s)p does
not depend on the twist.

Corollary 6.3. Let p be an odd unramified supercuspidal prime for f . Also assume
that θ(s) + θ(s)p , 0, if the p-minimal twist of f is of level 0.

(a) If N′ = 1, or if p has odd order in (Z/N′Z)∗, then Xv is a matrix algebra
over Fv.

(b) If Qp2 ⊆ Fv, then Xv is a matrix algebra over Fv.
(c) If Xv has non-trivial Brauer class in Br(Fv), then v must divide disc(E|F).

Proof. We have:
(a) For any Dirichlet character χ, let χ′ denote its prime-to-p component.

If N′ = 1, then χγ(p′)
(∗)
= χ′γ(p′) = 1, for all γ ∈ Γ. Hence ap′ ∈ F∗.

If N′ , 1, let n = 2m + 1 be the order of p mod N′, i.e., pn ≡ 1
mod N′. Hence we have χγ(p′)n = χ′γ(pn) = 1, for all γ ∈ Γ. We know that
χ′γ(p)2 = χγ(p′)2 = ε(p′)γ−1, for all γ ∈ Γ. Hence χγ(p′) = χ′γ(p)n−2m =(
χ′γ(p)2

)−m
= (ε(p′)γ−1)−m, which implies that aγ−1

p′ =
(
ε(p′)−m)γ−1, for all

γ ∈ Γ. So ap′ ≡ ε(p′)−m mod F∗.
Now use Theorems 6.1 and 6.2 to get the result in both cases.

(b) Qp2 ⊆ Fv would imply that fv is even. Now apply Theorems 6.1 and 6.2.
Note that here K = Qp2 , so we have proved a part of Corollary 2.3.

(c) By Theorems 6.1 and 6.2, [Xv] ∼ −1 implies that υ(a2
p′ε
−1(p′)) is odd. If

υ is extended to a valuation on E∗, then clearly υ(ap′) is not an integer.
Hence v ramifies in E, or v | disc(E|F).

�

7. Ramified supercuspidal primes

In this section we will prove part (b) and (c) of Theorem 2.1, and derive some
consequences.

Let p be an odd ramified supercuspidal prime for f . As K|Qp is ramified, there
are two possible choices for K. If (p,K|Qp) = 1, then K = Qp(

√
−p), and if

(p,K|Qp) = −1, then K = Qp(
√
−pζp−1). Depending on K, we can always choose

a uniformizer π =
√
−p or

√
−pζp−1, and write K = Qp(π). For σ ∈ Gp, any lift of

the generator of Gal(K|Qp), we have πσ = −π, and NK|Qp(π) = −π2.



SUPERCUSPIDAL RAMIFICATION OF MODULAR ENDOMORPHISM ALGEBRAS 11

Let p′ and p′′ be as in Section 2, satisfying the properties (∗) and (∗∗) respec-
tively.

Theorem 7.1. Let p ≡ 1 mod 4 be a ramified supercuspidal prime. Then, for any
prime v | p in F, the Brauer class is given by [Xv] ∼ (−1) fv·υ(a2

p′ ε
−1(p′)).

Proof. The formula to be proved is invariant under twist by a Dirichlet character
of p-power conductor. So we twist f by a suitable character, if necessary, and then
assume that f is p-minimal. Since p is a ramified supercuspidal prime, even after
applying the twist the level will still be positive, i.e., the hypothesis of Lemma 4.2
is satisfied.

Since p ≡ 1 mod 4, ev is even and
√

p ∈ Q(ζp + ζ−1
p )∗ ⊆ F∗, by Lemma 4.2.

As p∗ = p is a square in F∗v , we get
( (p∗)′

v

)
= 1. Hence by (10) and (11), we get

[Xv] ∼ (−1) fv·υ(a2
p′ ε
−1(p′)). �

Remark Since the formula turns out to be the same as in the case of unramified
supercuspidal primes, Corollary 6.3 also holds for ramified supercuspidal primes
p ≡ 1 mod 4, as stated in Corollary 2.2. But note that none of the results in
Corollary 2.2 are true for ramified supercuspidal primes p ≡ 3 mod 4; see the
examples in the last section.

Lemma 7.2. For any odd ramified supercuspidal prime p, the valuations of ap′

and ap′′ are related by the following equation:

(−1)υ(a2
p′ ε
−1(p′))

= (−1)ev(k−1) ·

((
−1
p

)
εp(−1)

)2ev/(p−1)

· (p,K|Qp)υ(a2
p′′ ε

−1(p′′))
.

Proof. The equation to be proved is invariant under twist by a character of p-power
conductor. So without loss of generality we assume εp to be tame, so that we can
apply Lemma 4.1 . We write the ramified quadratic extension K as K = Qp(π),
where either π =

√
−p, or π =

√
−pζp−1.

Let gπ ∈ GK be an element whose image under the reciprocity map is π ∈ K∗.
Taking the determinant of ρ f (described in Section 4) at gπ, we get

θ(π)θσ(π) = θ(π)θ(−π) = χk−1
` (gπ)ε(gπ)

(18) =⇒ θ(π)2ε−1(gπ) = θ(−1)pk−1.

If θ(−1) = 1, then α(gπ) ≡ (θ + θσ)(π) = 2θ(π) ≡ θ(π) mod F∗. So by (18),
we have α2(gπ)ε−1(gπ) ≡ pk−1 mod (F∗)2. If θ(−1) = −1, we use the element
τ ∈ Iw(K) given by Lemma 4.1, to get α(gπ) ≡ α(gπτ) ≡ (θ + θσ)(gπτ) ≡ θ(π)(ζp −

ζ−1
p ) mod F∗, and by (18), we have α2(gπ)ε−1(gπ) ≡ −pk−1(ζp−ζ

−1
p )2 mod (F∗)2.

Therefore using υ(p) = ev and υ
(
(ζp − ζ

−1
p )2

)
= 2ev/(p − 1), we get

υ
(
α2(gπ)ε−1(gπ)

)
≡

ev(k − 1) mod 2, if θ(−1) = 1,
ev(k − 1) + 2ev/(p − 1) mod 2, if θ(−1) = −1.

By (4), θ(−1) =
(
−1
p

)
εp(−1), so the congruence above can be written as

(19) (−1)υ(α2(gπ)ε−1(gπ)) = (−1)ev(k−1) ·

((
−1
p

)
εp(−1)

)2ev/(p−1)

.

By class field theory, gπ ∈ Gp ⊆ GQ is mapped to [NK|Qp(π)] ∈ Q∗p ⊆ A
∗
Q

. Each χγ
is realized as an idèlic character as in equation (3), and hence as a Galois character.
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If (p,K|Qp) = 1, then NK|Qp(π) = p, and for all γ ∈ Γ, we have χγ(gπ) =

χγ([p]) = χ′γ(p)
(∗)
= χγ(p′). Hence applying (1) and (3), we get that

α2(gπ)ε−1(gπ) ≡ a2
p′ε
−1(p′) mod (F∗)2.

If (p,K|Qp) = −1, then NK|Qp(π) = pζp−1. So for all γ ∈ Γ, we have χγ(gπ) =

χγ([pζp−1])
(∗∗)
= χ′γ(p)χ−1

γ,p(p′′)
(∗)
= χγ(p′)χ−1

γ (p′′). Applying (1) and (3), we get

(
α2(gπ)ε−1(gπ)

)
·
(
a2

p′′ε
−1(p′′)

)
≡ a2

p′ε
−1(p′) mod (F∗)2.

Now the result follows from equation (19) above. �

Corollary 7.3. Let p ≡ 1 mod 4 be a ramified supercuspidal prime such that
K = Qp(

√
p). Then, for any prime v | p in F, we have [Xv] ∼ εp(−1)2[Fv:Qp]/(p−1).

Proof. As explained in the proof of Theorem 7.1, without loss of generality we
may assume that f is p-minimal, where p is a supercuspidal prime of level > 0.
By the hypothesis K = Qp(

√
p) = Qp(

√
−p), as p ≡ 1 mod 4. Hence we have(

−1
p

)
= 1 = (p,K|Qp). By Lemma 4.2, ev is even. Now we apply Lemma 7.2 to the

statement of Theorem 7.1 to get the result. �

Theorem 7.4. Let p ≡ 3 mod 4 be a ramified supercuspidal prime. Let v be a
prime in F such that ev is odd. Then [Xv] ∼

(
(−1)ka2

p′′ε
−1(p′′), KFv|Fv

)
.

Proof. Since ev is odd, K * Fv and KFv|Fv is a ramified proper quadratic exten-
sion. So we can and do choose a uniformizer πv ∈ NKFv |Fv(KFv)∗ ⊆ F∗v . Note that
in this case, we have NKFv |Fv(O

∗
KFv

) = O∗
2

Fv
, where O∗ denotes units. Hence for any

a = πυ(a)
v · a′ ∈ F∗v , we have

(
a′
v

)
= (a,KFv|Fv).

If (p,K|Qp) = 1, then
( (p)′

v

)
= (p, KFv|Fv) = 1. If (p,K|Qp) = −1, then K =

Qp(
√
−pζp−1) and NKFv |Fv(

√
−pζp−1) = pζp−1, so

(
(pζp−1)′

v

)
= (pζp−1,KFv|Fv) =

1, which implies that
( (p)′

v

)
=

(
ζp−1

v

)
= (−1) fv . Combining both the cases we get

(20)
(
(p∗)′

v

)
=

(
−1
v

) (
(p)′

v

)
=

(
−1
p

) fv (
(p,K|Qp)

) fv
=

(
−(p,K|Qp)

) fv
.

If ∅ , S p = {tγ0}, then as in the proof of Theorem 6.1, we use (6) and (∗∗) to
choose nγ0 to be p′′, hence znγ0

= a2
p′′ε
−1(p′′). Now using (10), (11), (20), Lemma

7.2, and the facts that ev is odd, (p − 1)/2 is odd and so (p fv − 1)/2 ≡ fv mod 2,
we get
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[Xv] (10)
∼ εp(−1)[Fv:Qp] · (znγ0

, p∗)v · (−1) fv·υ(a2
p′ ε
−1(p′))

(11)
= εp(−1)ev fv · (−1)υ(znγ0

)·ev·(p fv−1)/2
(
(p∗)′

v

)υ(znγ0
)  (znγ0

)′

v

ev

·(−1) fv·υ(a2
p′ ε
−1(p′))

(20), 7.2
= εp(−1) fv · (−1) fv·υ(znγ0

)
(
−(p,K|Qp)

) fv·υ(znγ0
)
 (znγ0

)′

v


·

(
(−1)(k−1)(−εp(−1))(p,K|Qp)υ(a2

p′′ ε
−1(p′′))

) fv

= (−1)k fv ·

 (znγ0
)′

v

 ∼  ((−1)kznγ0
)′

v


=

(
(−1)kznγ0

, KFv|Fv
)

=
(
(−1)ka2

p′′ε
−1(p′′), KFv|Fv

)
.

If S p = ∅, then ψγ(p′′) = 1, ∀ γ ∈ GF , so it follows from (5) that a2
p′′ε
−1(p′′) ∈

F∗2 ⊆ F∗2v . Therefore the symbol (znγ0
, p∗)v in equation (10) can be replaced by the

trivial symbol (a2
p′′ε
−1(p′′), p∗)v, and then the same proof (as above) works. �

The next lemma is a basic application of algebraic number theory and hence we
state it without proof.

Lemma 7.5. Let $ be any uniformizer in Zp. If ev is even, then either
√
$ ∈ F∗v or√

$ζp fv−1 ∈ F∗v . Moreover, if K|Qp is a ramified quadratic extension, then KFv|Fv
is an unramified extension of degree 1 or 2.

Theorem 7.6. Let p ≡ 3 mod 4 be a ramified supercuspidal prime and suppose
that ev is even. Then, the formula [Xv] ∼

(
(−1)ka2

p′′ε
−1(p′′), KFv|Fv

)
still holds.

Proof. As p′′ is a candidate for the integer nγ0 , by (10), (11), Lemma 7.2 and the
assumption that ev is even, we get that if S p , ∅, then
(21)

[Xv] ∼
(
(p∗)′

v

)υ(a2
p′′ ε

−1(p′′))

· (−1) fv·υ(a2
p′ ε
−1(p′))

∼

((
(−p)′

v

)
· (p,K|Qp) fv

)υ(a2
p′′ ε

−1(p′′))

.

So we compute the symbol
( (−p)′

v

)
case by case. We use the fact that since p ≡ 3

mod 4, the possibilities for K are Qp(
√
−p) and Qp(

√
p) = Qp(

√
−pζp−1), and

these occur exactly when (p,K|Qp) = 1 or −1, respectively.
Case 1: Assume K ⊆ Fv. If (p,K|Qp) = 1, then

√
−p ∈ K ⊆ Fv ⇒

( (−p)′

v

)
= 1.

If (p,K|Qp) = −1, then
√

p ∈ K ⊆ Fv ⇒
( (p)′

v

)
= 1⇒

( (−p)′

v

)
=

(
−1
v

)
= (−1) fv .

Case 2: Assume K * Fv. By Lemma 7.5, KFv|Fv is a proper quadratic unrami-
fied extension. If (p,K|Qp) = 1, then

√
−p < Fv, so by Lemma 7.5 with $ = −p,√

−pζp fv−1 ∈ Fv ⇒

( (−pζp fv−1)′

v

)
= 1⇒

(
(−p)′

v

)
=

(
ζp fv−1

v

)
= −1.

If (p,K|Qp) = −1, then
√

p < Fv, so by Lemma 7.5 with $ = p,√
pζp fv−1 ∈ Fv ⇒

( (pζp fv−1)′

v

)
= 1⇒

(
(−p)′

v

)
=

(
−ζp fv−1

v

)
= (−1) fv+1.
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Applying these to equation (21), we get

[Xv] ∼

1, if K ⊆ Fv,

(−1)υ(a2
p′′ ε

−1(p′′))
, otherwise.

It can be checked that this formula is valid even if S p = ∅, as in the proof of
Theorem 7.4. Equivalently, [Xv] ∼

(
(−1)ka2

p′′ε
−1(p′′), KFv|Fv

)
, as KFv|Fv is un-

ramified. �

Remark Note that the factor (−1)k above does not have any significance, since
KFv|Fv is unramified. We keep it only to get a uniform formula for all ev, even or
odd.

8. Numerical examples

Here are some numerical examples in support of our results. We used the pro-
gram Sage to compute the admissible pair (K, θ) attached to a supercuspidal prime
of a newform in some cases. One may also directly check the hypothesis on θ(s) in
Theorem 6.1 in the case of level zero supercuspidals, using equation (4), together
with the fact that the order of θ(s) divides p2 − 1, but not p − 1. To determine the
local Brauer class [Xv], we used the program Endohecke for newforms with qua-
dratic character, and the data from the tables in [GGQ05] and [Qu05] for newforms
with arbitrary character.

(1) f ∈ S 5(75, [1, 0]), E = Q(
√
−35), F = Q; p = 5 is an unramified super-

cuspidal prime of level zero with θ(s) + θ(s)5 , 0. For p = 5, p′ = 101
satisfies (∗) and we computed a2

101 = −18002 · 35. So fv · υ
(
a2

p′ε
−1(p′)

)
=

1 · υ5(18002 · 35) = 5 ≡ 1 mod 2. By Thm. 6.1, X5 is ramified.
There exists another newform, say g ∈ S 5(75, [1, 0]), with F = Q and

E = Q(
√
−14), such that p = 5 is an unramified supercuspidal prime of

level zero with θ(s) + θ(s)5 , 0. By Cor. 6.3 (c), X5 has to be unrami-
fied. But, the admissible pairs attached to f and g at p are equivalent. This
shows that the Q̄`-isomorphism class of the local `-adic Galois representa-
tion at a supercuspidal prime p fails to predict the Brauer class [Xv] above
p, even in the simplest case F = Q.

(2) f ∈ S 2(72, [1, 1, 3]), E = Q(
√
−2,
√
−3), F = Q. Here p = 3 is an

unramified supercuspidal prime of level zero with order o(θ(s)) = 8, so
θ(s) + θ(s)3 , 0. We choose p′ = 19 and checked that a19 = −4. Clearly
υ3

(
a2

19ε
−1(19)

)
= 0, so X3 is unramified. Note that 3 divides disc(E|F),

thus the converse of Cor. 6.3 (c) is false.
(3) f ∈ S 2(405, [0, 2]) is 3-minimal with E = Q(

√
−2,
√

3) and F = Q. p = 3
is an unramified supercuspidal prime of positive level, with o(θ(s)) | 4,
so θ(s) + θ(s)3 may vanish. But since the level > 0, we can still apply
Thm. 6.2. We choose p′ = 163 and checked that a2

p′ε
−1(p′) ≡ 6 mod Q∗

2
.

Hence X3 ramifies.
(4) f ∈ S 2(99, [3, 5]), E = Q(

√
−2,
√

3), F = Q. p = 3 is an unramified
supercuspidal prime of level zero with θ(s) + θ(s)3 , 0. The order of
3 ∈ (Z/11Z)∗ is 5, hence by Cor. 6.3 (a), X3 is unramified.

(5) f ∈ S 2(99, [0, 2]), [E : Q] = 8 and F = Q(
√

5). p = 3 is an unramified
supercuspidal prime of level zero. The order of θ(s) is 4, so θ(s)+θ(s)3 = 0,
and we cannot apply Thms. 6.1 or 6.2. Note that v = 3 is the unique prime
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in F lying above 3, and Fv = Q3(
√

5) = Q32 . Thus fv = 2, but still
[Xv] ∼ −1. This proves the necessity of the condition on θ(s) in Thm. 6.1.

(6) f ∈ S 2(375, [1, 25]), [E : Q] = 16 and F = Q(
√

5). p = 5 ≡ 1 mod 4 is
a ramified supercuspidal prime for f , and K = Q5(

√
5). There is a unique

prime v in F above 5, and [Fv : Q5] = 2. As εp(−1)2[Fv:Qp]/(p−1) = −1, Xv
is ramified by Cor. 7.3. In fact, X f is ramified at the primes above 5, 89.

(7) f ∈ S 5(27, [9]) with E = Q(
√
−1) and F = Q. p = 3 is a ramified

supercuspidal prime for f . For p = 3, p′′ = 53 satisfies (∗∗), and we
checked that a2

53 = −2537649 = −15932. So (−1)ka2
p′′ε
−1(p′′) = a2

53 ≡ −1
mod NK|Qp K∗. For any ramified quadratic extension K ofQ3, (−1,K|Q3) =

−1. Hence by Thm. 7.4, X3 is ramified. Note that here 3 - disc(E|F), and
N′ = 1, but still [X3] ∼ −1. So the analogue of Cor. 6.3 does not hold in
this case.

(8) f ∈ S 5(27, [9]) with E = Q(
√
−6), and F = Q. p = 3 is a ramified

supercuspidal prime and K = Q3(
√
−3). We choose p′′ = 53 as before, and

compute a2
p′′ = a2

53 = −8468064 = −6 · 11882. Hence (−1)ka2
p′′ε
−1(p′′) =

a2
p′′ ≡ −6 ≡ 3 mod NK|Q3 K∗. But (3,K|Q3) = 1, so X3 is unramified by

Thm. 7.4. In fact, X f is ramified only at 2 and∞.

Errata to [BG13]

(1) Page 517, line 8: The condition “Np ≥ 2 > Cp” should be replaced by
“Np ≥ 2, Np > Cp”.

(2) Page 522, line 4: In the definition of m†v , “[Fv : Qp†]” should be replaced
by “[Fv : Qp]”.

(3) Page 523, line 1: The inequality “≤” should be replaced by “<”.
(4) Page 539, Prop. 33: One should add the following condition in the hy-

potheses: “If K/Qp is unramified, then assume χ(gs) + χ(gs)p , 0, where
gs ∈ GK corresponds to a primitive (p2−1)-th root of unity s ∈ K∗.” With-
out this assumption, the usual argument referred to on line 16 of page 540
does not work.
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