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A SUFFICIENT CONDITION FOR
A 2-DIMENSIONAL ORBIFOLD TO BE GOOD
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Abstract. We prove that a connected 2-dimensional orbifold with

finitely generated and infinite orbifold fundamental group is good. We

also describe all the good 2-dimensional orbifolds with finite orbifold

fundamental groups.

1. Introduction
We start with a short introduction to orbifolds.

The concept of orbifold was first introduced in [2], and was called

‘V-manifold’. Later, it was revived in [4], with the new name orbifold,

and orbifold fundamental group of a connected orbifold was defined.

Definition 1.1. An orbifold is a second countable and Hausdorff topolog-

ical space M , which at every point looks like the quotient space of Rn,

for some n, by some finite group action. More precisely, there is an open

covering {Ui}i∈I of M together with a collection OM = {(Ũi, pi, Gi)}i∈I
(called orbifold charts), where for each i ∈ I, Ũi is an open set in Rn, for

some n, Gi is a finite group acting on Ũi and pi : Ũi → Ui is the quotient

map, via an identification of Ũi/Gi with Ui by some homeomorphism.
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Figure 1: Orbifold charts
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Furthermore, the following compatibility condition is satisfied. Given

x ∈ Ui∩Uj , for i, j ∈ I there is a neighborhood V ⊂ Ui∩Uj of x and a chart

(Ṽ , p,G) ∈ OM together with embeddings qi : Ṽ → Ũi and qj : Ṽ → Ũj

such that, pi ◦ qi = p and pj ◦ qj = p are satisfied.

The pair (M,OM ) is called an orbifold and M is called its underlying

space. The finite groups {Gi}i∈I are called the local groups. The union of

the images (under pi) of the fixed point sets of the action of Gi on Ũi, when

Gi acts non-trivially, is called the singular set. Points outside the singular

set are called regular points. In case the local group is cyclic (of order k)

acting by rotation about the origin on the Euclidean space, the image of

the origin is called a cone point of order k. If the local group at some point

acts trivially then it is a regular point. A regular point is also called a

manifold point.

Clearly, if all the local groups are either trivial or acts trivially then the

orbifold is a manifold. The easiest example of an orbifold is the quotient of

a manifold by a finite group. Also see Example 1.1 below.

In the rest of the paper we will not use the full notation of an orbifold

as defined above, unless it is explicitly needed. In general, we will use the

same letter M both for the orbifold and its underlying space, which will be

clear from the context.

As in the case of a manifold, dimension of a connected orbifold is de-

fined. One can also define an orbifold with boundary in the same way we

define a manifold with boundary. In the definition we have to replace Rn

by the upper half space Rn
+.

In this paper we consider orbifolds with boundary (may be empty).

A boundary component of the underlying space of an orbifold has two

types, one which we call manifold boundary and the other orbifold boundary.

These are respectively defined as points on the boundary (of the underlying

space) with local group acting trivially or non-trivially.

The notion of orbifold covering space was defined in [4]. We refer the

reader to this source for the basic materials and examples. But, we recall

below the definition and properties we need.

Definition 1.2. A connected orbifold (M̂,OM̂ ) is called an orbifold cov-

ering space of a connected orbifold (M,OM ) if there is a surjective map

f : M̂ →M , called an orbifold covering map, such that given x ∈M there

is an orbifold chart (Ũ , p,G) with x ∈ U and the following is satisfied.
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• f−1(U) = ∪i∈IVi, where for each i ∈ I, (Ṽi, qi, Hi) ∈ OM̂ , Vi is a

component of f−1(U), there is an injective homomorphism ρi : Hi → G and

Vi is homeomorphic to Ũ/(ρi(Hi)) making the two squares in the following

diagram commutative.

Ũ/(ρi(Hi)) //

��

Vi

f |Vi
��

Ṽiqi
oo

f̃
��

Ũ/G // U Ũ,
p

oo

where f̃ is ρi-equivariant.

Here note that the map on the underlying spaces of an orbifold covering

map need not be a covering map in the ordinary sense.

Example 1.1. Given a group Γ and a properly discontinuous action of Γ

on a manifold M , the quotient space M/Γ has an orbifold structure and the

quotient map M → M/Γ is an orbifold covering map. See [4, Proposition

5.2.6]. Furthermore, if H is a subgroup of Γ, then the map M/H → M/Γ

is an orbifold covering map. Therefore, the quotient map of a finite group

action on an orbifold is always an orbifold covering map.

In general, an orbifold need not have a manifold as an orbifold covering

space.

Definition 1.3 ([4]). If an orbifold has an orbifold covering space which is

a manifold, then the orbifold is called good or developable.

In the above example M/Γ is a good orbifold.

Remark 1.1. One can show that a good compact 2-dimensional orbifold

has a finite sheeted orbifold covering space, which is a manifold [3, Theorem

2.5]. In the case of closed (that is, compact and the underlying space has

empty boundary) 2-dimensional orbifolds, only the sphere with one cone

point and the sphere with two cone points of different orders are not good

orbifolds. See the figure below. Also, see [4, Theorem 5.5.3].

n
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m > n

Figure 2: Bad orbifolds
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Definition 1.4. Let f : M̂ →M be an orbifold covering map of connected

orbifolds. Let x ∈ M be a regular point and x̂ ∈ M̂ with f(x̂) = x. Then

M̂ is called the universal orbifold cover of M if given any other connected

orbifold covering g : N → M with g(y) = x, for y ∈ N , there is a unique

h : M̂ → N so that h(x̂) = y, h is an orbifold covering map and h ◦ g = f .

Definition 1.5. The universal orbifold cover always exists for a connected

orbifold M [4, Proposition 5.3.3] and its group of Deck transformations is

defined as the orbifold fundamental group of M . It is denoted by πorb1 (M).

In Remark 1.1 we have already seen a classification of closed good 2-

dimensional orbifolds. But in the literature I did not find any condition

which will say when an orbifold (compact or not) is good.

In this article we use the above classification of good closed orbifolds,

to prove the following theorem which gives a sufficient condition for an

arbitrary 2-dimensional orbifold to be good.

Theorem 1.1. Let S be a connected 2-dimensional orbifold with finitely

generated and infinite orbifold fundamental group. Then, S is good.

Remark 1.2. There are 2-dimensional good orbifolds with finite orbifold

fundamental groups. The simplest example is the 2-dimensional disc quo-

tiented out by the action of a finite cyclic group acting by rotation around

the center. See Remark 2.1 for a classification of such orbifolds.

2. Proof of Theorem 1.1

For the proof of Theorem 1.1 we need the following two lemmas, which

follow from standard techniques and covering space theory of orbifolds.

Lemma 2.1. Let M be a connected orbifold and f : M̃ →M be a connected

covering space of the underlying space of M . Then, M̃ has an orbifold

structure induced from M by f , so that f is an orbifold covering map.

Proof. Choose an open covering of M̃ which consists of inverse images under

f of evenly covered open subsets of M which are associated to orbifold

charts of M , and then pull back the finite group actions using f . That

gives the required orbifold structure on M̃ . �

Lemma 2.2. Let q : M̃ → M be a finite sheeted orbifold covering map

between two connected orbifolds. Then, the induced map q∗ : πorb1 (M̃) →
πorb1 (M) is an injection, and the image q∗(π

orb
1 (M̃)) is a finite index sub-

group of πorb1 (M).
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Proof. See [1, Corollary 2.4.5]. �
Proof of Theorem 1.1. Let S be a 2-dimensional orbifold as in the state-

ment. Note that, the underlying space of a 2-dimensional orbifold is a

2-dimensional (smooth) manifold. (This follows easily from the discussion

below on the possible types of singular points on a 2-dimensional orbifold

and the fact that manifolds of dimension ≤ 3 has unique smooth struc-

ture. Also see [3, p. 422, last paragraph]). Therefore, after going to a

two sheeted cover of the underlying space of S and using Lemma 2.1, we

can assume that the underlying space of S is an orientable 2-dimensional

manifold. (In such a situation, it is standard to call the orbifold orientable).

For the remaining part of the proof we refer the reader to the discussion

on pages 422-424 of [3].

It is known that, S has three types of singularities: cone points, reflector

lines and corner reflectors [3, p. 422].

Note that, other than the cone points the remaining singular set con-

tributes to the orbifold boundary components of the orbifold. We take

double of S along the orbifold boundary, then we get an orientable orbifold

S̃ which is a 2-sheeted orbifold covering of S and S̃ has only cone singular-

ities [3, p. 423]. Furthermore, since πorb1 (S̃) is a finite index subgroup of

πorb1 (S) (Lemma 2.2), πorb1 (S̃) is again infinite and finitely generated.

So, to prove the Theorem we only have to show that S̃ is a good orbifold.

Note that, S̃ has no orbifold boundary component. If there is any

manifold boundary of S̃, then we take the double of S̃ along these boundary

components and denote it by DS̃. Therefore, DS̃ is an orientable orbifold

with no boundary in its underlying space and only has cone singularities.

Also, if DS̃ is good then so is S̃.

We now prove that DS̃ is good.

First, we consider the case when DS̃ is noncompact. The cone points

form a discrete subset of DS̃ and hence we can write the underlying space

of DS̃ as an increasing union of compact orientable sub-manifolds Si, i ∈ N
with no singular points on the boundary of Si. (This can be done by taking

a proper smooth map from the underlying space of DS̃ to R). Let DSi be

the double of Si. DSi is an orbifold with twice as many cone points as Si.

Suppose DSi is of genus gi and has ki cone points with orders p1, p2, . . . , pki .

Then, DSi is a closed orientable orbifold with only cone singularities, and by

[3, p. 424] the orbifold fundamental group of DSi is given by the following

presentation.
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πorb1 (DSi) ' 〈a1, b1, . . . , agi , bgi , x1, . . . , xki | x
pj
j = 1, j = 1, 2, . . . , ki,

Πgi
j=1[aj , bj ]x1x2 · · ·xki = 1〉.

Hence, the abelianization of πorb1 (DSi) is isomorphic to Z2gi⊕Kki−1. Where,

Kki−1 is a finite abelian group with ki − 1 number of generators. Further-

more, g1 ≤ g2 ≤ · · · and k1 ≤ k2 ≤ · · · .
This shows that, since πorb1 (DS̃) is finitely generated (as πorb1 (S̃) is

finitely generated), there is an i0 such that gj = gl and kj = kl for all

j, l ≥ i0.
Therefore, DS̃ has finitely many cone points, all contained in Si0 , and

outside Si0 , DS̃ is a finite union of components, each homeomorphic to the

infinite cylinder S1 × (0,∞). Next, we cut the infinite ends of DS̃ at some

finite stage and denote the resulting compact orbifold again by Si0 .

Note that, here πorb1 (Si0) is a subgroup of πorb1 (DSi0) and hence

πorb1 (DSi0) is infinite. Hence, from the classification of closed 2-dimensional

orbifolds using geometry (see [4, Theorem 5.5.3]), it follows that DSi0 is a

good orbifold. Since, DSi0 has even number of cone points, and in the case

of two cone points they have the same orders. See Figure 2. Clearly, then

Si0 , and hence DS̃ (which is homeomorphic to the interior of Si0) has an

orbifold covering space, which is a manifold.

Next, if DS̃ is compact then the same argument as in the above para-

graph shows that it is good. This completes the proof of the Theorem. �

Remark 2.1. We end the paper with a remark on 2-dimensional orbifolds

with finite orbifold fundamental group. As in the proof of the Theorem,

after going to a finite sheeted covering and then doubling along manifold

boundary components, we can assume that the orbifold (say, S) is orientable

and has finitely many cone singularities. Ignoring the cone points we have a

surjective homomorphism πorb1 (S)→ π1(S). Hence, the fundamental group

of the underlying space of S is finite and therefore, the underlying space is

S2 or R2. It is easy to see that in the last case S is good and in the S2 case

we already have a classification (Remark 1.1).
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