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On classical weight one forms in Hida families

par Mladen DIMITROV et Eknath GHATE

Résumé. Nous effectuons une estimation du nombre de spéciali-
sations classiques en poids un d’une famille non-CM de formes
modulaires propres ordinaires cuspidales. Nous donnons aussi des
exemples où la famille se spécialisant sur une telle forme n’est pas
unique.

Abstract. We give precise estimates for the number of classical
weight one specializations of a non-CM family of ordinary cuspidal
eigenforms. We also provide examples to show how uniqueness fails
with respect to membership of weight one forms in such families.

1. Introduction

Let p be an odd prime and let F be a primitive p-adic Hida family
of ordinary, cuspidal eigenforms. By definition F admits infinitely many
classical specializations of any given weight at least two. If F is a CM family,
then F contains infinitely many CM classical specialization of weight one
as well.

However, it is known that a non-CM family F admits only finitely many
classical weight one specializations [GV04]. The first goal of this paper is to
make this finiteness result effective by giving explicit bounds on the num-
ber of such specializations. There are three types of classical weight one
forms (exceptional, RM and CM) and a necessary condition for a Hida fa-
mily to contain a classical weight one specialization of a given type is to be
residually of the same type (see §4 for precise definitions). In the exceptio-
nal case, under some mild assumptions, we show that there is exactly one
classical weight one specialization (see Theorem 5.1 and Proposition 5.2).
In the RM case, we provide examples of Hida families with more than
one classical weight one specializations (see §6.2) and provide an explicit
bound involving the class number and fundamental unit of the underlying
real quadratic number field (see Theorem 6.4). Finally, in the CM case, we
provide a bound as well (see §6.3).

The second goal of this paper is to study the opposite question, which
is whether there exists a unique Hida family, up to Galois conjugacy, spe-
cializing to a given ordinary classical weight one p-stabilized newform (the
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existence of such a family is a theorem of Wiles [W88]). Recall that by a
theorem of Hida, there is a unique, up to Galois conjugacy, primitive Hida
family specializing to a given classical ordinary p-stabilized newform of
weight two or more, and the new-quotient of Hida’s ordinary Hecke algebra
is étale at the corresponding height one prime.

However, in §7.2, we provide examples where the new-quotient of the
ordinary Hecke algebra is not étale at height one primes corresponding to
classical weight one forms with RM. Our arguments are also related to
the existence of Λ-adic inner twists for the family, a topic of independent
interest (see §7.3 and the Appendix). Finally, in §7.4, we provide an example
of two non-Galois conjugate Hida families specializing to the same classical
weight one form.

Acknowledgments. We thank L. Dembélé, J.-F. Mestre and G. Wiese
for their advice regarding the numerical computations with Magma.

2. Hida families

Let p be a prime and fix an embedding of Q̄ in Q̄p. Let Λ = Zp[[1 +
pνZp]] ∼= Zp[[X]] denote the classical Iwasawa algebra, where ν = 2 if p = 2
and ν = 1 otherwise. Fix an integer N , prime to p.

2.1. Specializations of Λ-adic cuspforms. Since there are several dif-
ferent normalizations in the literature concerning specializations, we fix one
now which is adapted to the study of weight one forms.

Let L be the integral closure of Λ in a finite extension of its fraction field.
A weight k ≥ 1 specialization is an algebra homomorphism L→ Q̄p which

extends the homomorphism on Λ given by X 7→ ζ(1 + pν)k−1 − 1, where ζ
is a p-power root of unity.

By definition a Λ-adic ordinary cuspform of tame level N is a formal
q-expansion in L[[q]], such that its specializations in weights k ≥ 2 are q-
expansions of p-stabilized, ordinary, normalized cuspforms of tame level N
and weight k.

If ζ is a primitive pr-th root of unit, r ≥ 0, then the level of the specialized
form is Npr+ν . The normalization of the weight is slightly different from
that used in earlier papers of Hida and Wiles, and also from that used in
[GV04], where k was used instead of k − 1, and so some of the formulas
for the determinant etc. are slightly different from those used there. In
particular, weight one specializations are obtained at X = ζ − 1 when
k = 1 (and ζ is arbitrary).

A Λ-adic cuspform is said to be a newform if all specializations in weights
≥ 2 are ordinary, cuspidal, p-stabilized newforms (see Hida [H86, Corollary
3.7] and its proof on p. 265, for p ≥ 5).
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2.2. Ordinary Hecke algebras. We define the universal ordinary Hecke
algebra TN of tame level N as the Λ-algebra generated by the Hecke ope-
rators U` (resp. T`, 〈`〉) for primes ` dividing Np (resp. not dividing Np)
acting on the space of Λ-adic ordinary cuspforms of tame level N . Denote by
Tnew
N its new-quotient which acts on the space of Λ-adic ordinary cuspforms

of tame level N which are N -new. Hida constructed (see [H85], [EPW06])
a continuous representation :

(2.1) Gal(Q/Q)→ GL2(Tnew
N ⊗Λ Frac(Λ))

with several natural properties.
A height one prime of TN is arithmetic if it sits above the height one

prime Pk,ζ , which is the kernel of the map Λ → Q̄p induced by X 7→
ζ(1 + pν)k−1 − 1, for some k ≥ 2 and some p-power root of unity ζ.

2.3. Hida families and communities. A primitive Hida family F of
tame level N is by definition a Λ-adic ordinary cuspidal newform which is
an eigenform, i.e., a common eigenfunction of the operators U`, T` and 〈`〉
as above.

The central character ψF : (Z/Npν)× → C× of the family is defined by
ψF (`) = eigenvalue of 〈`〉. A primitive family determines and is uniquely
determined by a Λ-algebra homomorphism λF : Tnew

N → KF , where KF

denotes the field generated by the Fourier coefficients (or equivalently the
Hecke eigenvalues) of F . It follows from the control theorem of Hida that
KF is a finite field extension of the field of fractions of Λ. By (2.1) one can
attach to F a continuous irreducible representation :

(2.2) ρF : Gal(Q/Q)→ GL2(KF )

which is unramified outside Np and such that, for all primes ` not dividing
Np, the trace of the image under ρF of an arithmetic Frobenius at ` equals
the `-th Fourier coefficient of F . Moreover det ρF = ψFχcyc, where χcyc is
the universal Λ-adic cyclotomic character given by composing the surjection
Gal(Q/Q)) � Gal(Q∞/Q) = 1 + pνZp, where Q∞ is the cyclotomic Zp-
extension of Q, with the map 1 + pνZp → Λ× induced by 1 + pν 7→ 1 +X.

In fact, Hida’s construction of ρF assumed p ≥ 5, but it was later sim-
plified and extended to the case of p = 2 and p = 3 by Wiles.

Specializing det ρF at X = ζ(1+pν)k−1−1, we obtain a character ψχk−1
p

with

(2.3) ψ = ψFω
1−k
p χζ

of finite order, where χp is the usual p-adic cyclotomic character, ωp is the
Teichmüller lift of χp mod p, if p is odd, and is the quadratic character
of conductor 4 if p = 2, and χζ is the wild Dirichlet character of p-power
conductor taking 1 + pν to ζ. Note that ψ is just the Nebentypus character
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of the underlying specialization. In weight one ψ = ψFχζ has a particularly
simple form.

For later use we coin some terminology.

Definition 2.1. A Hida community, denoted by {F}, is the (finite) union of
all families F of the same tame level having the same residual representation
ρ̄F .

In terms of Hida’s ordinary Hecke algebra Tnew
N :

• minimal primes correspond to AutΛ(Frac(Λ))-orbits of Hida families,
• maximal primes correspond to AutFp(Fp)-orbits of Hida communities,

• height one arithmetic primes correspond AutQp(Qp)-orbits of classical
weight k ≥ 2 specializations.

An important theorem due to Hida states that for all k ≥ 2 and all ζ a
p-power root of unity, the ΛPk,ζ -algebra Tnew

N ⊗Λ ΛPk,ζ is étale, at least if
p is odd. The proof uses his exact control theorem for the ordinary Hecke
algebra in weights k ≥ 2.

3. Finiteness results for non-CM families

A Hida eigenfamily is said to be CM if its Λ-adic q-expansion is the theta
series attached to a Λ-adic Hecke character over a quadratic extension K/Q,
which is necessarily imaginary. Thus if F is CM, then ρF ∼= ρF ⊗ εK|Q,
where εK|Q is the quadratic character attached to K/Q. While there is no
classicity condition on the weight one specializations in the notion of a Hida
family, a CM family has infinitely many classical (CM) specializations in
all weights, including in weight one. Following the classical case, one says
that a Hida eigenfamily is non-CM, if it is not a CM family. This definition
is reasonable since it turns out that the notion of CM-ness is pure with
respect to families in weight strictly bigger than one (at least if p is odd ;
for the case of p = 2, see [GK12]). That is, each weight two or more classical
specializations of a non-CM (respectively CM) family is always a non-CM
(CM) form. However, in weight one this is, somewhat surprisingly, false :
there are examples of non-CM families containing classical CM forms of
weight one.

The following finiteness result for the number of classical weight one
specializations in a non-CM family was proved in the course of the proof of
the main result of [GV04] (see in particular the proof of the implications
(ii) =⇒ (iii) =⇒ (iv) of Prop. 14 in that paper). It was stated there
for odd primes p, under some conditions on the residual representation
attached to F : an absolute irreducibility hypothesis over the quadratic
field corresponding to the (odd) prime p, and a p-distinguished hypothesis
as well, though these conditions were needed elsewhere in the proof. We
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state the result again, without these conditions, and shorten considerably
a key step in the proof.

Proposition 3.1. A non-CM eigenfamily admits only finitely many clas-
sical weight one specializations.

Démonstration. Assume that F has infinitely many classical weight one
specializations. By [GV04, Prop. 14, (ii) =⇒ (iii)], F then contains infini-
tely many CM forms with CM by the same imaginary quadratic field, call it
K. A quick check shows that the argument also works for p = 2. In [GV04,
Prop. 14, (iii) =⇒ (iv)], a somewhat lengthy argument (for odd primes p)
was given to show that this forces F to be a CM family. While this argu-
ment had the advantage of being explicit, in that it explicitly constructed
a Λ-adic Hecke character Φ which interpolates the finite order characters ϕ
corresponding to the weight one forms above, it is possible to give a much
shorter proof of this part, as follows.

One first notes that since the Fourier coefficients at the inert primes in
K vanish for all the CM weight one specializations, so do the corresponding
Fourier coefficients in the q-expansion of the corresponding Λ-adic form F .
Indeed in the coefficient ring of F , which is the integral closure of Λ in a
finite extension of the quotient field of Λ, the intersection of infinitely many
height one primes is {0}. Hence, Tr(ρF )(Frob`) = Tr(ρF ⊗ εK|Q)(Frob`) for
all but finitely many primes `, since this is vacuous for split primes, and
for inert primes both sides vanish. It follows that ρF ∼= ρF ⊗ εK|Q (a priori,
only up to semi-simplification, but it is well known that ρF is irreducible).

It follows that ρF ∼= IndQ
KΦ for some Λ-adic Hecke character Φ, which shows

that F has CM. �

P. Sarnak once asked whether the above result can be made effective.
The first goal of this paper is to show that this is indeed possible, and
several results to this end will be described below. Our approach is Galois
theoretic, since it uses ρF rather then F itself, and we believe that it can
be adapted for Hilbert modular forms.

4. Residual type of a family

For the rest of this paper we mostly assume p is odd, though occasionally
we point out some interesting phenomena that could occur if p = 2.

Our results will be decomposed according to the residual type of the
Hida family F , which we define now.

The projective image of the residual Galois representation ρ̄F attached
to F lies in PGL2(F̄p). We recall the following well-known theorem.

Theorem 4.1 (Dickson). Assume p ≥ 3. Let F ⊃ Fp be a finite field and
let H be a subgroup of PGL2(F). Then either
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(1) H is a subgroup of a Borel subgroup in PGL2(F′) with F′/F quadratic,
or,

(2) H is conjugate to PGL2(F′) or PSL2(F′), for F′ a subfield of F, or,

(3) H is isomorphic to D2m with m coprime to p, or A4, S4, A5.

While, in general, ρ̄F may have image as described in (1) and (2) of
Dickson’s theorem, we have :

Lemma 4.2. Let p ≥ 3. If F is an eigenfamily with a classical weight
one specialization, then ρ̄F must have projective image as in part (3) of
Theorem 4.1.

Démonstration. Indeed, it is well known that the Galois representation as-
sociated to a classical weight one form has projective image that is either
D2n, for some n, or A4, S4, or A5. The corresponding form is said to be of di-
hedral (respectively tetrahedral, octahedral, icosahedral) type. The image
of the Galois representation in GL2(C) can be taken to lie in GL2(O),
where O is the ring of integers in a p-adic field. Since the reduction map
from PGL2(O) to PGL2(F) has kernel a pro-p group, the projective image
of such a representation in PGL2(O) injects into PGL2(F), if it has order
prime to p or if, at least, it does not contain a non-trivial normal subgroup
of p-power order. When p is odd, A4, S4, and A5 do not contain a normal
subgroup of p-power order, so these groups inject under reduction. On the
other hand D2n contains a normal subgroup of each order d ≥ 3 dividing
n and the corresponding subgroup of p-power order must die under the
reduction map. Thus the reductions of these groups are as in part (3) of
Dickson’s theorem. Since each specialization of a family F gives rise to the
same residual representation ρ̄F , we see that if F has a classical weight one
specialization, then ρ̄F must also have projective image as described in part
(3) of Dickson’s theorem. �

Thus, in view of our goal to estimate the number of classical weight one
forms in a non-CM family, by Lemma 4.2, we may as well restrict to families
for which the projective image of ρ̄F is as in Theorem 4.1, part (3). This
motivates the following definition.

Definition 4.3. Say that a Hida family F is of residually dihedral type
(respectively residually tetrahedral, octahedral or icosahedral type) if the
projective image of ρ̄F is dihedral (respectively tetrahedral, octahedral, or
icosahedral). In the last three cases, we say that F is residually of excep-
tional type.

CM families are clearly residually of dihedral type, but non-CM families
may also be residually of dihedral type. We also point out that being of
residually dihedral or exceptional type is a necessary condition for a Hida
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family to have a classical weight one specialization, but not a sufficent
condition. We prove this following some remarks of the referee. First note
the following easily checked fact which we learned from Greenberg and
Vatsal.

Lemma 4.4. If G is a primitive Hida family of tame level N which is of
Steinberg type at some prime ` dividing N (that is, `||N and ψG is trivial
at `), then G has no classical weight one specializations.

Now, start with any p-ordinary newform f of level M , with p - M , and
weight 2, which is residually of exceptional or dihedral type. Choose an
auxiliary prime ` ≡ 1 (mod p) such that the projective image of ρ̄f (Frob`)
is trivial, so that

(Tr ρ̄f (Frob`))
2

det ρ̄f (Frob`)
= 4 ≡ `−1(1 + `)2 (mod p).

By Ribet’s level raising theorem, there exists a newform g of weight 2, level
N = M` and trivial Nebentypus at `, which is congruent to f modulo a
prime ideal sitting above p. Let G be the (non-CM) primitive Hida family
specializing to (the p-stabilization) of g. It is residually of the same type as
f , i.e., exceptional or dihedral. G also has tame level N = M` and trivial
character at `, hence is of Steinberg type at `. But, by Lemma 4.4, G has
no classical weight one specializations.

However, we have the following lemma, whose proof is similar to that of
Lemma 4.2.

Lemma 4.5. Let p ≥ 3. If a Hida family F is residually of dihedral or
exceptional type, then the Galois representation of every classical weight
one specialization f (if any) must be of the same kind (all dihedral, or all
tetrahedral, or all octahedral, or all icosahedral). Moreover, in the excep-
tional case the projective images of ρf and ρ̄F are isomorphic, while in the
dihedral case, if the projective image of ρf is D2n ⊂ PGL2(O), then the
projective image of ρ̄F is D2m ⊂ PGL2(F), where m is the prime-to-p part
of n.

Remark 4.6. Families of dihedral type with m = 1 have residually re-
ducible Galois representation, whereas those with m ≥ 2 have residually
absolutely irreducible Galois representation.

Remark 4.7. The lemma may no longer be true for p = 2. The group
S4 (resp. A4) contains the Klein four group D4 as a normal subgroup and
the quotient is isomorphic to S3 (resp. Z/3Z). Since S3 ' PGL2(F2), there
could be an octahedral (resp. tetrahedral) weight one form whose Galois
representation has projective residual image contained in S3. On the other
hand, A5 is a simple group isomorphic to PGL2(F4), hence an icosahedral
weight one form has projective residual image of the same type.
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5. Families of exceptional type

We now give a bound on the number of classical weight one forms in
a family F which is residually of exceptional type. We assume p is odd
from now on. Recall that a p-ordinary representation (Λ-adic, classical, or
residual) is said to p-distinguished if the semisimplification of the underlying
local residual representation obtained by restricting to the decomposition
subgroup Gp at p is a direct sum of two distinct characters.

Theorem 5.1. If F is residually of exceptional type, then F has at most
four classical weight one specializations. More precisely, F has at most a · b
classical weight one specializations, where

– a = 1, except if p = 5 and the type of F is icosahedral, in which case
a = 2, and

– b = 1, except if p = 3 or 5 and ρ̄F is p-ramified but not p-distinguished,
in which case b = 2.

Thus, if p ≥ 7, then F has at most one classical weight one specialization.

Démonstration. It is enough to show that there are at most a choices for

the projective trace
(Tr ρf )2

det ρf
and for each of them at most b choices for

the determinant of the Galois representation ρf of a classical weight one
specialization f of F . In fact, knowing (Tr ρf )2 and the fact that Tr ρf
is congruent to Tr ρ̄F modulo p uniquely determines Tr ρf since p is odd,
hence f .

By Lemma 4.5, the fields cut out by the projectivizations of ρf and ρ̄F
are the same, and by assumption have Galois group A4, S4 or A5. It is
well known that A4 and S4 have a unique (up to conjugacy) embedding
in PGL2(C), whereas A5 has two such embeddings [S77, p. 247]. It follows
immediately that there is at most one choice for the projective trace in the
A4 and S4 cases. In the A5 case we note that the two embeddings of A5 can
be congruent modulo p only for p = 5. In fact, since ρ̄F (g) has projective
order ≤ 5, a standard computation shows that its projective trace

(Tr ρ̄F (g))2

det ρ̄F (g)
belongs to the set {4, 0, 1, 2, roots of X2 − 3X + 1}.

Hence, the projective trace of ρ̄F (g) together with the projective order of
ρf (g) uniquely determine the projective trace of ρf (g), unless p = 5 and
ρf (g) has projective order 5, in which case there are two choices. Hence in
all cases there are at most a choices for the projective trace.

It remains to show that there are at most b choices for the determinant
of a classical weight one specializations f of F with a given projective trace.

Let Ip be the inertia subgroup at p. Then by ordinariness ρF |Ip has the

shape
(

det ρF ∗
0 1

)
. Hence ρf |Ip has the shape

(
ψFχζ ∗

0 1

)
and therefore the
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image of Ip injects into PGL2(C). This immediately implies that for p ≥ 7,
we have ζ = 1, hence det ρf = ψF .

Assume now that f and f ′ are two distinct classical weight one speciali-
zations of F sharing the same projective trace. Then, there exists a p-power
order character ε : GQ → O× such that ρf ∼= ε ⊗ ρf ′ . For the remaining
part of the proof, we assume that ε 6= 1, in particular p = 3 or 5. By using
the determinant, we see that ε is unramified outside p. Indeed the relation
ψFχζ = ψFχ

′
ζε

2 shows that ε2 = 1 at primes away from p, and since ε has
p-power order, with p odd, the claim follows. Finally, by ordinariness(

ψFχζ ∗
0 1

)
∼= ρf |Ip ∼= ε⊗ ρf ′ |Ip ∼=

(
ψFχζ′ε ∗

0 ε

)
.

Comparing cross terms on the diagonal, it follows that ψF is unramified at
p and ε = χζ = χ−1

ζ′ . In particular ζ ′ = ζ−1, hence there are at most two

choices for the determinant.
By examining further ρf |Ip ∼= ( ε 0

0 1 ) we see that ρf (Ip) is a cyclic group

of order p, since A4, S4, A5 have no elements of order p2. By Lemma 4.5
the same is true for ρ̄F (Ip) showing that ρ̄F |Ip ∼= ( 1 ∗

0 1 ) is (wildly) ramified
at p. Also by ordinariness, the restriction to the decomposition group Gp
is :

ρf |Gp ∼=
(

unr(ap)−1ψFχζ 0

0 unr(ap)

)
,

where unr(ap) denotes the unramified character of Gp sending a Frobenius
to ap(f). In particular, the image of Gp is abelian. It follows that the re-
duction also has abelian image. So the semi-simplification of the residual
representation on Gp must be a direct sum of the same character. Hence
ρ̄F is not p-distinguished as required. �

As mentioned in Section 4, there are Hida families that are residually
of exceptional type which have no classical weight one specializations. Ho-
wever, we now show that under some mild conditions, a Hida community
which is residually of exceptional type has at least one classical weight
one specialization. Note that it makes sense to speak of the residual type
of a Hida community, since each family in the community shares a com-
mon residual representation. For the same reason, it makes sense to speak
of a community being p-distinguished. We note that some authors, e.g.
[EPW06], use the terminology Hida family for Hida community. With our
definitions, we have :

Proposition 5.2. Let p ≥ 7 and {F} be a Hida community of exceptional
type which is p-distinguished and such that the tame level Nof {F} is the
same as the Artin conductor of ρ̄F . Then {F} has at least one classical
weight one specialization f . Moreover, any other classical weight one spe-
cialization of {F} can be written as f ⊗ ε, where ε is a p-power Dirichlet
character of conductor dividing N . In particular, if p does not divide φ(N),
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where φ is Euler’s totient function, then {F} has a unique classical weight
one specialization.

Démonstration. Since the image of ρ̄F in GL2(F) has order prime to p,
we can consider its Teichmüller lift ρ̃ to GL2(W (F)) where W (F) are the
Witt vectors of F. Such a representation is necessarily split on Gp (it is
ordinary, hence reducible on Gp, and since it is a finite image charac-
teristic zero representation, it is semisimple on Gp). By hypothesis it is
also p-distinguished. By a modularity lifting theorem of Buzzard [B03] and
Buzzard-Taylor [BT99] it arises from a classical weight one cusp form f ,
and by a theorem of Wiles [W88] there exists a Hida family G specializing
to f . This family G ∈ {F} since the tame level of f , hence G, is the same
as {F} by assumption (a priori it could have been of smaller tame level).

For the second claim, let f and g be two classical weight one specializa-
tions of {F}. By the proof of Theorem 5.1, it follows that g = f ⊗ ε for
some p-power order Dirichlet character of conductor dividing Npr, for some
r ≥ 1, and an inspection of the ordinariness condition, as in the proof of
Theorem 5.1, shows that ε is unramified at p. This completes the proof of
the proposition. �

6. Families of dihedral type

Let F be a non-CM Hida family residually of dihedral type with coeffi-
cients in a finite extension L of Λ. We continue to assume that p ≥ 3.

Since ρ̄F is projectively dihedral there is a quadratic extension K of Q
such that ρ̄F ∼= ρ̄F ⊗εK|Q, where εK|Q is the quadratic character associated

to K/Q. Alternatively, ρ̄F ∼= IndQ
Kϕ̄ for a finite order character ϕ̄ : GK →

F̄×. Note that there is not always a unique choice for K. However, we have
the following easily proved lemma.

Lemma 6.1. If the projective image of ρ̄F has order more than four, then
K is unique. If the image is the Klein four group D4, then there are three
possibilities for K.

In the D4 case, the three quadratic fields K cannot all be real, by the
oddness of ρ̄F , and so one must be real and the other two imaginary. Such
residually dihedral families will play an important role in §7.4.

Definition 6.2. If the field K is imaginary, we shall say that F is residually
of CM type and if the field K is real, we say that F is residually of RM
type.

Thus, in the D4 case, a family is residually both of RM and CM type.
We wish to estimate the number of weight one forms in residually dihe-

dral families. We start with the following easy but useful lemma.
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Lemma 6.3. (1) If F has a classical weight one specialization f such
that ρf (Ip) has order at least 3, then p splits in K.

(2) If the number of classical weight one specializations of F , up to Galois
conjugacy, is greater than the degree [KF : Frac(Λ)], then p splits in
K.

Démonstration. (1) Let us first prove that K/Q is unramified at p. By
ordinariness ρf (Ip) injects in its projectivization. A cyclic subgroup of order
≥ 3 of a dihedral group is contained in its unique maximal cyclic subgroup.
Our assumption on the order of ρf (Ip) implies that Ip is contained in GK ,
that is, K/Q is unramified at p. Now ρf (GK) = ϕ̄ ⊕ ϕ̄′. Let p be a prime
of K lying over p. Exactly one of the characters ϕ̄, ϕ̄′ is ramified at p, by
ordinariness. Thus p splits in K.

(2) Indeed, since the number of height one primes of L lying above a
particular height one prime of Λ is bounded by the given degree, at least
one of the specializations in weight one corresponds to an algebra homo-
morphism L → Q̄p sending X ∈ Λ to ζ − 1, with ζ 6= 1. Then, as in the
proof of Theorem 5.1, one sees that ρf (Ip) would have order divisible by
p ≥ 3, and so p would split in K by (1). �

Lemma 6.3 is false when the inertial order is 2. For example, the 23-adic
family F specializing to the Ramanujan ∆ function in weight 12, has a
CM form f of weight 1 with ρf |I23 = εK|Q ⊕ 1, for K = Q(

√
−23), and 23

ramifies in K. Note that when p ramifies in K, the family F is necessarily a
non-CM family (otherwise F would have classical weight one specializations
with corresponding Galois representation having arbitrarily large inertial
order, thus contradicting Lemma 6.3 ; alternatively, F would have weight 2
members which are non-ordinary at p). In particular, F ⊗ εK|Q is another
family specializing to f . However, F⊗εK|Q it is not ordinary since p ramifies
in K, and so does not fit into the framework of classical Hida theory, but it
is nearly ordinary in the sense that, after specialization, the corresponding
Galois representation is locally reducible at p. This discussion shows that
étaleness of the nearly ordinary Hecke algebra fails at weight one classical
specializations. We shall soon give examples where étaleness fails at primes
in the ordinary Hecke algebra, corresponding to classical weight one forms.

6.1. Families residually of RM type. The following proposition bounds
the number or classical weight one forms in the RM case in terms of inva-
riants attached to the underlying quadratic field.

Theorem 6.4. Let F be a non-CM family of tame level N , and K be real
quadratic such that ρ̄F ∼= ρ̄F ⊗ εK|Q. Then the number of classical weight
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one specializations of F is bounded by the p-part of

|ClK | ·NK/Q(εp−1
K − 1) ·

∏
`|N

` split in K

(`− 1) ·
∏
`|N

` inert in K

(`+ 1),

where ClK denotes the class group of K and εK is a fundamental unit of
K.

Démonstration. By hypothesis ρ̄F ∼= IndQ
Kϕ̄ for some finite order character

ϕ̄ : GK → F̄×. If F has a classical weight one specialization, its Galois

representation must be of the form ρ ∼= IndQ
Kϕ, for a finite order character

ϕ which lifts ϕ̄. Then any other classical weight one specialization with

Galois representation ρ′ ∼= IndQ
Kϕ
′ is uniquely determined by the p-power

order character ξ = ϕ/ϕ′ : GK → O×. Hence counting classical weight one
specialization of F amounts to counting such characters ξ.

If ξ = 1, then ρ ∼= ρ′ and we are done. Otherwise, by ordinariness,
it follows from the proof of Lemma 6.3 that p splits in K and that ξ is
ramified only at one of the primes of K dividing p, say p.

Let Ver : Gab
Q → Gab

K be the transfer map. By taking the determinants
we see that the Dirichlet character

ξ ◦Ver =
det ρ

det ρ′
=
χζ
χζ′

has p-power order and conductor.
By class field theory, we can see ξ as a character of the finite group

Cl+K(Np∞) sitting in the following exact sequence :

1→ 〈εK〉 → Z×p × (OK/N)× → Cl+K(Np∞)→ Cl+K → 1,

where Cl+K denotes the narrow class group of K. Since we are only interested
in characters ξ having p-power order and conductor such that ξ ◦ Ver is
unramified outside p, it follows that the restriction of ξ to Z×p × (OK/N)×

factors through its finite quotient :

(1 + pZp)/〈εp−1
K 〉

∏
`|N

` split in K

F×`
∏
`|N

` inert in K

F×
`2
/F×` .

Since p is odd, the p-parts of |Cl+K | and |ClK | are equal, hence the bound
given in the statement of the proposition. �

6.2. An example of a family with more than one weight one spe-
cializations. By inspecting the proof above, one can exhibit non-CM Hida
families having more than one classical weight one specialization.

It is not difficult to find a real quadratic field K and a prime p which
splits in K as pp′, and such that

(6.1) [ClK(p2) : ClK(p)] = p.
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For example, one can take K = Q(
√

23) = Q(
√

4 · 23) and p = 7, in which
case ClK(p) is trivial, whereas ClK(p2) has order 7. Let εD be the quadratic

character corresponding to the quadratic field Q(
√
D) of discriminant D.

The space of weight one forms of level 4 · 7 · 23 and Nebentypus ε−4ε−7ε−23

has dimension 6 and contains two newforms with rational coefficients and
one with coefficients in Q(ζ8). Denote by f one of the forms with rational
coefficients. It has RM by K and its existence can also be seen using the
construction described in §7.1. Now f is ordinary at p = 7, and we let
F be a 7-adic family of tame level 4 · 23 specializing to f . The projective
image of ρf is the Klein four group since f also has CM by Q(

√
−7) and

by Q(
√
−4 · 7 · 23). In particular, F has to be a non-CM family, since 7

ramifies in these fields.
Now, by (6.1), there exists a 7-ordinary weight one newform f ′ with

RM by K of level 4 · 72 · 23 and Nebentypus ε−4ψ7ε−23, where ψ7 denotes
a character of order 14 of (Z/49Z)× (see the last row in Table 1). It is
easy to see using Lemma 4.5 that f and f ′ share the same residual Galois
representation ρ̄, that is to say, occur as specializations of the same Hida
community {F}.

It remains to prove that f and f ′ are specializations of the same Hida
family. The family F occurs in the last entry of Table 2. In particular, by
(7.1), one has that rkΛTnew

92,ρ̄ = 2, hence F and F ⊗ ε−4ε−23 are the only

two Hida families in {F}. By Wiles’ theorem alluded to in the introduction
each of f and f ′ is the specialization of at least one of these families. Since
f = f ⊗ ε−4ε−23 and f ′ = f ′ ⊗ ε−4ε−23, they are both specializations of
both F and F ⊗ ε−4ε−23.

6.3. Families residually of CM type. In this section we assume that
K is imaginary quadratic and that p splits in K, and that F is a non-CM
Hida family, residually of CM type by K. (While the level raising argument
in Section 4 gives examples of such families, we do not know of an example
of such a family with a classical weight one specialization.)

We give a weak bound for the number of classical weight one specia-
lizations in F . Say that the Fourier coefficients of F lie in L. Since F is
non-CM, there exists a prime ` inert in K, such that the Fourier coefficient
a`(F ) ∈ L is non-zero (since, as already proved in the course of proving
Proposition 3.1, otherwise F would have CM by K). Then a`(F ) lies in
only finitely many height one primes of L, and in particular a`(F ) lies only
in a finite number of primes of L lying above the primes of Λ induced by
X 7→ ζ − 1, for ζ a p-power root of unity. Denote by λF,` this number.
When L = Λ then λF,` is bounded by the the degree of the distinguished
polynomial part of a`(F ) under the Weierstrass preparation theorem. Put

λF = min
` inert in K

λF,`.
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Lemma 6.5. Let F be a non-CM Hida family, residually of CM type, with
CM by K. Then the number of weight one specializations of F is bounded
by λF .

Démonstration. Say f is a classical weight one specialization of F at a point
of L lying over X 7→ ζ − 1. Then f must have CM by K as well, and so
a`(f) = 0 for all primes ` inert in K. Thus for all ` inert in K, a`(F ) lies in
the height one prime which is the kernel of the above specialization map. If
F has more than λF weight one specializations, then each a`(F ) vanishes
for at least λF + 1 specializations, a contradiction. �

7. Uniqueness and étaleness at weight one points

The aim of this section is to provide concrete examples where the new-
quotient Tnew

N of Hida’s ordinary Hecke algebra is not étale at a classical
weight one RM point. Even more, we show that it is possible for two non-
Galois conjugate Hida families to specialize to the same RM weight one
form. Recall that in weight two or more, étaleness implies uniqueness (up
to Galois conjugacy), and it is a classical result of Hida that étaleness holds,
at least for odd primes p.

7.1. Constructing weight one RM forms. We first recall the definition
and construction of a p-ordinary weight one RM form.

Let K = Q(
√
D) be the real quadratic extension of Q of discriminant

D > 0 and let p be an odd prime splitting in K as pp′. Let c be an integral
ideal of K not divisible by p′ (though we allow c to be divisible by p).
Assume that C = NK/Q(c) and D are relatively prime and that at least one

of the mixed sign ray class groups Cl+−K (c) or Cl−+
K (c) is not isomorphic to

the usual ray class group ClK(c) (so the kernel of the canonical surjection
has order two). One can then consider a finite order Hecke character ϕ on
K of conductor dividing c and such that for x∞ = (x1, x2) ∈ (K ⊗ R)× =
R× × R× one has ϕ∞(x∞) = sgn(x1) or sgn(x2) (in fact it is enough to
consider a character of Cl+−K (c) or Cl−+

K (c) that does not factor through
ClK(c)). By changing c, one can assume then the conductor of ϕ is exactly
c. It follows from the shape of ϕ∞, that ϕ does not factor through the
norm and that its transfer ϕ ◦Ver is an odd Dirichlet character. Hence the

representation IndQ
Kϕ is irreducible and odd, and by a theorem of Weil it

corresponds to a weight one cuspform f of level CD.
The projective image of the p-adic Galois representation ρf is isomorphic

to a dihedral group D2m, where m denotes the order of the character ϕ/ϕσ,
with σ the non-trivial automorphism of K/Q. Since ϕ∞ 6= ϕσ∞ have order 2
it follows that m is even. By Remark 4.6, the residual Galois representation
attached to f is absolutely irreducible.
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Table 1 lists several weight one RM forms of small level. It has been
obtained using Pari, although it has been cross-checked using Magma.

Table 1. Weight one newforms with RM

N ψ D CM m
39 ε13ε−3 13 −3,−39 2
55 ε5ε−11 5 −11,−55 2
56 ε8ε−7 8 −7,−56 2
95 ε5ε−19 5 −19,−95 2
120 ε5ε8ε−3 40 −15,−24 4
145 ε5ω

7
29 5 − 4

145 ε29ω5 29 − 4
155 ε5ε−31 5 −31,−155 2
183 ε61ε−3 61 −3,−183 2
184 ε8ε−23 8 −23,−184 2
255 ε5ε17ε−3 85 −15,−51 4
259 ε37ε−7 37 −7,−259 2
328 ε8ω

5
41 8 − 8

371 ε53ω7 53 − 6
644 ε−4ε−7ε−23 92 −7,−644 2
4508 ε−4ψ7ε−23 92 − 14

Every line in the table corresponds to (the Galois conjugacy class of) a

weight one newform f with RM by K = Q(
√
D) of level CD and Nebenty-

pus ψ = εD ·ϕ ◦Ver. In the second column, ωp is the Teichmüller lift of the
mod p cyclotomic character, and ψ7 is the character defined in Section 6.2.
The last two columns show respectively the discriminants of quadratic fields
by which f has CM and the order of the character ϕ/ϕσ.

7.2. Etaleness fails at RM forms. We can now provide examples of
classical weight one height one primes in Tnew

N for which étaleness fails.
Consider a weight one form f as in §7.1 with RM by K and a prime p split

in K. One first needs to choose a p-stabilization of f . If p divides C, by the
above assumptions f is an eigenform for Up with eigenvalue ϕ(p′), therefore
is a p-stabilized ordinary form. Otherwise, if p is prime to C, choosing a p-
stabilization of f amounts to choosing one of the roots {ϕ(p), ϕ(p′)} of the
Hecke polynomial at p. Note that in weight one both roots are units and the
corresponding stabilizations are p-ordinary. Also note that it might happen
that ϕ(p) = ϕ(p′) in which case the Galois representation associated to f
is not p-distinguished.
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Let F be a Hida family containing the p-ordinary stabilizations of f fixed
above. Then F is residually of dihedral type with RM by K. The tame level
N of F satisfies N |CD and equals CD if p - C.

Proposition 7.1. Let F be a Hida family as above and denote by G the
(primitive) Hida family underlying F ⊗ εK|Q. Then F and G are two dif-
ferent Hida families of the same tame level and containing the classical
weight one form f with RM by K. In particular, the Hecke algebra acting
on the space of primitive Λ-adic cuspforms of tame level N is not étale over
Λ at the point defined by f .

Démonstration. Write εD for εK|Q. By assumption, p splits inK, so ap(G) =
ap(F )εD(p) = ap(F ) and G is a p-ordinary family.

Since f = f ⊗ εD both F and F ⊗ εD specialize to f outside D.
Moreover F ⊗ εD is new at the primes ` 6= p not dividing D, since F

is primitive and εD is unramified at those primes (one can see this by
considering any weight bigger than two specialization).

At an odd prime ` dividing D, F⊗εD has level `2 (C and D are relatively
prime) and we have to show that it is `-old, of level `. We leave the case of
` = 2 to the reader. By (2.3) the `-part of ψF equals the `-part of the central
character of f , which is nothing but (the `-part of) εD. Since N and D are
divisible by ` and not by `2, it follows that every classical specializations
fk of F in weight k ≥ 2 has to be a minimally ramified principal series at
`. More precisely, the restriction of the associated Galois representation to
the inertia group I` equals (the restriction of) 1⊕εD. Since εD is quadratic,
the twisted form f ⊗ εD is `-old, of level `. It follows that F ⊗ εD is `-old
as well. This proves that G also has tame level N as desired.

It remains to see that a`(G) specializes to a`(f), for primes `|D. By the
above discussion the restriction of ρf to the decomposition group G` can
be written as

unr(a`)⊕ εDunr(b`),

where a` and b` are some scalars. Using the Local Langlands correspon-
dence for f (and `) one can easily check that a` = a`(f). Similar reasoning
for the form f ⊗ εD shows that b` = a`(f ⊗ εD), and so is the specializa-
tion of a`(G). Since f = f ⊗ εD, comparing the unramified characters in
the decompositions of the restrictions to G` of the corresponding Galois
representations, we see that a` = b`, as desired. �

7.3. Inner twists in the quadratic case. In the previous section we
showed that Tnew

N is not étale at a height one prime corresponding to a
classical RM weight one form f , by constructing two different Hida families
F and G specializing to f . We remark that this does not immediately imply
that uniqueness fails as well, since it could very well happen that F and G
are Galois conjugates. In this section, we analyze this in more detail.
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Let F be the field over which the residual representation ρ̄ = ρ̄F is defined
and let W = W (F) be the ring of Witt vectors of F.

Note that, sinceW [[X]] is unramified over Λ atX = 0, a Hida family with
coefficient field Frac(W [[X]]) would never specialize to a classical weight one
form with RM. Therefore, if a Hida family F admits a weight one classical
specialization with RM, then KF should be at least a non-scalar quadratic
extension of Frac(Λ).

Let Tnew
N,ρ̄ be the local component of the semi-local algebra Tnew

N defined

by F (in fact it only depends on the community {F}). For the rest of this
section we place ourselves in second simplest case after the case Tnew

N,ρ̄ =

W [[X]], namely we assume that

(7.1) rkW [[X]]Tnew
N,ρ̄ = 2.

There are two cases :
Case 1 : Tnew

N,ρ̄ has a unique minimal prime, that is KF = Tnew
N,ρ̄ ⊗Λ FracΛ

is a field. Then KF is obtained by adjoining to Frac(W [[X]]) a square-root
of an element in W [[X]], and F γ = F ⊗εD, where γ denotes the non-trivial
W [[X]]-linear automorphism of KF .

Case 2 : Tnew
N,ρ̄ ⊗Λ FracΛ ∼= Frac(W [[X]])2, in which case Tnew

N,ρ̄ is the set

of tuples in W [[X]] ⊕W [[X]] which are congruent modulo some ideal in
W [[X]]. Then F and F ⊗ εD are two non-Galois conjugate families.

Table 2. Hida families specializing to weight one forms
from Table 1

N p ψF rkΛTnew
N,ψF

inner twists |F| proj.im(ρ̄F )

13 3 ε13ε−3 2 ε13 3 D4

5 11 ε5ε−11 2 ε5 11 D4

8 7 ε8ε−7 2 ε8 7 D4

5 19 ε5ε−19 2 ε5 19 D4

5 · 8 3 ε5ε8ε−3 16 ε5ε8 32 D8

5 29 ε5ω
7
29 2 ε5 29 D8

29 5 ε29ω5 12 ε29 5 D8

5 31 ε5ε−31 6 ε5 31 D4

61 3 ε61ε−3 14 ε61 3 D4

8 23 ε8ε−23 8 ε8 23 D4

5 · 17 3 ε5ε17ε−3 24 ε5ε17 32 D8

37 7 ε37ε−7 8 ε37 7 D4

8 41 ε8ω
5
41 4 ε8 41 D16

53 7 ε53ω7 30 ε53 7 D12

4 · 23 7 ε−4ε−23ε−7 34 ε−4ε−23 7 D4
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In Table 2 we provide several examples of Hida families containing a
classical weight one cuspform with RM for which the condition (7.1) is
fulfilled. The method of computation consists in studying specializations in
weights two or more, where efficient algorithms using modular symbols have
been implemented in Magma. Note that the rank of Tnew

N,ψF
(the quotient of

Tnew
N by the ideal generated by 〈`〉 − ψF (`), ` not dividing Np) is over Λ,

whereas the rank of Tnew
N,ρ̄ is over W [[X]]. All families in Table 2 are non-CM

and specialize to the weight one form with RM listed on the same line in
Table 1.

All the examples wind up in Case 1. This is in accordance with [BD12,
Theorem 4.3] which says that the eigencurve is smooth (but not étale over
the weight space) at weight one forms f which are p-distinguished and
admit RM by a field in which p splits (using some techniques of Cho and
Vatsal [CV03], one can further show in this case that the ramification index
is two).

Let us describe in greater detail a typical example, which corresponds to
the first entry of the Table 2. We start with a quadratic Hecke character on
Q(
√

13) of conductor having finite part one of the two primes lying above
3, and infinite part the sign character at exactly one of the two infinite
places. The corresponding theta series f is a RM form in S1(39, ε−3ε13).
We take p = 3 which is ordinary for f . The weight k specialization fk of
the resulting 3-adic Hida family lie in Sk(39, ε−k−3ε13). A brief check using
Pari shows that the p-adic completions Kfk,p of the Hecke fields of fk for
the first few weights k are all quadratic extensions of Q3 as follows :

k 1 2 3 4 5 6 7 · · ·
Kfk,p Q3[Y ]/Y 2 Q3(

√
−3) Q3(

√
3) Q9 Q3(

√
−3) Q3(

√
3) Q3 ×Q3 · · ·

Based on this (and more) data, we see F ∈ L[[q]] with L most likely given
by :

L =
Z3[[X]][Y ]

(Y 2 +X)

since specialization of L at X = (1+p)k−1−1 = 4k−1−1 matches well with
the above data. We see that F γ = F ⊗ ε13 where γ is the automorphism
that takes Y to −Y , so we are in Case 1. In particular, while étaleness fails
for L/Λ at X = 0, the two Hida families F and F⊗ε13 are Galois conjugate
families specializing to f , and there is no violation of uniqueness.

Remark 7.2. Computing the structure of the Hida fields KF (or, even
more, L) is a very interesting problem. There seems to be almost no examples
in the literature of rings L which are not scalar extensions of the canonical
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power series ring Λ, and the computation above should be considered as a
step in this direction.

7.4. Uniqueness fails for RM-CM weight one forms. In view of the
previous section, slightly new ideas are required to give an example of two
non-conjugate Hida families specializing to the same weight one form. We
describe these now.

Before we do this, it will help to briefly recall the two approaches dis-
cussed above, which failed numerically to produce examples :

(1) Find a non-CM family F , with a CM weight one specialization, with
p splitting in the corresponding imaginary quadratic field K. Then
f would also live in a CM family G by explicit interpolation, viola-
ting uniqueness. However, we know of no such families F (the few
examples of non-CM families with CM weight one forms we know all
have p ramified in K, and such forms cannot live in CM families). In
fact, such families should be difficult to find, since by [BD12] the ei-
gencurve is étale over the weight space at classical weight one forms f
which are p-distinguished and admit CM by a field in which p splits.

(2) Find a non-CM family F with a weight one specialization with RM
by K and p split in K, and consider the Hida family G underlying
F ⊗ εK|Q. In all numerical cases we looked at the families F and G
were Galois conjugate, so this method failed to produce an example.

We now describe a third method to violate uniqueness which is a bit
more subtle, but is able to produce examples.

We start with a weight one form f whose Galois representation has pro-
jective image D4 (the Klein four group), has RM by Q(

√
D), for D > 0,

and has CM by Q(
√
D′), D′ < 0, and by Q(

√
D′′) where D′′ = DD′ < 0.

We choose a prime p which splits in all these three fields. Let F (resp.

G) be a Hida family with CM by Q(
√
D′) (resp. by Q(

√
D′′)) specializing

to f . The existence of CM families is guaranteed by [H86, Theorem 7.1],
since p is split in these fields. Now these two families cannot possibly be
the same. Indeed, since F = F ⊗ εD′ and G = G ⊗ εD′′ , if F = G, then
F = F ⊗ εD, a contradiction, since there are no ‘RM Hida families’ (such
families would produce RM forms in higher weights, a contradiction). Mo-
reover, F and G are not even Galois conjugate, since if F = Gγ , then since
the action of γ commutes with twisting by quadratic characters, we still
get the contradiction F = F ⊗ εD.

Thus F and G are non-conjugate CM families specializing to the same
RM weight one form !

An example of such a phenomenon is not too hard to find, following the
construction in §7.1. For instance, one can check that there exists a weight
one form f of level 111, central character ε−3ε37 having RM by Q(

√
37)
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and CM by Q(
√
−3) and by Q(

√
−111). The prime p = 7 splits in all

these fields and the Hecke polynomial of f at 7 is (X + 1)2. Hence f has
a unique 7-stabilization, which is a 7-old ordinary weight one eigenform of
level 777 with U7 eigenvalue equals to −1. A quick numerical check gives
two non-Galois conjugate 7-adic Hida families F (resp. G) with CM by
Q(
√
−3) (resp. Q(

√
−111)), of tame level 111, central character ε−3ε37 and

specializing to the 7-stabilization of f .

A. Appendix : Inner twists for Hida families

Let us recall that a classical newform f =
∑
anq

n ∈ Sk(N,ψ) with
coefficients in Kf has an inner twist by an embedding γ : Kf ↪→ C, if
there exists a Dirichlet character χ such that fγ = f ⊗ χ (meaning that
γ(ap) = apχ(p) for almost all primes p). Assume now that f has no CM,
so that γ uniquely determines χ. Then it is a theorem of Momose and
Ribet that such a γ necessarily induces an automorphism of Kf and that
Γf = {γ ∈ AutQ(Kf ) | ∃χ such that fγ = f ⊗ χ} is an abelian group.

Knowing the inner twists of a newform is an essential ingredient in deter-
mining the image of its p-adic Galois representation. It is therefore natural
to try to develop a theory of inner twists for Hida families. We start with
a definition.

Definition A.1. A Hida family F =
∑
anq

n with coefficients field KF (a

finite extension of Frac(Λ)) has inner twist by γ : KF ↪→ Frac(Λ) if there
exists a Dirichlet character χ such that F γ = F⊗χ (that is, γ(ap) = apχ(p)
for almost all primes p).

In other terms, F has an inner twist by a Dirichlet character χ if both F
and F ⊗ χ correspond to the same minimal prime in Tnew

N .
Note that, if F has no CM, then χ is uniquely determined by γ and will

be denoted by χγ . Assume henceforth that F has no CM.

Lemma A.2. The set of inner twists γ of F is an abelian subgroup ΓF ⊂
AutΛ(KF ).

Démonstration. The proof is similar to the classical case. Since F is a primi-
tive family, ψF has values in µn(KF ) ⊂ K×F for some n ≥ 1. By comparing

determinants, one obtains ψγF = ψFχ
2
γ , hence χ2

γ = ψγ−1
F takes values in

µn(KF )2. Therefore χγ takes values in µn(KF ) and γ is a Λ-linear auto-
morphism of KF , as desired. The group law is given by χγδ = χγχ

γ
δ and

ΓF is abelian if, and only if, χγ−1
δ = χδ−1

γ . The last is true since they are

both equal to ψ
(γ−1)(δ−1)/2
F . �

By the lemma, γ is an automorphism of the local algebra L, hence induces
an automorphism of the residue field F that we denote by γ̄. It follows that
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for all γ ∈ ΓF , we have :
ρ̄γ̄F
∼= ρ̄F ⊗ χγ .

It follows that if γ̄ = 1 for some γ ∈ ΓF , then F is residually of dihedral type
(or reducible). In particular, if ΓF 6= ∅ and F = Fp, then F is necessarily of
dihedral type (or reducible).

Finally, as in the classical situation HF := ∩γ∈ΓF ker(χγ) is an abelian

extension of Q and the traces of elements of ρF (Gal(Q̄/HF )) lie in KΓF
F .

We study next the behavior of inner twists under specialization. Recall
that we have fixed an embedding of Q̄ in Q̄p, hence we can see Gal(Q̄p/Qp)
as a subgroup of Gal(Q̄/Q).

Let F ∈ L[[q]] be a Hida family, where L is the integral closure of Λ in
its field of coefficients KF (a finite extension of the fraction field of Λ).

Let Pk = ((1+X)−(1+pν)k−1). For every γ ∈ AutΛ(L) and every k ≥ 2,
there exists γk ∈ AutZp(L/PkL) making the following diagram commute :

L
γ

∼
//

��

L

��
L/PkL

γk
∼

// L/PkL

The next proposition extends a result of A. Fischman [F02].

Proposition A.3. Let k ≥ 2 be such that (L/PkL)[1
p ] is a field, and let fk

be the specialization of F at the unique prime ideal of L above Pk. Then,
there is a natural bijection between ΓF and Γfk ∩Gal(Q̄p/Qp).

Démonstration. Since (L/PkL)[1
p ] ∼= Kfk,P , where P denotes the prime of

Kfk uniquely determined by the fixed embedding of Q̄ in Q̄p, every γ ∈ ΓF
induces γk ∈ Γfk ∩Gal(Q̄p/Qp).

Conversely, for γk ∈ Γfk ∩ Gal(Q̄p/Qp), let χ denote the Dirichlet cha-
racter for which fγkk = fk ⊗ χ. Then F and the primitive Hida family
underlying F ⊗ χ specialize both to fk (in fact F ⊗ χ specializes to fγkk ,
hence to fk, by further composing the specialization homomorphism with
γ−1
k ). By a theorem of Hida, F and F ⊗ χ should be Galois conjugates, as

claimed. �
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