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Abstract. In this expository article we describe some of the fundamental

questions in Manifold Topology and the obstruction groups which give an-

swers to the questions.

1. Introduction and some basic concepts

In Topology we study spaces and properties of spaces which are invariant

under ‘deformation’. For example, we do not distinguish between a solid rubber

ball and a solid rubber cube because one can be deformed into another without

tearing. Next, we can build new spaces by gluing ‘simple’ pieces. For example,

take two 2-discs and glue them along their boundaries, we get a sphere. See the

following picture.

This way one constructs very complicated useful spaces and then, we ask when

are any two such objects same under deformation. To answer such questions we

need to define invariants of spaces which remain same under deformations. Many

a time this method is useful to give answers in negative and also sometime one

finds a complete set of invariants to give a positive answer.

Note that, there are mainly two kinds of deformations (or equivalences) we

deal with in this subject; one is ‘homeomorphism’ and the other is ‘homotopy

equivalence’. The first one only ‘stretches’ the underlying space without tearing

and the second one ‘squeezes’ or ‘thickens’ the underlying space continuously.

There are various other kinds of deformations we come across, e.g., weak

homotopy equivalence, simple homotopy equivalence, diffeomorphism and

PL-homeomorphism.

We urge the reader to look at the reference [16], or any other text book on

Algebraic Topology for the remainder of this section.
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74 S. K. ROUSHON

1.1. Homotopy Theory.

Definition 1.1.1. Two topological spaces X and Y are called homeomorphic if

there are continuous maps f : X → Y and g : Y → X such that f ◦ g = idY and

g ◦ f = idX , here id∗ denotes the identity map. When this happens we call f (or

g) a homeomorphism.

Definition 1.1.2. Two continuous maps f, g : X → Y are called homotopic

if there is a continuous map F : X × I → Y , such that F (x, 0) = f(x) and

F (x, 1) = g(x), for all x ∈ X. If x0 ∈ X and y0 ∈ Y are given such that

f(x0) = y0 and g(x0) = y0, then f and g are called homotopic relative to base

point if, in addition, F (x0, t) = y0 for all t ∈ I.

Definition 1.1.3. Two topological spaces X and Y are called homotopy equivalent

if there are continuous maps f : X → Y and g : Y → X such that f ◦ g is

homotopic to idY and g ◦ f is homotopic to idX . When this happens we call f (or

g) a homotopy equivalence.

Obviously, homeomorphism is stronger than homotopy equivalence, but there

are times when homotopy equivalence implies homeomorphism. These kinds of

instances are major breakthroughs in Topology.

In this article we will be considering spaces which are ‘CW -complexes’ and

‘manifolds’. CW -complexes are spaces which are built from the following sub-

spaces of Rn.

Dn = {(x1, x2, . . . , xn) ∈ Rn |
i=n∑
i=1

x2i ≤ 1}.

Here, Dn is called an n-disc and n its dimension. The boundary ∂Dn is defined as

{(x1, x2, . . . , xn) ∈ Rn |
∑i=n
i=1 x

2
i = 1}, it is also called the (n − 1)-sphere Sn−1.

These subspaces are the simple pieces we referred above.

To avoid unnecessary hypothesis, we define a finite CW -complex. We begin

with a finite set A with discrete topology. Then, consider finitely many maps φ1i :

S0 → A, for i = 1, 2, . . . , j1. Construct the quotient space X1 of the disjoint union

A ∪i=j1i=1 D1
i , where each D1

i is a copy of D1, under the relation: φ1i (x) is identified

with x where x ∈ S0. Suppose we have constructed Xn−1. Next, consider continu-

ous maps φni : Sn−1 → Xn−1, for i = 1, 2, . . . , jn, and construct the quotient space
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X := Xn of Xn−1 disjoint union with jn copies of Dn, in a similar way as defined

in the case n = 1. X is called a finite CW -complex and Xk is called its k-skeleton.

Above we show the construction of a CW -complex pictorially. Also, we say Xk

is obtained from Xk−1 by attaching jk k-discs by the characteristic maps φki , for

i = 1, 2, . . . , jk. Note that each Dki − Sk−1 is embedded in X and is called a k-

cell. The maximum value of k, for which X has a k-cell but no cells of higher

dimensions, is called the dimension of the CW -complex. We call X finite as there

are only finitely many cells in X. We can similarly define an infinite CW -complex

which has finitely many cells in each dimension. To define CW -complex with

arbitrary number of cells in each dimension is tricky and we avoid it here.

A subspace Y of a CW -complex X is called a subcomplex of X if Y is closed in

X and is a union of cells of X. We call the pair (X,Y ) a CW -pair. The dimension

of the pair (X,Y ) is defined considering the cells in X which are not in Y , and

the k-skeleton of the pair (X,Y ) is defined as Y ∪Xk. Therefore, the dimension

of the pair (X,Y ) could be less than the dimension of Y .

There is yet another class of spaces called polyhedra which is a special class of

CW -complexes, in this case the attaching maps are injective.

In this article by a ‘complex’ we will always mean a CW -complex.

Example 1.1.1. Let X0 = {∗} be a singleton and let φ11, φ
1
2 : S0 → X0 be the

obvious maps. Then X1 is the one point union (or wedge) of two circles, called

the figure eight. It is a finite complex. More generally, a wedge of finitely many

spheres of (different dimensions) is also a finite complex.

Next, we define manifolds and give examples.
Definition 1.1.4. A Hausdorff second countable space M is called a topological

manifold with boundary if any point x ∈M has a neighborhood V homeomorphic

to an open set in Rn+ = {(x1, x2, . . . , xn) ∈ Rn | xn ≥ 0}, for some n. V is called an

Euclidean neighborhood of x. n is called the dimension of M if the same n works

for all points of M . The points on M which corresponds to the points in Rn+ with

xn = 0 are called the boundary points. A compact manifold with empty boundary

is called closed. Similarly, one defines smooth or differentiable manifolds. There is

yet another class of manifolds called piecewise linear or PL-manifolds.
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By ‘invariance of domain’ (see Theorem 1.2.2), if M is connected then the

dimension of M is well-defined. Below we give examples of closed manifolds of

dimensions 1 and 2. An example of a manifold with boundary is Dn. One can

construct many other examples of manifolds with boundary by removing Euclidean

neighborhoods of points from a manifold. The figure eight is a space which is not

a manifold, the 0-cell is the troubling point.

For some basics on manifold theory see the book [6] or any other book on

manifolds. But, we recall the concept of tangent space which is intuitive. In

the case of differentiable manifolds, by Whitney embedding theorem, a compact

manifold M of dimension n can be embedded in the Euclidean space RN , for

N ≥ 2n. Now, we consider the set TM of disjoint union of all lines in RN which

are tangent to the manifold at some point. The collection of these lines form a

manifold of dimension 2n. And the set of all lines tangent to M at a given point is

the translate of some n-dimensional vector subspace of RN . Therefore, there is a

map TM →M which becomes a vector bundle projection of rank n (see Definition

1.2.1), called the tangent bundle of M . For example, one can show that for S1 the

tangent bundle is, in fact, the cylinder S1 × R. Also, the tangent bundle of Rn is

the trivial bundle Rn × Rn.

Next, we recall a very crucial and important theorem in Homotopy Theory,

called the Whitehead theorem which is used to study many fundamental questions

in Manifold Topology, we will see in the next section. There are algebraic in-

variants called homotopy groups associated to topological spaces. It is defined as

the homotopy classes of base point preserving maps from the n-sphere Sn with a

base point to the topological space X with a base point, say x0. It is denoted by

πn(X,x0). For n ≥ 1 this set has a group structure and for n = 0 it is the set

of all path components of X. For n = 1 it is called the fundamental group of the

space. The Whitehead theorem says the following.

Theorem 1.1.1. Let X and Y be complexes and f : (X,x0) → (Y, f(x0)) be a

map. If the induced homomorphisms fq∗ : πq(X,x0) → πq(Y, f(x0)) are isomor-

phisms for all x0 ∈ X and q ≥ 1 and a bijection for q = 0, then, f is a homotopy

equivalence.
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When the hypothesis of the theorem is satisfied, f is called a weak homotopy

equivalence. See Theorem 7.5.9 and Corollary 7.6.24 in [16] for a proof and related

materials.

For finite dimensional complexes, even a stronger statement is true. If X

and Y are k-dimensional and f : X → Y induces isomorphisms on homotopy

groups for all q < n, for some n > k and induces a surjective homomorphism for

q = n, then f is a homotopy equivalence. This implies that although a homotopy

equivalence induces isomorphisms on homotopy groups in all dimensions; for finite

complexes, the converse is true with a weaker assumption. That is, we only need

to assume that f induces isomorphism in homotopy groups in low dimensions,

although for most finite complexes there are nonzero homotopy groups in arbitrary

high dimensions. This fact is very crucial in the proofs of many theorems in

Manifold Topology as we highlighted above.

At this point we inform the reader about the significance of the theory of

covering spaces, which is intimately related to fundamental group.

Definition 1.1.5. Given a topological space X, a covering space is defined to

be a topological space Y together with a continuous map p : Y → X, called

covering map, which has the following property: given any point x ∈ X, there is

a neighborhood U of x in X, such that p−1(U) is a disjoint union of open sets Si,

i ∈ I, of Y and p|Si : Si → U is a homeomorphism for all i ∈ I. Here I is an

indexing set.

For example, any homeomorphism is a covering map. An example of a covering

Non-trivial covering projection

map which is not a homeomorphism is the exponential map R → S1. A pictorial

view of this covering map is given above.

One then defines, given a fixed space X, its universal covering space X̃ to be

the maximal element in the category of all covering spaces of X. For technical

reason, we need to assume that the space X is connected, locally path connected
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and semilocally simply connected, to ensure existence of the universal cover of X.

Let us call such a space a nice space. Complexes are nice spaces.

The study of covering spaces helps us to understand the fundamental group

well, through group action on spaces. (We recall here that, we say a group G

acts on a space if there is a group homomorphism from G to the group of home-

omorphisms of the space.) In fact, if X has a universal covering space, then the

fundamental group G of X acts on X̃, so that the quotient X̃/G = X. This is the

first instance one sees a connection between topological spaces and groups. This

also transfers a topological problem into a problem in group theory and solves

topological problems with the help of group theory and vice versa. For example,

using covering space theory it becomes easy to prove that subgroup of a free group

is free. Also, one checks using the above mentioned example that the fundamental

group of the circle is infinite cyclic, which in turn proves the following Brouwer

fixed point theorem in dimension 2.

Theorem 1.1.2. For any map f : D2 → D2, there is a point x ∈ D2 such that

f(x) = x.

In fact, this is true for Dn also, which requires the concept of homology theory.

1.2. Homology Theory. Homology theory is basically ‘formal sum’ of maps or

of subspaces of a space, and then introducing ‘natural’ relations among elements

of these sums to define invariants of the space. Initially, the subject is difficult

to appreciate, but after certain amount of work one sees beautiful applications,

which otherwise are impossible to see. One indication we have already given in

the Brouwer fixed point theorem. Another advantage of this subject, in contrast

to homotopy theory, is that the invariants, although defined in a difficult way, are

not very difficult to compute.

The very first example is H0(X), of a topological space X. It is by definition,

the free abelian group generated by the path components of X. Note that, if two

spaces are homotopy equivalent then they have isomorphic H0(−).

Let us define this group differently, which will give the motivation for the

definition of higher dimensional invariants.

Let C0(X) be the free abelian group generated by the points of X, and C1(X)

be the free abelian group generated by all continuous maps σ1 : [0, 1] → X.

Define ∂1 : C1(X) → C0(X) by partial1(σ1) = σ1(1)− σ1(0), for all σ1 ∈ C1(X).

Then, ∂1 is a homomorphism of abelian groups. It can be shown that H0(X) is

isomorphic to C0(X)/∂1(C1(X)). Let ∂q be the convex hull of the vectors ei ∈ Rn,

for i = 0, 1, 2, . . . , n, where e0 = (0, 0, . . . , 0) and ei = (0, 0, . . . , 1, . . . , 0), where 1

is at the i-th place. Note that ∂1 = [0, 1]. Now, more generally, define Cq(X) to

be the free abelian group generated by all continuous maps σq : ∂q → X. Next,

define the map (called boundary map) ∂q : Cq(X)→ Cq−1(X) by
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∂q(σq) = σ0
q − σ1

q . . .+ (−1)qσqq .

Here, σiq evaluated at (x1, x2, . . . , xq−1) ∈ ∂q−1 is equal to σq evaluated at

(x1, x2, . . . , 0(i − th), . . . , xq−1) ∈ ∂q. σiq is said to be the i-th face of σq. One

now checks that ∂q−1 ◦ ∂q = 0 for all q. Define Ci(X) = 0 if i ≤ −1. We call

{C∗(X), ∂∗} the singular chain complex of X. It is easily checked that the kernel

Zq of ∂q contains the image Bq of ∂q+1. Define the q-the singular homology group

of X as the quotient group Zq/Bq and it is denoted by Hq(X,Z). For a complex

X, there is a similar object called cellular chain complex, denoted by {S∗(X), ∂∗}.
The group Sq(X) is defined as the free abelian group generated by the q-cells of

X. In this particular case the boundary map is defined using singular homology

theory. But, one can show that the singular and cellular homology (that is the

homology of the chain complex S∗(X)) are isomorphic for complexes.

One can define the homology H∗(X,A;Z) of pairs (X,A) by defining the

associated chain complex as the quotient chain complex {C∗(X,A), ∂∗}, where

Ci(X,A) = Ci(X)/Ci(A).

Also, one constructs a dual class of groups {C∗(X)} whose elements Ci(X)

are defined as hom(Ci(X),Z) and define coboundary maps δi : Ci(X)→ Ci+1(X).

Now, renaming Ci(X) as C−i(X) one gets a chain complex and the homology

groups of this chain complex are called the (integral) cohomology groups of X, and

is denoted by Hi(X,Z).

Below we give couple of well known examples of homology computation.

Example 1.2.1. Hn(Rm,Z) = 0 for n 6= 0 and H0(Rm,Z) = Z. This is also true

for any contractible space. A space is contractible if the identity map is homotopic

to the constant map.

Example 1.2.2. Hn(Sm,Z) = 0 if n 6= m and n,m 6= 0. H0(Sm,Z) = Hm(Sm,Z)

= Z if m 6= 0. And H0(S0,Z) = Z× Z, Hn(S0,Z) = 0 for n 6= 0.

Now, we motivate the reader to the notion of orientability and few more

concepts we need.

In Topology sometimes it is helpful to embed a space X into another space

Y and look at its ‘surroundings’ or the ‘complement’ to understand X and Y .

Probably, the first such situation one observes is in General Topology, where, one

can show that a space X is Hausdorff if and only if the image of the embedding

X → X × X, sending x 7→ (x, x) is closed with respect to the product topology

on X ×X.

We want to study such surroundings of a manifold and more generally, for

complexes later. We begin with one example. Consider the following picture

of a cylinder and a Möbius band. Both of these spaces are obtained as quo-

tients of the square [0, 1] × [0, 1] under certain identifications of its boundary.
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In the cylinder case (0, t) is identified with (1, t) and in the Möbius band case (0, t)

is identified with (1, 1 − t) for all t ∈ [0, 1]. The middle line {( 1
2 , t)‖ t ∈ [0, 1]}

goes to the mid circles in the cylinder and in the Möbius band. Therefore we have

got embedding of the circle in the two different spaces. We leave it an exercise to

check that the cylinder and the Möbius bands are not homeomorphic.

There is yet another aspect to these two examples. Replace [0, 1] × [0, 1] by

[0, 1]×R and do the same identifications, one gets the open cylinder and the open

Möbus band. Now, over each point on the mid circle in each of the example, there

lies the real line R. This gives the impression of a bundle of real lines on the circle.

But we get two different spaces although they look the same locally, that is around

any point of the mid circle the two spaces look like (ε, 1 − ε) × R. One can show

these are the only two different R-bundle spaces over the circle. This motivates

the following definition.

Definition 1.2.1. A surjective continuous map p : E → B is called a fiber bundle

projection, E is called the total space and B is called the base space if the following

are satisfied. Each point b ∈ B has a neighborhood Ub, such that p−1(Ub) is

homeomorphic to p−1(b) × Ub by a homeomorphism f with p|p−1(Ub) = π2 ◦ f .

Here π2 denotes the second projection. It is called a vector bundle of rank n if the

fibers p−1(x) = Rn for all x ∈ B and the restriction of f to each fiber is a linear

isomorphism. It is called a trivial bundle if Ub can be taken to be the whole space

B.

We now see an important aspect associated to the Möbius band and cylinder,

which is crucial in Manifold Topology. Consider the mid circles in the two exam-

ples. Draw a line L at some point, say c, on the mid circle and perpendicular to

the circle and give a direction to the line. Now start moving the line, keeping it

perpendicular to the circle, along the circle in a fixed direction. When we reach

the point c, the direction of the line gets reversed in the case of Möbius band and

remain the same in the cylinder case. This gives the fundamental concept of ori-

entability of manifolds. This is also intimately related to the concept of homology

of manifolds. Let us try to understand this phenomenon differently. Consider an-

other line T at the point c which is tangent to the mid circle of the Möbius band.

Then, L and T form a basis of the tangent space of the manifold at c. Now, as
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we move the frame {L, T} along the circle maintaining the position and direction

of the lines and come back to c, we see the basis of the tangent space changed to

another one with the change matrix having determinant negative in the case of

Möbius band. But there is no change in the cylinder case.

We state a theorem, whose proof can be found in any Differential Topology

book.

Theorem 1.2.1. Let M be a closed manifold of dimension n. Then the following

are equivalent.

1. Hn(M,Z) = Z.

2. The following statement holds for the image C of any embedding of the

circle S1 in the manifold. At any point on C, take any framing F1 (that is, a basis

of the tangent space of M at the point), and then move along the circle with the

framing, when we come back to the point again, we get another framing F2. Then,

the determinant of the matrix which sends the framing F1 to F2 is positive.

If one of the conditions in the statement of the theorem is satisfied then, we

call the manifold orientable. In such a situation one of the generators of Hn(M,Z),

denoted [M ], is called the fundamental class or the orientation class of M . Once

an orientation class is fixed, the manifold is called oriented. One can show that

the top homology is either trivial or infinite cyclic for any closed manifold.

In this context we make a definition which we will require later.

Definition 1.2.2. A map f : M → N between two n-dimensional closed oriented

manifolds is said to be of degree k if f∗([M ]) = k[N ].

For example, the map S1 → S1 defined by z 7→ zk has degree k.

Now, take two Möbius bands and attach their boundaries together to get the

Klein bottle or attach a disc to the boundary of the Möbius band to get the real

projective plane. By the above theorem and the remark following it, both these

manifolds are not orientable and their top homology is trivial. Furthermore, note

that the open Möbius band is embedded in both the examples, this embedding is

called the normal bundle of the mid circle in the embedding. Similarly the open

cylinder is embedded in the torus, and in this case also this embedded object is

called the normal bundle of the mid circle. Therefore, we see examples where the

normal bundles can be trivial or non-trivial depending on the ambient manifold.

In fact, one can show that if the submanifold (in our case the mid circle) and the

ambient manifold are both orientable, the normal bundle of the submanifold is

always trivial.

We recall Poincaré duality theorem which gives an important relationship

between homology and cohomology of an oriented manifold.

Theorem 1.2.2. Let M be a closed oriented manifold of dimension n. There is

an isomorphism, called the duality isomorphism, obtained by taking cap product

with the fundamental class
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∩[M ] : Hk(M,Z)→ Hn−k(M,Z)

for all k.

Using homology theory one can also prove the following very important in-

variance of domain theorem.

Theorem 1.2.3. If an open set in Rn is homeomorphic to an open set in Rm,

then m = n.

This theorem is needed to ensure the well-definedness of dimension of a con-

nected manifold.

1.3. Algebra. Here we recall some basic Algebra used in this article.

Let R be a ring with unity. An (left) R-module M is an abelian group together

with an action of R, that is a map R ×M → M , sending (r,m) to an element,

denoted by rm, of M satisfying the following properties. For all r, r1, r2 ∈ R and

m,m1,m2 ∈ M , (r1 + r2)m = r1m + r2m, r(m1 + m2) = rm1 + rm2, (r1r2)m =

r1(r2m) and 1m = m. Equivalently, an R-module structure on an abelian group M

is nothing but a ring homomorphism from R to the endomorphism ring End(M)

of M . For example, any abelian group is a Z-module.

In this article we mostly consider the (integral) group ring Z[G] of a group G.

The group ring, by definition, consists of the formal finite sums Σki=1rgigi, where

gi ∈ G and rgi ∈ Z, for i = 1, 2, . . . , k. Equivalently, the group ring can be defined

as the set of maps f : G→ Z, such that f takes zero value on all but finitely many

elements in G, and the operations are defined by the following. Given f and g in

Z[G], f + g : G → Z denotes the map (f + g)(α) = f(α) + g(α) and fg denotes

the map (fg)(α) = Σα=uvf(u)g(v). The summation is well defined since there are

only finitely many elements of G on which f or g takes nonzero values.

We now give a special example which we require in this article. Let X be a nice

space and X̃ be its universal cover. Then, one knows that the fundamental group

G of X acts on X̃ as a group of covering transformations. That is, we have a map

G × X̃ → X̃, so that the induced map from G to the group of homeomorphisms

of X̃ is a homomorphism. It is easy to check that this induces a homomorphism

from G to the group of isomorphisms of Ci(X̃) for each i. It now follows that each

Ci(X̃) becomes a free Z[G]-module. When X is a complex then also one can get

such a module structure, by using the induced complex structure on the universal

cover. For example, one gives a complex structure on R lifting a complex structure

on S1 using the exponential map and then make Si(R), a free Z[Z]-module.

We now recall the definition and some examples of a particular class of R-

modules, which are useful in Topology.

Definition 1.3.1. A projective R-module is by definition a direct summand of a

free R-module. That is, an R-module P is called projective, if there exists another

R-module Q such that P ⊕R Q is isomorphic to a free R-module.
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Of course, free R-modules are projective. We now give an example of an

R-module which is projective, but not free.

Example 1.3.1. Let R = Z6 and M = Z3 ⊕R Z2, then M = R, and Z3 and Z2

are R-modules and hence they are projective. Obviously, they are not free.

Acknowledgement. I would like to thank C. S. Aravinda for inviting me to write

this article and for many suggestions. Also, thanks to the referee for carefully

reading the article and for critical comments and suggestions.

2. Some questions

To motivate the reader we begin with some of the fundamental questions in

this subject.

• When is a topological space homotopy equivalent to a finite complex?

• When is a finite complex homotopy equivalent to a compact manifold?

• Are two homotopy equivalent closed manifolds homeomorphic? That is, we

are asking about the uniqueness of the manifold in the previous question.

The examples given below, which show that the answer to the above questions

are in general no, follow the same order as the questions.

• Note that, the necessary conditions the space should satisfy are those known

properties of a finite complex which are invariant under homotopy equivalence. We

may not need to assume all these properties at a time. At some point we will see

that only some of the properties are enough or we will hit on an obstruction.

We begin with the number of path components. We know this number is ho-

motopy invariant, that is, if two spaces are homotopy equivalent then they have

the same number of path components. Therefore, if we want our finite complex

to be path connected, then we have to assume that the space we started with

should also be path connected. Compactness need not be preserved under homo-

topy equivalence, so we do not consider this. The most basic homotopy invariant

we study in Algebraic Topology is the fundamental group. A finite complex has

finitely generated fundamental group. Therefore, the wedge of infinitely many

circles or the Euclidean plane with all points whose both coordinates are integers

deleted, can never be homotopy equivalent to a finite complex, as they have in-

finitely generated fundamental groups. The further conditions we need to put on

the space are discussed in the next section.

• First, note that any finite complex is homotopy equivalent to a compact

manifold with nonempty boundary. This can be obtained by first taking a compact

polyhedron homotopy equivalent to the finite complex, and then taking the regular

neighborhood of the polyhedron after embedding it in some Euclidean space. We

see this with an example. Consider the figure eight embedded in R2. The regular

neighborhood is shown in the picture below, which is a 2-dimensional manifold

with three boundary components.
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Therefore, the question is to ask for a closed manifold. Next, recall that

a manifold has vanishing homology groups in higher dimensions, therefore, the

complex should not have cells of arbitrary high dimensions. For example, the

wedge of spheres Sn for n = 1, 2, . . . can never be homotopy equivalent to any

closed manifold. Hence the complex should be assumed to be finite dimensional.

Furthermore, homological properties are homotopy invariants, for example, the

homology groups must satisfy Poincaré duality (Theorem 1.2.2). There are further

conditions required which are described in the next section.

We now give examples of finite complexes which are not homotopy equivalent

to closed manifold as they do not satisfy Poincaré duality.

Example 2.0.1. Let X be the figure eight. Then Hi(X,Z) = 0 for i ≥ 2, since

X is an one-dimensional complex. Therefore, if there is any manifold homotopy

equivalent to X, then it must be one-dimensional. Note that, H1(X,Z) has rank

2, but an orientable closed one-dimensional manifold must have first homology of

rank 1 by Poincaré duality. For a similar reason (taking homology with coefficient

in Z2) it follows that X is not homotopy equivalent to any closed non-orientable

manifold. Similarly, one shows that the wedge of two spheres of the same dimension

also gives an example of a finite complex not homotopy equivalent to any closed

manifold.
• There are homotopy equivalent manifolds which are not homeomorphic.

For example, the lens spaces L(7, 1) and L(7, 2) are homotopy equivalent but

not homeomorphic. There is another kind of equivalence called simple homotopy

equivalence which lies in between homotopy equivalence and homeomorphism. We

will study this later in this article. It can be shown that the above two spaces are

not even simple homotopy equivalent.

These questions were well studied over the last several decades. The White-

head group Wh(G), reduced projective class group K̃0(Z[G]), and the surgery L-

groups Ln(Z[G]) of the fundamental group G contain the answers to the above and

many more questions. Mainly, the breakthrough on classifying manifolds started

during 1960 to 1970. Then, there were results proved about computing the above

obstruction groups for small classes of groups. Several conjectures were formulated
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which still remain open. The second breakthrough happened with works which use

geometry and controlled topology. Apart from geometry and controlled topology,

Frobenius induction technique was also found to be very useful. Finally, in 1993

Farrell and Jones formulated an important conjecture, now popularly known as

Farrell-Jones Isomorphism conjecture ([5]), which captures the subject in a sin-

gle statement and implies all the previous conjectures. Since then, an enormous

amount of work has been done by many authors and it is still an ongoing front

line area of research to prove the Isomorphism conjecture for different classes of

groups.

In this article we describe the above obstruction groups and see how they

answer the questions. Also, we recall some of the classical results. In a future

article we plan to review the development that took place during the last two

decades.

The subject we are exposing in this article is enormous and, therefore, we urge

the reader to look at the sources in the reference list to know more about it.

3. In more detail

In this section we see exactly the conditions needed and how the obstruction

groups appear in solving the questions in the previous section. We have already

recalled many of the basics required in this section. There are times when we will

use some new concepts, which we do not recall due to technical reason. We refer

the reader to look at the corresponding sources. But this lacking will not prevent

the reader from understanding the core ideas behind the proofs.

3.1. Reduced projective class group K̃0(−). Recall the definition of homotopy

equivalence. There are two conditions which need to be satisfied. We start with

the following definition.

Definition 3.1.1. A space X is said to be dominated by another space Y if there

are maps f : X → Y and g : Y → X so that g ◦ f ' idX . And X is called finitely

dominated if in addition Y is a finite complex.

Note that this is half of saying that X is homotopy equivalent to Y . It is also

known that if X is finitely dominated then it is homotopy equivalent to a countable

complex, which can be checked using some facts from [12] (or see Theorem 3.9 of

[19] or Exercise G6 in Chapter 7 of [16]). In fact, the mapping telescope of f ◦ g
becomes homotopy equivalent to X. Therefore, to investigate whether a space X

is homotopy equivalent to a finite complex, we can assume that X is a complex.

But, to show whether a complex is homotopy equivalent to a finite complex, one

needs more difficult work. This is answered in a very important and celebrated

series of papers by C.T.C. Wall (see [22] and [23]). This leads to an obstruction

which lies in an abelian group called the reduced projective class group and denoted

by K̃0(Z[π1(X)]). Interestingly, the answer to this question depends only on the

fundamental group of X.
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Before going further let us define reduced projective class group of a ring. Let

R be a ring with unity. Let P denote the free abelian group generated by the set

of all isomorphism classes of finitely generated projective R-modules. Let K0(R)

be the quotient of P by the relations [P ] + [Q] = [P ⊕ Q] where [P ], [Q] ∈ P.

Note that, K0(R) is a covariant functor from the category of rings with unity to

the category of abelian groups. Thus the homomorphism Z→ R sending 1 to the

unity of R induces a map i : K0(Z)→ K0(R). The reduced projective class group

K̃0(R) is by definition the quotient K0(R)/i(K0(Z)). By abusing notation we will

denote elements of K̃0(R) by the same notation [P ]. For details on the projective

class groups see [15] or any standard book on Algebraic K-theory. Below we give

some examples.

Example 3.1.1. Let R = Z, the ring of integers. Then one knows that, since Z is

a principal ideal domain, any finitely generated projective module over Z is free.

Therefore, we have K̃0(Z) = 0. Same conclusion holds if R is a field.

In this subject one encounters only integral group ring Z[G] of a group G. See

Section 4 for more on this. Although, more abstract coefficients are considered for

the purpose of a general framework and applications in other areas of Mathematics.

Recall that, any finitely dominated space is homotopically equivalent to a

(countable) complex, and hence up to homotopy such a space is nice.

Let X be a nice space and X̃ be its universal cover. Then, recall that C∗(X̃)

is a chain complex of free R(= Z[G])-module. In general Ci(X̃) is a very large R-

module. On the other hand if X were a finite complex then it follows that S∗(X̃)

is a finite chain complex of finitely generated free R-module. For an arbitrary nice

space we can make the situation better by assuming that X is finitely dominated.

C.T.C. Wall proves that in this case S∗(X̃) is chain equivalent to a finite chain

complex of finitely generated projective R-modules, say P∗(X). Consider the ob-

ject χ(P∗(X)) = Σi(−1)i[Pi(X)] ∈ K̃0(R). χ(P∗(X)) is called the Wall finiteness

obstruction of the space X.

Theorem 3.1.1 (C.T.C. Wall). Let X be a finitely dominated space and R =

Z[π1(X)]. Then X is homotopy equivalent to a finite complex if and only if

χ(P∗(X)) = 0 in K̃0(R). Furthermore, given an element ω in K̃0(R) there is

a finitely dominated space X ′ with fundamental group isomorphic to π1(X), such

that ω = χ(P∗(X
′)).

This gives a complete solution to the first problem. But computing the reduced

projective class group of a group is another story. We will talk about it in the

next section.

3.2. Surgery groups L∗(−). If we want a finite complex to be homotopy equiv-

alent to a closed (orientable) manifold there are several more necessary conditions

needed. One such condition is that the homology of the complex must satisfy
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Poincaré duality as mentioned in Section 1. Such a complex is called a Poincaré

complex. We give the precise definition below.

Definition 3.2.1. LetX be a connected finite complex and for some n, Hn(X,Z) '
Z. Let [X] ∈ Hn(X,Z) be a generator such that the cap product with [X] gives

an isomorphism Hq(X,Z) → Hn−q(X,Z) for all q. Then X is called a Poincaré

complex with fundamental class [X] and dimension n.
The second condition needed is the existence of a bundle over the complex,

which has properties similar to the normal bundle of a manifold embedded in some

Euclidean space. We describe this below.

Let M be a closed connected oriented smooth manifold of dimension n. By

the Whitney Embedding Theorem we can embed this manifold in Rn+k ⊂ Sn+k

for k ≥ n. Let νM be the normal bundle of M in Sn+k. Let τM be the tangent

bundle of M . Then τM ⊕ νM is the product bundle as M ⊂ Sn+k − {∞} = Rn+k.

Let N be the subset of νM consisting of vectors of length < ε, with respect to

some Riemannian metric, for some ε > 0. Then N is an open neighborhood of

M in Sn+k and in fact diffeomorphic to the total space E(νM ) of νM . The one

point compactification of E(νM ) is called the Thom space of νM . On the other

hand the one point compactification N∗ of N is homeomorphic to Sn+k/Sn+k−N .

Hence, we get a map α : Sn+k → N∗ ' T (νM ). One can check that α induces

an isomorphism Hn+k(Sn+k,Z) → Hn+k(T (νM ),Z) and sends the canonical gen-

erator of Hn+k(Sn+k,Z) to the generator of Hn+k(T (νM ),Z), which comes from

the fundamental class [M ] via the Thom isomorphism. In this sense this map is

of degree 1.

Therefore, for a Poincaré complex X to be homotopy equivalent to a closed

oriented smooth manifold it is necessary that there should be a real vector bundle

ξ on X and a degree 1 map α : Sn+k → T (ξ). The Thom space T (ξ) in this

generality is defined as follows. Consider the fiber bundle ξ∗ over X obtained by

taking the one point compactification of the fibers of the bundle ξ. The bundle ξ∗

admits a section s : X → ξ∗, sending a point of X to the point at infinity of the

fiber over the point. Then T (ξ) is defined as the quotient of the total space of ξ∗

by s(X).

Once this information is given we can apply Thom Transversality Theorem

to homotope α to β so that β−1(X) (:= K) is a (oriented) submanifold of Sn+k.

Furthermore, the map β restricted to the normal bundle νK of K gives a lin-

ear bundle map onto ξ and β|K is of degree 1. A data of this type as in the

following commutative diagram is called a normal map and is denoted by (f, b),

νM
f //

��

ξ

��
M

b // X
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where, M is a closed connected smooth oriented manifold, X is a Poincaré complex,

νM is the normal bundle in some embedding of M in Sn+k, and b is a degree 1

map. Here we remark that not all Poincaré complexes admit a normal map. See

the example on p.32-33 in [11]. We saw that this map b is obtained from the

Transversality Theorem but it is nowhere close to being a homotopy equivalence.

In the simply connected and odd high dimension case, in fact, b can be homotoped

to a homotopy equivalence ([2]). In the general case, the next general step is to

apply Surgery theory to b to get another normal map, which is normally cobordant

to the previous one, and to try to get closer to a homotopy equivalence. To achieve

this we need that b induces isomorphisms on the homotopy groups level and then

apply Whitehead theorem (Theorem 1.1.1).

We digress here a bit to show how surgery works to get rid of some homo-

topy group element from the kernel of bq∗. Let M = S1 × S1 as in the picture.

And, suppose we want to get rid of the fundamental group element generated

by the first circle, which lies in the kernel of b1∗ : π1(M,m) → π1(X, b(m)).

In the picture we show a tubular neighborhood of the circle, this is an embed-

ded S1 × D1 (also called an 1-handle). Note that ∂(S1 × D1) = ∂(D2 × S0).

Now remove the interior of this handle and replace it by D2 × S0. This is called

the surgery on the 1-handle. The resulting manifold is a 2-sphere and b can be

extended to this new manifold as the restrictions of b to the circles S1 × S0 are

homotopic to the constant maps. This new b1∗ does not have any kernel.

More generally, suppose an element α in the kernel of bq∗ is represented by

the embedding of Sq in M . Since both these manifolds are orientable, the normal

bundle of the image of Sq in M is trivial and hence this image gives rise to an

embedding of Sq × Dn−q (take the disc bundle of the normal bundle), called a q-

handle, in M , where M is n-dimensional. A surgery along this q-handle is removing

the interior of Sq × Dn−q and attaching Dq+1 × Sn−q−1 to the resulting manifold.

This operation kills the kernel element α.

These surgery operations can be done up to dimension < [n2 ] and, therefore, by

Poincaré duality the main problem lies in dimension [n2 ]. The complication in this

middle dimension gives rise to the Wall’s Surgery obstruction group Lhn(Z[π1(X)]).
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That is, given a normal map (f, b), there is an obstruction σ(f, b), which lies in

the group Lhn(Z[π1(X)]), whose vanishing will ensure that the normal map can

be normally cobordant to another normal map (f ′, b′), where b′ is a homotopy

equivalence. See [24].

Remark 3.2.1. These surgery groups depend only on the fundamental group

and on its orientation character ω : π1(X) → Z2. Here, as we are dealing with

the oriented case, this homomorphism is trivial. In the general situation we need

to incorporate ω in the the surgery groups. But in this article we avoid it for

simplicity.

Remark 3.2.2. The upper script ‘h’ to the notation of the surgery groups is due to

‘homotopy equivalence’. There are problems, when one asks for ‘simple homotopy

equivalence’ in the normal map. Then a different surgery problem appears and

gives rise to the surgery groups Ls∗(Z[−]). There are many other decorated surgery

groups for different surgery problems, like L
〈−∞〉
n (Z[−]). But all of them coincide,

once we have the lower K-theory vanishing result of the group. This is checked

using Rothenberg’s exact sequence. For example, if the Whitehead group of a

group G vanishes, then, Lhn(Z[G]) = Lsn(Z[G]) for all n.

Remark 3.2.3. One further remark is that the surgery groups are 4-periodic.

That is, Lhn(Z[−]) = Lhn+4(Z[−]) for all n and, in fact, is true for all decorations.

This is obtained by showing that the surgery obstruction of a normal map on a

complex X of dimension n is same as the surgery obstruction of the corresponding

normal map on X × CP2.

To end this subsection we give a nice application of surgery theory.

Theorem 3.2.1. There are infinitely many distinct closed manifolds homotopy

equivalent to the projective space CPk for k ≥ 3. And, this is true in any of the

categories; topological, smooth or piecewise linear (PL).

3.3. Whitehead group Wh(−). Once we have established that a complex is

homotopy equivalent to a manifold, the next question is about the uniqueness of

the manifold. In surgery theory one gets two such manifolds M1 and M2 (when

they exist) as h-cobordant, which we define below.

Definition 3.3.1. Let M1 and M2 be two connected closed n-dimensional mani-

folds. A compact manifold W of dimension n+ 1 with two boundary components

M1 and M2 is called a cobordism between M1 and M2. In such a situation M1

and M2 are called cobordant. If the inclusions Mi ⊂W are homotopy equivalences

then W is called an h-cobordism between M1 and M2. And M1 and M2 are called

h-cobordant.

Using Morse Theory, one can show that two closed manifolds are cobordant if

and only if one of the manifolds can be obtained from the other by finitely many

surgery operations.
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Given such an h-cobordism W there is an obstruction τ(W,M1), which lies

in a quotient (called the Whitehead group and is denoted by Wh(π1(M1))) of the

K1 of the integral group ring of the fundamental group of M1. When dimW ≥ 6

the element τ(W,M1) ∈ Wh(π1(M1)) has the following property: τ(W,M1) = 0

implies that W is homeomorphic to M1 × I where I = [0, 1]. This is called

the s-cobordism theorem stated below as Theorem 3.4.1. See [9] and [10]. One

consequence of this theorem is the Poincaré conjecture in high dimensions.

There are similar interpretation of the reduced projective class groups and

negative K-groups in terms of some ‘special’ kind of h-cobordism called bounded

h-cobordism. See [14] for some more on this matter.

We now recall the original interpretation of the Whitehead group, which says

that given a homotopy equivalence f : K → L between two connected finite com-

plexes K and L there is an element τ(f) ∈ Wh(π1(K)) whose vanishing ensures

that the map f is homotopic to a simple homotopy equivalence. See [4]. We al-

ready gave a hint to this in Section 2. We describe this important subject below

to a certain extent.

The simple homotopy equivalences lie in between homotopy equivalences and

homeomorphisms. Even in such a classical vast area of topology the most basic

question is not yet answered; namely, if any homotopy equivalence between two

finite aspherical complexes is homotopic to a simple homotopy equivalence, which

is known as Whitehead’s conjecture in K-theory. There is an even stronger con-

jecture which asks; if any homotopy equivalence between two aspherical manifolds

is homotopic to a homeomorphism. This is known as Borel’s conjecture. Recall

that, a connected complex X is called aspherical if πi(X) = 0 for all i ≥ 2, or

equivalently, the universal cover of X is contractible. A result of Chapman says

that any homeomorphism of complexes is a simple homotopy equivalence. So, the

first step to prove the Borel’s conjecture is to verify Whitehead’s conjecture in

K-theory.

As far as the Borel’s conjecture is concerned, dimension 2 is understood com-

pletely in the topological, piecewise linear or smooth category. Perelman’s proof

of the Thurston’s Geometrization conjecture completes the picture in dimension 3.

Recall that, in dimension ≤ 3 any manifold supports a unique topological, piece-

wise linear or smooth structure. In dimension greater or equal to 5 an enormous

literature exists; where there are enough machinery, language to attack a problem.

The critical dimension is 4. In this dimension even the s-cobordism theorem is

not yet known. So far this is proved for 4-manifolds with some restriction on the

fundamental group; namely, groups with subexponential growth. Also another in-

teresting fact is that a 4-manifold can support infinitely many smooth structures.

Even our familiar Euclidean 4-space R4 has infinitely many smooth structures.
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3.4. Simple homotopy equivalence and Whitehead group. The reference

for this subsection is [4]. Let K and K ′ be two finite complexes. A homotopy

equivalence f : K → K ′ is called a simple homotopy equivalence provided f is

homotopic to a composition of maps of the following kind: K = K0 → K1 →
· · · → Ks = K ′ where the arrows are either an elementary expansion or collapse.

A pair of complexes (K,L) is called an elementary collapse (and we say K collapses

to L or L expands to K) if the followings are satisfied:

• K = L ∪ en−1 ∪ en where en−1 and en are not in L (ei denotes an i-cell),

• there exist a ball pair (Dn,Dn−1) and a map φ : Dn → K such that

(a) φ|∂Dn is a characteristic map for en

(b) φ|∂Dn−1 is a characteristic map for en−1

(c) φ(Pn−1) ⊂ Ln−1, where Pn−1 = Dn − Dn−1.

From the above figure the definition of an expansion (or collapse) will be clear.

Collapsing a simplex

Above is yet another example in a more concrete situation of a polyhedron.

In the example, L is a polyhedron to which we introduce the new simplex s, but

the new simplex has a face which is not the face of any other simplex, such a face

is called a free face. A free face gives the freedom to collapse without changing

the homotopy type of the complex.

We now come to a popular example of a contractible topological space which

has a 2-dimensional polyhedron structure but has no free face. This is called
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Bing’s house with two rooms. In this example one has to first expand and then

collapse. The picture explains the space. There are two rooms with two different

entrances. It is easy to see if we start filling the rooms with square blocks (which

are elementary expansions) then at the end we get a three dimensional cube, which

can be collapsed to a point as it has free faces.

Bing’s house with two rooms

There is an algebraic picture of the above topological construction, which we

describe now.

Given any homotopy equivalence f : K → K ′, there is an obstruction τ(f)

which lies in an abelian group Wh(π1(K ′)) (defined below) detecting if f is a

simple homotopy equivalence.

Let R be a ring with unity. Let GLn(R) be the multiplicative group of invert-

ible n × n matrices with entries in R and En(R) be the subgroup of elementary

matrices. By definition an elementary matrix, denoted by Eij(a), for i 6= j, has

1 on the diagonal entries, a ∈ R − {0} at the (i, j)-th position and the remaining

entries are 0. Define GL(R) = limn→∞GLn(R), E(R) = limn→∞En(R). Here

the limit is taken over the following maps:

GLn(R)→ GLn+1(R)

(
A
)
7→

(
A 0

0 1

)
.

The following lemma shows that E(R) is also the commutator subgroup of GL(R).

Lemma 3.4.1 (Whitehead’s lemma). Let R be a ring with unity. Then the com-

mutator subgroup of GL(R) and of E(R) is E(R).

Proof. At first note the following easy to prove identities.

Eij(a)Eij(b) = Eij(a+ b); (1)

Eij(a)Ekl(b) = Ekl(b)Eij(a), j 6= k and i 6= l; (2)

Eij(a)Ejk(b)Eij(a)−1Ejk(b)−1 = Eik(ab), i, j, k distinct; (3)

Eij(a)Eki(b)Eij(a)−1Eki(b)
−1 = Ekj(−ba), i, j, k distinct. (4)

Also note that any upper triangular or lower triangular matrix with 1 on the

diagonal belongs to E(R).
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Since E(R) ⊂ GL(R) we have [E(R), E(R)] ⊂ [GL(R), GL(R)]. Using (3)

we find that Eij(a) = [Eik(a), Ekj(1)] provided i, j and k are distinct. Hence

any generator of E(R) is a commutator of two other generators of E(R). Hence

E(R) = [E(R), E(R)]. We only need to check that [GL(R), GL(R)] ⊂ E(R). So

let A,B ∈ GLn(R). Then note the following identity.(
ABA−1B−1 0

0 1

)
=

(
AB 0

0 B−1A−1

)(
A−1 0

0 A

)(
B−1 0

0 B

)
.

Now we check that all the factors on the right hand side belong to E2n(R). This

follows from the following. Let A ∈ GLn(R). Then the following equality is easy

to check.(
A 0

0 A−1

)
=

(
1 A

0 1

)(
1 0

−A−1 1

)(
1 A

0 1

)(
0 −1

1 0

)
.

Again note the following.(
0 −1

1 0

)
=

(
1 −1

0 1

)(
1 0

1 1

)(
1 −1

0 1

)
.

Now recall our earlier remark that any upper triangular or lower triangular matrix

with 1 on the diagonal belong to E(R). This completes the proof of the Whitehead

Lemma. �

Definition 3.4.1. Define K1(Z[π]) = GL(Z[π])/E(Z[π]). The Whitehead group

Wh(π) of π is by definition K1(Z[π])/N . Here N is the subgroup of K1(Z[π])

generated by the 1× 1 matrices (g) and (−g), for g ∈ π.

Note that multiplying a matrix A by an elementary matrix from left (or right)

makes an elementary row (or column) operation in A. Now by applying elementary

row and column operations one can transform an invertible integral matrix to I

or −I. This shows that Wh((1)) = 0. (Though the matrix multiplication induces

the group operation in Wh(−) we write it additively, since Wh(−) is abelian.)

We recall below a transparent topological definition of Whitehead group which

is naturally isomorphic to the above one. The proof of this isomorphism is very long

and can be found in [4]. But we will give the map from this topological definition to

the algebraic definition above. For computational purposes the algebraic definition

is more useful as we will see later.

Let K be a fixed finite complex. Let W(K) be the collection of all pairs of

finite complexes (L,K) so that K is a strong deformation retract of L. For any

two objects (L1,K), (L2,K) ∈ W define (L1,K) ≡ (L2,K) if and only if L1 and

L2 are simple homotopically equivalent relative to the subcomplex K. Here by

a relative simple homotopy equivalence we mean that in the definition of simple

homotopy equivalence we do not collapse (or expand) any cells contained in K.

Let Wh(K) = W/ ≡. Let [L1,K] and [L2,K] be two classes in Wh(K). Define
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[L1,K]⊕ [L2,K] = [L1 ∪K L2,K]. Here L1 ∪K L2 is the disjoint union of L1 and

L2 identified along the common subcomplex K. This defines an abelian group

structure on Wh(K) called the topological Whitehead group of K.

Now let (L,K) be an element in W. Consider the universal cover (L̃, K̃).

It can be checked that the inclusion K̃ ⊂ L̃ is a homotopy equivalence. Equip

(L̃, K̃) with the complex structure lifted from the complex structure of (L,K).

Let S∗(L̃, K̃) be the cellular chain complex of (L̃, K̃). The covering action of

π1(L) on (L̃, K̃) induces an action on S∗(L̃, K̃) and makes it a chain complex of

Z[π1(L)]-modules. In fact, it is a finitely generated free acyclic chain complex

of Z[π1(L)]-modules. Let d be the boundary map. One can find a contraction

map δ of degree +1 of S∗(L̃, K̃) so that dδ + δd = id and δ2 = 0. Consider the

module homomorphism d+ δ :
⊕∞

i=0 S2i+1(L̃, K̃)→
⊕∞

i=0 S2i(L̃, K̃). It turns out

that this homomorphism is an isomorphism of Z[π1(L)]- modules. The image and

range of this homomorphism are finitely generated free modules with a preferred

basis coming from the complex structure on (L̃, K̃). We consider the matrix of

this homomorphism d + δ which is an invertible matrix with entries in Z[π1(L)]

and hence lies in GLn(Z[π1(L)]) for some n. We take the image of this matrix

in Wh(π1(L)). The proof that this map (say τ) sending (L,K) to this image in

Wh(π1(L)) is an isomorphism is given in [4].

Now, consider a homotopy equivalence f : K → K ′ between two finite com-

plexes. Let Mf be the mapping cylinder of the map f . Recall that, the map-

ping cylinder Mf of f is by definition, the quotient space of the disjoint union

(K × I) ∪K ′, under the identifications (k, 1) = f(k), for all k ∈ K.

Consider the pair (Mf ,K). Here K is identified with K × {0} in Mf . As f

is a homotopy equivalence it is easy to check that (Mf ,K) ∈ W. Now, we recall

that f is a simple homotopy equivalence if and only if τ([Mf ,K]) is the trivial

element in Wh(π1(K)).

Finally, we state the s-cobordism theorem. Smale proved the theorem in the

simply connected case and it is known as the h-cobordism theorem. He received

the Fields medal for this proof, which also implies the high dimensional Poincaré

conjecture.

Theorem 3.4.1 (S-cobordism theorem). (Barden, Mazur, Stallings) Let M1

and M2 be two compact connected manifolds of dimension ≥ 5 if they have empty

boundary, and of dimension ≥ 6 otherwise. Let W be an h-cobordism between M1

and M2. If τ([W,M1]) = 0 in Wh(π1(M1)) then W 'M1×I. In particular M1 '
M2. Furthermore, any element of Wh(π1(M1)) is realized by an h-cobordism.

Remark 3.4.1. An h-cobordism between M1 and M2 with τ([W,M1]) = 0, is

called an s-cobordism between M1 and M2.

Here ' denotes a homeomorphism, a piecewise linear homeomorphism or a
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diffeomorphism according as the manifolds are topological, piecewise linear or

smooth respectively.

4. Known results on K̃0(−), Wh(−) and L∗(−)

Now we come to results about computing the invariants we encountered so far,

namely the reduced projective class group, the Whitehead group and the surgery

obstruction groups.

The Whitehead conjecture in K-theory asks if Wh(π) = 0, for any finitely

presented torsion free group. This has been checked for several classes of groups:

for free abelian groups by Bass-Heller-Swan ([1]) ; for free nonabelian groups by

Stallings ([17]); for the fundamental group of any complete nonpositively curved

Riemannian manifold by Farrell and Jones ([5]); for the fundamental group of

finite CAT (0) complexes by B. Hu. ([8]). Waldhausen proved that the Whitehead

group of the fundamental group of any Haken 3-manifold vanishes ([21]). Some

results like Whitehead group of finite groups are also known: Wh(F ) = 0, when F

is a finite cyclic group of order 1, 2, 3, 4 and 6 and Wh(F ) is infinite when F is any

other finite cyclic group. Also Wh(Sn) = 0, here Sn is the symmetric group on n

letters. Below, we show by a little calculation that there is an element of infinite

order in Wh(Z5). In fact this group is infinite cyclic, but that needs a difficult

proof and we do not talk about it here.

Lemma 4.0.1. There exists an element of infinite order in Wh(Z5).

Proof. Let t be the generator of Z5. Let a = 1− t− t−1. Then

(1− t− t−1)(1− t2 − t3) = 1− t− t−1 − t2 + t3 + t− t3 + t−1 + t2 = 1.

Hence a is a unit in Z[Z5]. Define α : Z[Z5] → C by sending t to e2πi/5. Then

α sends {±g | g ∈ Z5} to the roots of unity in C. Hence x 7→ |α(x)| defines a

homomorphism from Wh(Z5) into R∗+, the nonzero positive real numbers. Next

note the following.

|α(a)| = |1− e2πi/5 − e−2πi/5| = |1− 2cos
2π

5
| ≈ 0.4.

This proves that α defines an element of infinite order in Wh(Z5). �

For Whitehead groups of general finite groups see [13]. We have already seen

that the Whitehead group of the trivial group is trivial. Next simplest question is

what is Wh(C), where C is the infinite cyclic group? Well, this has already been

computed by G. Higman in 1940 even before Whitehead group was defined.

Theorem 4.0.1 ([7]). The Whitehead group of the infinite cyclic group is trivial.

The proof is also given in [4]. One can ask for generalization of this result

in two possible directions; namely, what is Wh(Fr) and Wh(Cn)? Here Fr is

the non-abelian free group on r generators and Cn is the abelian free group on n

generators. This question has been answered completely.
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Theorem 4.0.2 ([17]). Let G1 and G2 be two groups and let G1 ∗ G2 denotes

their free product. Then Wh(G1 ∗ G2) is isomorphic to Wh(G1) ⊕Wh(G2) and

K̃0(G1 ∗G2) is isomorphic to K̃0(G1)⊕ K̃0(G2).

Using Higman’s result we get the following important corollary.

Corollary 4.0.1. Wh(Fr) = 0.

Theorem 4.0.3 ([1]). Wh(Cn) = 0.

We have already mentioned before the following result.

Theorem 4.0.4 ([21], [5], [8]). Let M be one of the following spaces: a com-

pact Haken 3-manifold, a complete nonpositively curved Riemannian manifold or

a finite CAT (0)-complex. Then Wh(π1(M)) = K̃0(Z[π1(M)]) = 0.

An important result relating Whitehead group and the reduced projective

class group is the Bass-Heller-Swan formula.

Theorem 4.0.5 ([1]). Let G be a finitely generated group. Then

Wh(G× C) 'Wh(G)⊕ K̃0(Z[G])⊕N ⊕N,
where N is some Nil-group.

Theorem 4.0.3 is, in fact, a corollary of the above formula.

As we are mostly interested in showing the vanishing of the Whitehead group

we do not recall the definition of the group N . For details see [15].

The following two corollaries are now easily deduced.

Corollary 4.0.2. K̃0(Z[Cn]) = 0.

Corollary 4.0.3. K̃0(Z[Fr]) = 0.

It is also known that K̃0(Z[G]) of any finite group G is finite. See [18].

The surgery L-groups involves extremely complicated algebra. We recall here

only the computation for the non-abelian free groups, which also gives the com-

putations for the trivial group and the infinite cyclic group.

Theorem 4.0.6 ([3]). Let Fm be a free group on m generators. Then Ln(Fm) =

Z,Zm,Z2,Zm2 for n = 4k, 4k + 1, 4k + 2, 4k + 3 respectively.
5. Open problems

Finally, to end this article we state the well known conjectures we already

mentioned in this article. These conjectures are still open.

Conjecture 1. (W. C. Hsiang) K̃0(Z[G]) of any torsion free group G vanishes.

Conjecture 2. (J. H. C. Whitehead) The Whitehead group of any torsion free

group vanishes.

Note that, using Bass-Heller-Swan formula it follows that Conjecture 2 implies

Conjecture 1.

Conjecture 3. (A. Borel) Two aspherical closed manifolds are homeomorphic if

their fundamental groups are isomorphic.

We should mention here that the above conjectures are already known for a

large class of groups. We will discuss this in a future article. To explain these

groups we need to describe many other concepts which have not been covered

here.
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