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1 Introduction

The purpose of this note is to describe some recent work by Soulé [6] on
Vandiver’s conjecture1 which uses K-theory.

Let us start by recalling the conjecture. The letter p will always denote
an odd prime in what follows.

Conjecture 1 (Vandiver’s Conjecture) Let h+ denote the class number
of the maximal totally real subfield Q(ζp)

+ of Q(ζp). Then p 6
∣

∣ h+.

At the outset, we should perhaps remind the reader that if p is a ‘Vandiver
prime’, that is an odd prime for which Vandiver’s conjecture holds, then much
of the theory of the pth-cyclotomic field becomes much ‘easier’. For instance,
for such p, the proof of the main conjecture is routine (see Theorem 10.16 of
[8]).2

Here is another example, for which we will need some notation. Let

ω : Gal(Q(ζp)/Q)
∼

−→ (Z/p)×

denote the Teichmuller character. Recall that ω is the canonical character of
Gal(Q(ζp)/Q) given by the formula

ζσ
p = ζω(σ)

p ,

1Although Conjecture 1 is attributed to Vandiver, it apparently was already stated by
Kummer in a letter to Kronecker in the middle of the 19th century (see the Remark on
page 158 of [8]).

2The main conjecture was established independently of Vandiver’s conjecture by Mazur
and Wiles [3] by studying the reductions of modular curves. An alternative proof was given
by Kolyvagin and Rubin (see [5], or Chapter 15 of [8]), using the more elementary, but
ingenious, method of Euler systems.
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for σ ∈ Gal(Q(ζp)/Q). Let σa denote the pre-image of [a] ∈ (Z/p)× under ω.
It will be convenient to regard ω as a p-adic object as follows. Note that

(Z/p)× is isomorphic to µp−1, the group of (p − 1)st roots of 1. By Hensel’s
lemma, µp−1 ⊂ Z×

p . Thus we may regard ω as a character

ω : Gal(Q(ζp)/Q) → Z×

p ⊂ Zp.

Let A be the p-Sylow subgroup of the ideal class group of Q(ζp). By using
a system of orthogonal idempotents of Zp[Gal(Q(ζp)/Q)], we may decompose
A into ‘eigenspaces’ for the natural action of the Galois group Gal(Q(ζp)/Q)
on A (see section 6.3 of [8]):

A =

p−2
⊕

i=0

Ai,

with Ai = {a ∈ A
∣

∣ σ(a) = ωi(σ)a, for all σ ∈ Gal(Q(ζp)/Q)}.
Let Bk ∈ Q denote the kth Bernoulli number, and vp denote the normal-

ized p-adic valuation of Qp, with vp(p) = 1. We have3:

Theorem 1 (Herbrand-Ribet) Let i be an odd integer with 1 ≤ i ≤ p − 2.
Then

Ai 6= 0 ⇐⇒ vp(Bp−i) > 0.

For i as in Theorem 1 above, we have (see Corollary 5.15 of [8]):

B1,ω−i ≡
Bp−i

p − i
(mod p),

where4

B1,ω−i :=
1

p

p−1
∑

a=1

aω−i(σa) ∈ Zp.

Thus the following theorem is a refinement of the Herbrand-Ribet theorem5:

3See the lectures of Katre and Khare in these proceedings, as well as [8], for various
proofs of Theorem 1.

4The fact that B1,ω−i lies in Zp and not just Qp is forced on us by Theorem 2.
5Theorem 2 is a consequence of the main conjecture.
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Theorem 2 (Mazur-Wiles) Let i be an odd integer with 1 ≤ i ≤ p−2. Then

card(Ai) = pmi,

where mi = vp(B1, ω−i).

However, even more is conjectured to be true:

Conjecture 2 (Iwasawa) When i is odd, Ai
∼

→ Z/pmi is cyclic.

As it turns out (see Corollary 10.15 of [8]), Iwasawa’s conjecture is true when
p is a Vandiver prime.

The above discussion shows that it is more than simply a matter of curios-
ity to investigate the validity of Vandiver’s conjecture. Numerically, it has
been checked that all p ≤ 4×106 are Vandiver primes. However, apparently,
this is not sufficient evidence for one to believe that Vandiver’s conjecture
holds for all p. Indeed, a heuristic argument of Washington (see the Remark
on page 158 of [8]) shows that the exceptions to Vandiver’s conjecture are
very rare: the number of exceptions one expects in the range 3 ≤ p ≤ 4×106

is only 1.36....!
Let us now rephrase Conjecture 1 in a form that will render it more

manageable. It is an exercise to check that it is equivalent to the following:

Conjecture 3 (Vandiver’s Conjecture) Let p be an odd prime. Then
Ai = 0, for all even integers i with 0 ≤ i ≤ p − 3.

To place things in context, let us recall that it is well known that A0 =
A1 = 0 and that, moreover, when i is odd, Ai = 0 ⇐⇒ p 6

∣

∣ Bp−i (Herbrand-
Ribet theorem). Thus Vandiver’s Conjecture says that, on the other hand,
when i is even, Ai always vanishes!

As mentioned already, in this note we would like to describe recent work
by Soulé on Vandiver’s conjecture which uses K-theory.

The story starts with a pretty result of Kurihara [2], who proved that the
‘top’ even eigenspace always vanishes:

Theorem 3 (Kurihara) Ap−3 = 0.

The idea of Kurihara’s proof is to note that there is a surjective map

K4(Z) ⊗ Z/p → Ap−3, (1)
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and that K4(Z) is not too big.6 Last year Soulé [6] was able to extend
Kurihara’s result. He showed that if n is small (and odd) compared to p
then Ap−n = 0. More precisely, he showed:

Theorem 4 (Soulé) Assume n > 1 is odd. If log p > n224n4

, then

Ap−n = 0.

The basic idea of Soulé’s proof is very similar to Kurihara’s. He notes that
the ‘Chern map’ (of which (1) above is a special case):

K2n−2(Z) ⊗ Z/p → Ap−n (2)

is surjective. On the other hand the finite abelian group K2n−2(Z), is (es-
sentially) the (2n − 2)th homology group of SLN(Z) for N large. Classical
Voronoi ‘reduction theory’ gives an explicit cell decomposition of the com-
pactification of the locally symmetric space attached to SLN (Z). With this
in hand, Soulé now implements the following simple remark of Gabber: one
may bound the torsion in the homology of a finite CW-complex X purely in
terms of data associated with the cellular chain complex C·(X) of X, such
as the number of cells of a fixed degree and the number of faces of each cell.
This yields an explicit upper bound for the primes p dividing the order of
K2n−2(Z): this is the bound that appears in the statement of Theorem 4
above.

Note that because of the inherent surjectivity of the map (2), the Soulé-
Kurihara method has natural limitations: one can only expect it to yield
rough results such as Theorem 4 above. On the other hand, as far as we
are aware, Theorems 3 and 4 are really the first results towards Vandiver’s
conjecture of a general nature.

I would like to thank Dinesh Thakur for encouraging me to write up these
notes, and V. Srinivas for his comments on a first draft.

2 A quick introduction to K-theory

Let R be a commutative ring with 1. In this section we will introduce the
K-groups Ki(R) (i ≥ 0) attached to R, and describe some of their properties

6At the time that Kurihara wrote [2] it was known that K4(Z) is a finite abelian group
whose p primary components were 0, for p 6= 2, 3. This was enough to deduce Theorem 3.
However recently Rognes has shown that in fact K4(Z) = 0.
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when R is the ring of integers of a number field. References for some of the
material described here are Srinivas’ book [7] (especially Chapters 1 and 2),
and Rosenberg’s book [4].

2.1 K0(R)

Here we simply recall the definition of K0(R). Let F denote the free abelian
group on isomorphism classes of projective R-modules, and let R denote the
subgroup generated by the elements

[P ⊕ Q] − [P ] − [Q],

where P and Q are projective R-modules, and [ ] denotes an isomorphism
class. Then we set

K0(R) = F/R.

2.2 Classifying spaces

To introduce the higher K-groups we will need the notion of a classifying
space of a discrete group G, which we introduce now.

It is a fact that if G is a group, regarded as a discrete topological group,
then there exists a contractible CW-complex X on which G acts freely and
cellularly (so properly discontinuously), so that the quotient X/G is a CW-
complex (see Theorem 5.1.15 of [4] for an explicit construction of X). We
now make the:

Definition 1 The classifying space of G is the quotient space BG := X/G.

It is a fact that BG is well defined up to homotopy equivalence (Theorem
5.1.5. of [4]). Also BG is a K(G, 1)-space (see Corollary 5.1.25 of [4]). That
is, it is a connected space with

π1(BG, x) = G and πm(BG, x) = 0, for m > 1.

Here x is a base point, which we will drop from the subsequent notation.
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2.3 The plus construction

Let GLn(R) denote the ring of invertible n × n matrices with entries in R.
Then GLn(R) ⊂ GLn+1(R) via the embedding

A 7→

(

A 0
0 1

)

.

Let GL(R) = limn→∞ GLn(R), where the limit is taken with respect to these
embeddings.

Regard GL(R) as a topological group with the discrete topology, and let
BGL(R) denote the classifying space of GL(R). Recall that BGL(R) is a
K(GL(R), 1) space: i.e. BGL(R) is a connected space with π1(BGL(R)) =
GL(R), and πm(BGL(R)) = 0, for m > 0.

Now one constructs another space BGL(R)+ from BGL(R) by attaching
two and three cells. This process is called the plus construction, and is
described on page 19 of [7]. Here we will be content in describing some of
the properties of BGL(R)+, that we summarize in the following theorem:

Theorem 5 1. Let E(R) denote the subgroup of GL(R) generated by the
elementary matrices (at finite level, these matrices are just n × n ma-
trices with diagonal entries equal to 1 and at most one non-zero off-
diagonal entry). Then E(R) is the commutator subgroup of GL(R), and
is a perfect normal subgroup of GL(R). Moreover,

π1(BGL(R)+) = GL(R)/E(R).

2. For each m ≥ 0 we have

Hm(BGL(R)+, Z) = Hm(BGL(R), Z) = Hm(GL(R), Z).

2.4 Higher K-groups

We may now give (one of) Quillen’s definition’s of the higher K-groups of R:

Definition 2 For each m ≥ 1, set Km(R) := πm(BGL(R)+).

We note that in particular Km(R) is an abelian group for m ≥ 0.
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2.5 K-theory of rings of integers

Let F be a number field, and let OF denote the ring of integers of F . The
next theorem shows that one might expect that the higher K-groups of OF

should contain much interesting information about F :

Theorem 6 1. K0(OF ) = Z ⊕ Cl(F ), where Cl(F ) denote the class
group of F .

2. K1(OF ) = O×

F , the group of units of OF .

Quillen had shown that, in general, the abelian groups Km(OF ) are
finitely generated. Their ranks were subsequently computed by Borel [1]:

Theorem 7 (Borel) Let r1 (respectively r2) denote the number of embeddings
of K into R (respectively C). Then the ranks of Km(OF ) are as follows:

rk(K0(OF )) = 1, rk(K1(OF )) = r1 + r2 − 1 and

rk(Km(OF )) =











r1 + r2 if m = 4i + 1 > 1,

r2 if m = 4i + 3 > 1,

0 if m = 2i.

On the other hand, almost nothing is known about the torsion subgroups
of Km(OF ). The following theorems summarizes our current state of igno-
rance when F = Q.

Theorem 8 The K-theory of Z computed to date is: K0(Z) = Z, K1(Z) =
Z/2, K2(Z) = Z/2, K3(Z) = Z/48, and K4(Z) = 0.

2.6 The Hurewicz map

For computational purposes, we will need the Hurewicz maps (m ≥ 1)

Hurewicz : πm(X) → Hm(X, Z),

which are homomorphisms from the homotopy groups of a CW-complex X,
to the homology groups of X. Roughly, they are defined as follows (see
Appendix A of [7] for further details). A typical element [f ] of πm(X) is
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a homotopy class of a continuous map f : Sm → X, where Sm is the m-
dimensional sphere. We have an induced map

Hm(f) : Hm(Sm, Z) → Hm(X, Z),

and we set Hurewicz([f ]) = Hm(f)(ω) where ω is the standard generator
(corresponding to a choice of orientation) of Hm(Sm, Z) = Z.

It is not true in general that the Hurewicz maps are isomorphisms, though
this does hold for m ≥ 2 when X is (m−1)-connected, that is, when πj(X) =
0 for j ≤ m − 1. When m = 1, and X is 0-connected, that is when X is
connected, the kernel of the Hurewicz map is just the commutator subgroup
of π1(X), and in this case the Hurewicz map gives an explicit isomorphism
π1(X)ab = H1(X, Z).

In our situation the Hurewicz map is a homomorphism (cf. Theorem 5):

Hurewicz : Km(OF ) = πm(BGL(OF )+) → Hm(GL(OF ), Z).

This map is not injective7, but when F = Q we have the following (see the
remarks in Section 2.5 of [6] and the references there):

Proposition 1 The kernel of

Hurewicz : Km(Z) → Hm(GL(Z), Z)

is a finite abelian group, with non-zero p-primary components only for p
smaller than the integral part of (m + 1)/2.

3 The Chern map

We now show how the map (2) is constructed. Unfortunately, we will have to
be somewhat brief since we ourselves do not understand some of the details.

Let X be a scheme over Z[1
p
], and let

Hk
et(X, Zp(n)) (3)

7Srinivas has remarked that the kernel of the Hurewicz map for BGL(R)+ is always a
torsion group. In fact it is a theorem of Milnor and Moore that the kernel of Hurewicz is
torsion when X is an H-space. We refer the reader to Appendix A of [7] for the definition
and properties of H-spaces.
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denote the étale cohomology groups of X with coefficients in the nth Tate
twist of the group of p-adic integers.

Let us explain what we mean by this in the situation that matters to us,
namely when X = Spec(Z[1/p]). We need some notation. Let Qp,∞ denote
the maximal extension of Q unramified outside p and ∞. Let ε denote the
cyclotomic character

ε : Gal(Qp,∞/Q) � Gal(Q(µp∞)/Q)
∼

→ Z×

p ⊂ Zp.

Then Zp(n) is the Gal(Qp,∞/Q)-module Zp with action:

g · a = ε(g)na,

where g ∈ Gal(Qp,∞/Q) and a ∈ Zp. Then, when X = Z[1/p], the group (3)
above is nothing but the continuous Galois cohomology group

Hk(Gal(Qp,∞/Q), Zp(n)).

One may also speak of the K-theory of the scheme X. The exact def-
inition8 does not concern us here, since when X = Spec(R) is affine (as a
scheme over Spec(Z[1/p]), then Km(X) = Km(R). There is also the notion of
the étale K-groups, Ket

m(X), of X, whose definition I don’t know. However,
I do know that these are Zp-modules which come equipped with maps

Km(X) ⊗ Zp → Ket
m(X). (4)

Finally Dwyer and Friedlander have shown that these gadgets are con-
nected by an Atiyah-Hirzebruch type9 spectral sequence:

Ers
2 = Hr

et(X, Zp(−s/2)) =⇒ Ket
−r−s(X),

or re-indexing (set r = k, and s = −2n)

Ekn
2 = Hk

et(X, Zp(n)) =⇒ Ket
2n−k(X).

We now have the following

8See Chapters 3 and 4 of [7] if you are interested in the definition!
9The name is because it is the exact analog of Atiyah-Hirzebruch spectral sequence

connecting the singular homology of a space X with the topological K-theory of X .
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Theorem 9 Say X = Z[1/p]. Assume that n > 0 and p is odd. Then

Hk
et(X, Zp(n)) = 0,

unless k = 1 or 2.

Now set m = 2n−k. Then Theorem 9 shows that when X = Spec(Z[1/p]),
the spectral sequence above degenerates, and so there are surjective maps:

Ket
m(X) � Hk

et(X, Zp(n)), (5)

for m = 2n − 1 or 2n − 2.
We are interested in the case when k = 2, and n > 1 is odd. In this case

m = 2n− 2, and in particular m is even. By Theorem 7, we see that Km(Z)
is a finite abelian group. Also we have the following (see Section 1 of [2]):

Proposition 2 Let X = Spec(Z[1/p]). Suppose n > 1 is odd. Then

H2
et(X, Zp(n)) ⊗ Z/p = Ap−n.

Combining the natural maps

K2n−2(Z) → K2n−2(Z[1/p]) → K2n−2(Z[1/p]) ⊗ Zp

with the maps (4), (5), and the above proposition, we get a map

K2n−2(Z) ⊗ Z/p → Ap−n.

It is (apparently) a fact (due to Soulé and Dwyer-Friedlander) that this map
is surjective, and this is the map (2) that we have called the Chern map in
the Introduction.

4 Voronoi’s reduction theory

Fix N ≥ 2. Let VN denote the space of N × N real symmetric matrices.
Recall that a symmetric matrix A is called positive semi-definite if vAvt ≥

0, for all v, and is called positive definite if in addition vAvt = 0 ⇐⇒ v = 0.
Let PN denote the subset of VN of all positive definite symmetric matrices.
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Note that R×

+ acts on VN by scalar multiplication. Set XN = PN/R×

+. Then
XN = SLN (R)/SON(R) is the symmetric space for SLN(R).

Let P ∗

N denote the subset of VN of all symmetric positive semi-definite
matrices, with rational null-space (that is ker(A) is spanned by vectors in
QN ). Set X∗

N = P ∗

N/R×

+. We have the following commutative diagram of
spaces:

PN ⊂ P ∗

N

↓ ↓ π
XN ⊂ X∗

N ,

where π denotes the projection map.
Now SLN (Z) acts on P ∗

N as follows:

g · A = gAgt,

where g ∈ SLN(Z) and A ∈ P ∗

N . PN is clearly preserved under this action.
Set YN = XN/SLN(Z) and Y ∗

N = X∗

N/SLN(Z).

Definition 3 Let A ∈ PN . Set

µ(A) := min{vAvt
∣

∣ v ∈ ZN ⊂ RN},

m(A) := {v ∈ ZN \ 0
∣

∣ vAvt = µ(A)}.

Definition 4 Let A ∈ PN . Then say A is perfect if µ(A) = 1, and if
whenever B ∈ PN with µ(B) = 1 and m(A) = m(B), then B = A.

Note that each element v ∈ ZN \ 0 determines an element v̂ = vtv ∈ P ∗

N .

Definition 5 Given any finite subset B ⊂ ZN \ 0, the convex hull of B is

the set π
(

{
∑

j λj v̂j

∣

∣ vj ∈ B, λj ≥ 0}
)

.

When A is perfect, let σ(A) denote the convex hull of m(A). We may
now state the main theorem of Voronoi reduction theory:

Theorem 10 (Voronoi)

1. Up to conjugation by SLN (Z), there are only finitely many perfect
forms.
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2. The cells σ(A) and their intersections, as A varies through the set
of perfect forms, gives a cell decomposition of X∗

N , invariant under
SLN(Z).

The above theorem says that the space Y ∗

N = X∗

N/SLN(Z) is a finite CW-
complex. Soulé has computed explicit upper bounds for the number of cells
of a fixed dimension, and the number of faces of such cells:

Proposition 3 There exist explicit constants c(k, N) and f(k, N) such that

1. The number of SLN(Z)-conjugacy classes of k-dimensional cells in the
Voronoi cell decomposition of X∗

N is bounded by c(k, N), and,

2. Any k-dimensional cell has at most f(k, N) faces.

Proof: The proof is easy: we refer the reader to Propositions 1 and 2 of [6]
for details.

5 A key Lemma

The following simple lemma (it is a good exercise to try and prove it for
yourself) is really at the heart of the whole proof:

Lemma 1 Let φ : Za → Zb be a Z-linear map. Let Q = coker(φ). Let
{ei

∣

∣ 1 ≤ i ≤ a} denote the standard basis of Za, and let I ⊂ {1, . . . , a} be
such that {φ(ei)

∣

∣ i ∈ I} is a basis for image(φ) ⊗ R. Then

card(Qtors) ≤
∏

i∈I

||φ(ei)||.

Now let X be a finite CW-complex. Let (C.(X), ∂·) denote its cellular
chain complex. Recall that Ck(X) is a free Z-module of finite rank, with
basis, say, Σk, and that there are boundary maps

∂k+1 : Ck+1(X) → Ck(X). (6)

Suppose that

∂k+1(σ) =
∑

σ′∈Σk

nσσ′ σ′,
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for σ ∈ Σk+1. Set

a(k) = min (card(Σk+1), card(Σk)) ,

b(k) = max



1, max
σ∈Σk+1

(

∑

σ′∈Σk

n2
σσ′

)1/2


 .

The following corollary follows immediately from Lemma 1:

Corollary 1 (Gabber) We have

card(Hk(C·, ∂·)tors) ≤ b(k)a(k).

Proof: Note that

Hk(C·, ∂·) =
ker(∂k)

image(∂k+1)
⊂ Q = coker(∂k+1).

Also ||∂k+1(σ)|| ≤ b(k). Thus

card(Hk(C·, ∂·)tors) ≤ card(Qtors) ≤ b(k)a(k).

Let us apply this corollary in our situation: namely when X = Y ∗

N .
We choose our basis set Σk to be a set of representatives of the conjugacy
classes of k-dimensional cells in the Voronoi cell decomposition. Note that
if σ ∈ Σk+1, the absolute values |nσσ′ | of the integers appearing in (6) above
are at most the number of faces τ of σ which are conjugate to σ′. So

(

∑

σ′∈Σk

n2
σσ′

)1/2

≤
∑

σ′∈Σk

|nσσ′ | ≤ f(k + 1, N),

by Proposition 3. The same proposition shows that

card(Σk) ≤ c(k, N).

Consequently, in our situation, we may rephrase Corollary 1 as:

Corollary 2 We have

card(Hk(Y
∗

N , Z)tors) ≤ f(k + 1, N)c(k+1,N).
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6 Proof of Theorem 4

In this section, we tie together the previous sections and give a sketch of the
proof of Theorem 4.

Let p be an odd prime, and let n > 1 be odd. Recall that the map (2)

K2n−2(Z) ⊗ Z/p → Ap−n

is surjective, and that, moreover, the abelian group K2n−2(Z) is finite. We
would therefore like to get a bound for the torsion in K2n−2(Z).

The Hurewicz map (see Section 2.6)

Hurewicz : Km(Z) → Hm(GL(Z), Z).

converts our task into a question of computing homology groups (easy),
rather than computing homotopy groups (more difficult). Indeed modulo
‘small primes’ (cf. Proposition 1 above), which we can ignore, the Hurewicz
map is in fact injective.

Moreover, it is a fact that the homology groups of GL(Z) are ‘stable’ (see
the references in Section 2.5 of [6]). Thus we have:

Hm(GL(Z), Z) = Hm(GLN (Z), Z),

for N large, in fact for N ≥ 2m + 1.
On the other hand there is an exact sequence

1 −→ SLN(Z) −→ GLN(Z)
det
−→ {±1} → 1,

and so a simple application of the Hochschild-Serre spectral sequence shows
that up to a power of 2 (which again we can ignore) we have

card(Hm(GLN(Z), Z)) = card(Hm(SLN(Z), Z)).

Now, modulo some more small primes, we have

card(Hm(SLN (Z), Z)) = card(Hm(YN , Z)). (7)

This would have been an exact equality, except for the fact that SLN(Z) has
some elements of finite order. By passing to a torsion-free normal subgroup
Γ of SLN (Z) of finite index (divisible by exactly the primes which divide the
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cardinalities of the elements of finite order in SLN (Z)), and noting that the
analog of (7) holds for Γ, we may deduce (7) itself, by ‘taking invariants’.

But, by Corollary 2 we have

card(Hm(Y ∗

N , Z)tors) ≤ f(m + 1, N)c(m+1,N).

Now a technical argument (see [6], proof of Theorem 1) allows us to deduce
that the cardinality of the homology of the non-compact space YN ⊂ Y ∗

N

may also be bounded explicitly. Thus there is a constant A(m, N), related
to f(m + 1, N)c(m+1,N), such that

card(Hm(YN , Z)) ≤ A(m, N).

An explicit computation of A(m, N) for N = 2m+1 and m = 2n−2 (see [6],
Lemma 2)) shows that if p is large compared to n, namely p > exp(n224n4

),
then p 6

∣

∣ card(Hm(YN , Z)). By the remarks above, and the surjectivity of the
map (2), we have:

Ap−n = 0,

for such p. This ‘finishes’ the proof of Theorem 4.
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