Harmonic measures on Bowditch boundaries of groups hyperbolic relative to virtually nilpotent subgroups

Debanjan Nandi

Based on - arXiv:2112.08284v2

Weizmann Institute of Science

March 21, 2022

Main objects

- Relatively hyperbolic groups.
 - Finite free products of finitely generated groups, Hyperbolic groups, geometrically finite Kleinian groups.
 - $\mathbb{Z}^2 * \mathbb{Z}^2$ is *not* a hyperbolic group, but hyperbolic *relative* to two subgroups isomorphic to \mathbb{Z}^2 .
 - $PSL_2(\mathbb{Z}) \simeq \mathbb{Z}_2 * \mathbb{Z}_3$ is hyperbolic. The COGENT poster shows a different rel. hyp. structure, giving the modular surface.
- The Bowditch boundaries.
 - Top spaces associated to relatively hyperbolic pairs.
- Markov chains on graphs.
 - Green function. Martin boundary. Harmonic measure. Green metric.
 - Drift. Green drift. Entropy.

Hyperbolic metric space (X, ρ)

Defined using Gromov product

$$(x|y)_z = \frac{1}{2} \cdot (\rho(x,z) + \rho(y,z) - \rho(x,y)).$$

• If geodesic: δ -thin property and

$$|(x|y)_z - \mathsf{dist}_\rho(z,[x,y])| \lesssim_\delta 1.$$

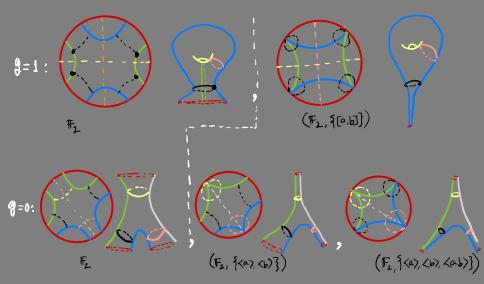
ullet X proper: ∂X with visual topology and metric

$$\{d_{\epsilon} \approx e^{-\epsilon \cdot (\cdot|\cdot)_x}, \ 0 < \epsilon < \epsilon_0(\delta)\}$$

• $\mathsf{Isom}(X)$ " \longrightarrow "QS(∂X), (for us QI(X)" \longleftrightarrow "QS(∂X))

Relatively hyperbolic group

• Consider the free group $\mathbb{Z} * \mathbb{Z}$ and its actions on \mathbb{H}^2 .



Some motivation...

- $\Gamma \curvearrowright (X, \rho)$ non-elementary, isometrically, properly discontinuously and say, geom. finitely.
- Busemann function: $z \mapsto \beta_z(\cdot, \cdot)$. $\beta_z(x, y) = \rho(x, z) \rho(y, z)$.
- Acc. pts. of $\{\beta_{z_n}(x,y)\}_n$ are within bounded distance of each other, but limit need not exist.
- Is there a hyp. metric in $\mathrm{QI}(\rho)$ such that the limit exists? (cocycles are useful).
- Does the metric have a well-behaved quasiconformal density? (relation to certain dynamical and 'Diophantine approximation' questions).

Some motivation...

- For Cayley graphs of hyperbolic groups, Blachère-Haïssinsky-Mathieu
 using work of Ancona on RWs on hyperbolic graphs proposed the
 use of a Green metric and proved several results on asymptotic
 objects associated to RWs in Cayley graphs.
- The harmonic measure is by definition a conformal density wrt the Green metric and by an argument of Sullivan the harmonic measure of such walks is Ahlfors-Regular wrt the corresponding visual metric.
- ullet Pushing forward an RW on Γ to a MC on X can not work unless the action is cocompact, since such a Green metric is QI to the word metric under reasonable assumptions on the walk.

Relations between the objects (arXiv:2112.08284v2)

- (Γ, \mathcal{H}) rel. hyp. \mathcal{H} -vir. nil. $\Gamma \curvearrowright X_{\Gamma}$ cusp uniform.
- $\partial_H(X_{\Gamma}, \rho_G) \simeq \partial_M(X_{\Gamma}, P) \simeq \partial(X_{\Gamma}, \rho_X) \simeq \partial_B(\Gamma, H)$.
- ν A.R (uniform const.); μ -Doubling (const. varies with basepoint).
- $\lim_{n\to\infty} \frac{1}{n} \cdot \mathbb{E}[\rho_X(Y_0, Y_n)] = l$, $\lim_{n\to\infty} \frac{1}{n} \cdot \mathbb{E}[\rho_G(Y_0, Y_n)] = l_G$,

$$\lim_{n \to \infty} \frac{1}{n} \cdot \mathbb{E}\left[-\log p^{(n)}(Y_0, Y_n)\right] = h;$$

- $h \leq lD_{\Gamma}$.
- $\dim \nu = \frac{l_G}{\epsilon l} = \frac{h}{\epsilon l}$, $\dim \mu = \frac{D_{\Gamma}}{\epsilon}$.

Relatively hyperbolic group

- \bullet Γ group is (nice) rel. hyp. if f.g. and
- ullet if \exists finitely many f.g subgroups $\mathcal{H}:=H_1,\ldots,H_s$
- for which:
 - ullet proper, hyperbolic metric space X, such that
 - ullet Γ acts properly discontinuously and isometrically on X, and
- cusp-uniformly:
 - there is a Γ -equivariant collection of disjoint open horoballs on whose complement the action is cocompact and
 - ullet the H_i represent conjugacy classes of corresponding maximal parabolic subgroups.

Bowditch boundary

- If $\Gamma \curvearrowright X$ cusp-uniformly, the Bowditch boundary $\partial_B(\Gamma, \mathcal{H})$ of the pair (Γ, \mathcal{H}) is the visual boundary ∂X with the visual topology.
- $\partial_B(\Gamma, \mathcal{H})$ is a QI-invariant for the pair (Γ, \mathcal{H}) .
- Two cusped spaces need not be QI.
- For a QI-inv. metric/QS structure on $\partial_B(\Gamma,\mathcal{H})$, consider cusped-spaces of constant horospherical distortion (Healy–Hruska). All such (Γ,\mathcal{H}) -cuped-spaces are QI equivalent and this gives a metric/QS structure to $\partial_B(\Gamma,\mathcal{H})$. We will mean this space by the Bowditch boundary of (Γ,\mathcal{H}) .
- An example we will discuss is a construction of Groves-Manning.

X-valued Markov chains

- X=(V,E) is some graph. $X=(X,d,\lambda=\sum_{x\in X}\delta_x)$.
- \bullet A real non-negative matrix P with row sum one (stochastic). A probability \overline{m} in X.
- Random variables $\{Y_i\}_{i\in\mathbb{N}_0}$ with values in X.
 - $\mathbb{E}_{\overline{m}}[\chi_{Y_{i+1}^{-1}} \mid \sigma(Y_i)]$ and $\sigma(Y_0, \dots, Y_{i-1})$ are independent.
 - $\mathbb{E}_{\overline{m}}[\chi_{Y_{i+1}^{-1}\{y\}} \mid \sigma(Y_i)] = p(Y_i, y).$
- $\mathbb{P}_{\overline{m}}[Y_n = y] = \sum_{x_0, \dots, x_{n-1}} \overline{m}(x_0) \cdot \prod_{i=0}^{n-2} p(x_i, x_{i+1}) \cdot p(x_{n-1}, y).$
- Use Γ to choose a P, when X has a nice Γ -action by automorphisms of X.

X-valued Markov chains

- Example: If μ is a probability on Γ (support generates Γ), then $p(x,gx)=\mu(g)$, defines Γ -invariant Markov chains in X. (Furstenberg)
- Example: Any stochastic matrix P, such that p(gx,gy)=p(x,y), for all $g\in \Gamma$

Green metric 1

- P and 'heat flow'.
 - $\sum_{y} p^{(n)}(x,y) = 1.$
 - $p^{(n)}(x,y)$ probability of going $x \to y$, in *n*-steps.

- Green function $(x,y) \mapsto G(x,y)$: Total heat received by $y \in X$ when diffused from a unit of heat sourced at x.
 - $G(x,y) = \sum_{n=0} p^{(n)}(x,y)$. Finiteness \iff Transience.
- \bullet Idea: Larger $G(x,y) \iff$ smaller 'distance' between x and y wrt the interactions.
 - Identity: $\frac{G(x,y)}{G(y,y)} \cdot \frac{G(y,z)}{G(z,z)} \leqslant \frac{G(x,z)}{G(z,z)}$
 - Green's metric: $\rho_G(x,y) = -\log \frac{G(x,y)}{G(x,y)}$.
- (P related to ρ_X) \sim (ρ_G related to ρ_X) ?

Martin boundary and Harmonic measure for transient walk

- $K_y(x,z) = \frac{G(x,z)}{G(y,z)}$, for $x,y,z \in X$.
- Given $y \in X$, $z \mapsto K_y(\cdot, z)$ is an embedding from X to S_y , the space of positive superharmonic functions, assuming one at the point y.
- The Martin compactification $X \cup \partial_M X$ is the closure of $X \subset \mathcal{S}_y$ with respect to the compact-open topology in \mathcal{S}_y , and the boundary $\partial_M X$ is called the Martin boundary. For a sequence $\{z_n\}_n \subset Y$, the limit $\xi = \lim_n z_n \in \partial_M Y$, is denoted $K(\cdot, \xi) = \lim_n K(\cdot, z_n)$.

Martin boundary and Harmonic measure for transient walk

• Martin representation formula: given $f\geqslant 0$ harmonic, there is a unique Borel measure μ_u^f in $\underline{\partial}_M X$, such that for all $x\in Y$,

$$f(x) = \int_{\underline{\partial}_M Y} K_y(x, \xi) \, d\mu_y^f(\xi).$$

• Martin convergence theorem: for any $x \in X$, for the Markov chain (X,P), \mathbb{P}_x -a.e path, $Y_n \xrightarrow{n \to \infty} X_\infty$, where Y_∞ is a $\underline{\partial}_M X$ -valued random variable with distribution

$$\nu_x(E) := \mathbb{P}_x[X_{\infty} \in E] = \int_E K_y(x,\xi) \, d\mu_y^1(\xi),$$

 μ_y^1 being the measure corresponding to the constant harmonic function one

Martin boundary and Harmonic measure for transient walks

• For all $x, y, z \in X$,

$$\nu_y = \mu_y^1 \quad \text{and} \quad \frac{d\nu_x}{d\nu_z}(\xi) = \frac{K_y(x,\xi)}{K_y(z,\xi)} = K_z(x,\xi), \quad \text{for } \nu_z\text{-a.e } \xi \in \underline{\hat{\varrho}}_M X,$$

- Markov property/Harmonicity: $\nu_x = \sum_y p(x,y) \cdot \nu_y$.
- Martin boundary is the Busemann boundary of the Green metric: $x \mapsto (z \mapsto \rho_G(x, z) \rho_G(y, z)).$

Earlier work

- Random walks on groups with hyperbolic properties and on hyperbolic graphs, have been studied extensively.
 - Ancona, Kaimanovich, Ledrappier, LePrince, Gouezel, Gouezel-Lalley...
 - Dussaule, Dussaule-Gekhtman-Gerasimov-Potyagailo, Gekhtman-Gerasimov- Potyagailo-Yang...
 - Kaimanovich, Kaimanovich-Woess, Connell-Muchnik, Maher-Tiozzo, Gekhtman-Tiozzo, Tanaka...
 - Varopoulos...
- The type of our results overlap the most with those in the work of Blachère-Haïssinsky-Mathieu.
- A lot is known but the area is still developing and a lot is not known.

Basic result

 \bullet $\mathcal{D}(X)$ is the set of quasiruled quasigeodesic metrics QI to the graph metric.

Theorem

Let Γ be a finitely-generated non-elementary relatively hyperbolic group with finitely-generated parabolic subgroups $\mathcal{P}=\{H_i\}_{i=1}^l$. Let $X=X_\Gamma$ be its cusped graph. Then the following are equivalent:

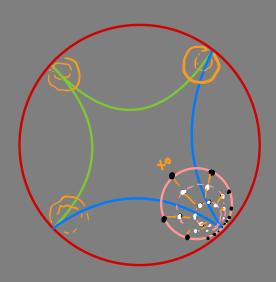
- there exists a random walk on X with Martin boundary as the Bowditch boundary of Γ such that the harmonic measure is an Ahlfors-regular, Γ -equivariant conformal density associated to a metric in $\mathcal{D}(X)$;
- H_i for $i \in \{1, ..., l\}$, are virtually nilpotent.
- Next we define the graph and mention steps in the proof.

Groves-Manning graph $X = X_{\Gamma}$

$$V_{\Gamma} = \left(\Gamma \times \{0\}\right) \, \bigsqcup_{i=1}^l \left(\bigcup_{g \in \Gamma} g H_i \times \mathbb{N} \right).$$

- The edge set $E_{\Gamma} \subset V_{\Gamma} \times V_{\Gamma}$ contains pairs of the following types:
 - $((g,0),(g',0)) \in E_{\Gamma}$ if and only if (g,g') is an edge in $Cay(\Gamma,S)$,
 - for $n \in \mathbb{N}_0$, $g \in \Gamma$ and $h, h' \in H_i$ for some $i \in \{1, \dots, l\}$, $((gh, n), (gh', n)) \in E_{\Gamma}$ if and only if $d_{(\Gamma, S)}(h, h') \leq a^n$.
 - for $n \in \mathbb{N}_0$, $g \in \Gamma$ and $h, h' \in H_i$ for some $i \in \{1, \dots, l\}$, $((gh, n), (gh', n+1)) \in E_{\Gamma}$ if and only if $d_{(\Gamma, S)}(h, h') \leqslant a^{n+1}$.
- Has to have unbounded and exponentially increasing degree.

Groves-Manning graph



The space (X, ρ_X, m)

- For above X, $(X, \rho_X, \lambda) \longrightarrow (\mathbb{H}^2, \rho_{\mathbb{H}^2}, vol_{\mathbb{H}^2})$. QI but not volume preserving.
- Define an $m: X \to (0, \infty)$, $(X, \rho_X, m) \longrightarrow (\mathbb{H}^2, \rho_{\mathbb{H}^2}, vol_{\mathbb{H}^2})$ is (quasi) vol. preserving.
- Total heat $G(\cdot,y)$ through y can be very small even if it is close to the source in ρ_X , for example if y has many neighbours to share it with.
- We'll make a correction for this.

An X-valued reversible Markov chain (X, P, m)

Write d for the graph distance in $Cay(\Gamma, S)$ and g_H for growth of H. With data as above, define $m: X \to (0, \infty)$ and $P = (p(x, y))_{x,y \in X}$ as follows:

- $m((g,0)) = m_0$
- $m((g,n)) = \frac{c_n}{q_H(a^n)}$ for $n \in \mathbb{N}$,
- for $g \sim g'$ in $Cay(\Gamma)$,

$$p((g,0),(g',0)) = \frac{1}{p} \cdot \frac{1}{\deg(Cay(\Gamma))},$$

• for $g' \in gH$ where $d(g,g') \leqslant a^{n+1}$ in $Cay(\Gamma)$ and $n \geqslant 0$,

$$p((g, n+1), (g', n)) = \frac{1}{q_n \cdot g_H(a^{n+1})}.$$

• for $g' \in gH$ where $d(g, g') \leqslant a^{n+1}$ in $Cay(\Gamma)$ and $n \geqslant 0$,

$$p((g,n),(g',n+1)) = \frac{1}{p_n \cdot g_H(a^{n+2})}.$$

• for $g' \in gH$, $n \in \mathbb{N}$ the remaining probability for jump starting at (g,n) is distributed among neighbours of (g,n) in $m^{-1}(\{m((g,n))\})$ in any Γ -invariant way (for example, uniformly).

Spectrum of the Markov operator: $\rho(P)$

- Reversible: $m(x) \cdot p(x,y) = m(y) \cdot p(y,x)$.
 - $Pf(x) = \sum_{y} p(x, y) \cdot f(y)$.
 - $\|P\|_{\ell^2(X)}=\|P_m\|_{\ell^2(X,m)}$, where $f\mapsto f/\sqrt{m}$ from $\ell^2(Y)\to \ell^2(Y,m)$.
 - P_m is symmetric. Then $\rho(P_m) = \|P_m\|_{\ell^2(X,m)}$, but $\rho(P) = \rho(P_m)$.
- Strong Isoperimetric inequality for $(X, P, m) \iff \rho(P) < 1$.
- Strong IS: $\exists \kappa > 0$, such that for all finite sets E,

$$m(E) \leqslant \kappa \cdot \sigma_{P,m}(\partial E).$$

Transition kernel

• Triangle inequality:

$$\frac{G(x,y)}{G(y,y)} \cdot G(y,z) \leqslant G(x,z),$$

for all x, y, z.

 Ancona inequality used by Ancona to identify the Martin boundary as the visual boundary in suitable hyperbolic graphs:

$$C^r \cdot \frac{G(x,y)}{G(y,y)} \cdot G(y,z) \gtrsim G(x,z),$$

for $\operatorname{dist}(y,[x,z]) \leqslant r$.

Transition kernel

• Simple computation (reversibility + doubling): Lower bound

$$p^{(\rho_X(x,y)+1)}(x,y) \geqslant m(y) \cdot \lambda^{\rho_X(x,y)},$$

 $0 < \lambda < 1$.

- Have $p^{(n)}(x,x) \leqslant \rho(P)^n \to 0$.
 - Need $p^{(n)}(x,x) \lesssim m(x) \cdot \rho(P)^n$.
- $p^{(n)}(x,x)/m(x)$ almost subadditive (doubling $+ \Gamma$ -invariance) $\Longrightarrow p^{(n)}(x,x) \lesssim m(x) \cdot \rho(P)^n$.

Harnack inequality

These lead to the Harnack inequalities.

Lemma

The following hold:

- If $x, y, z \in X$, and $x \neq y$, then $G(x, y) \leq C^{\rho_X(x, z)} \cdot G(z, y)$.
- For $x, y \in X$, $m(x) \cdot G(x, x) \leqslant C^{\rho_X(x,y)} \cdot G(y, x)$
- For u positive, P-superharmonic, and $x, y \in X$, $m(x) \cdot u(x) \leqslant C^{\rho_X(x,y)} \cdot u(y)$.

Corollary

If u is a non-negative P-harmonic function, then there exists $C\geqslant 1$ such that $u(x)\leqslant C^{\rho_X(x,y)}\cdot u(y)$.

Green metric 2

• Modify the Green metric $ho_G(x,y) = -\log G_m(x,y)$ where

$$G_m(x,y) = \begin{cases} \frac{G(x,y)}{C \cdot m(y)} & x \neq y \\ 1 & x = y. \end{cases}$$

suitable constant C > 0.

• Follows from Harnack inequalities and a triangle inquality

$$\frac{G(x,y)}{m(y)\cdot G(y,y)}\cdot \frac{G(y,z)}{G(z,z)}\lesssim \frac{G(x,z)}{G(z,z)}.$$

• Ancona inquality given Harnack and triangle inequalities for G:

There exist constants $C_0, C \ge 1$ such that for $x, y, z \in X$ with ${\rm dist}_X(y, [x, z]) \le r$, we have

$$G(x,z) \lesssim C^{2r} \cdot \frac{G(x,y)}{m(y)} \cdot G(y,z),$$
 (1)

for any geodesic [x, z] joining x, z.

• $\Gamma \subset \mathsf{Isom}(X, \rho_G)$.

Martin boundary and conformality of ν

- Both G and G_m give the same Busemann functions (and Busemann boundary) but second ρ_G is hyperbolic and QI to ρ_X (Harnack inequalities).
- Ancona inequality $\Longrightarrow \partial X = \partial_M X$, as a homeomorphic extension of the embedding $z \mapsto (x \mapsto K(x,z))$.
- Conformality: For the harmonic measures $\{\nu_x\}_{x\in X}$, we get for ν_x -a.e $\xi\in\partial X$,

$$\frac{d\nu_y}{d\nu_x}(\xi) = e^{-\beta_{\xi}^G(y,x)}.$$

Shadow lemmas

Lemma (Shadow lemma for ν)

There exists $R_{\nu} > 0$, such that for any $x \in X$, $r \geqslant R_{\nu}$, so that for all $y \in X$,

$$\nu_x(S_G(x, B_G(y, r))) \approx_r e^{-\rho_G(x, y)}$$
.

• $D_{\Gamma} := \limsup_{n \to \infty} \frac{1}{n} \cdot \log(\#(\Gamma \cap B_X(e, n))).$

Lemma (Shadow lemma for μ)

There exists $R_{\mu} > 0$, such that for any $x \in X$, $r \geqslant R_{\mu}$, so that for all $y \in X$,

$$\mu_x(S(x, B(y, r))) \approx_r e^{(d_H \cdot \log a - D_\Gamma) \cdot \rho_X(y, \Gamma)} \cdot e^{-D_\Gamma \cdot \rho_X(x, y)}.$$

Two immediate consequences

- The total energy through a point in a horoball of higher rank is lower in comparison:
 - the Green function inside a horoball only depends on the rank of the corresponding parabolic subgroup H:

$$|\rho_G(x,y) - d_H \cdot \log a \cdot \rho_X(x,y)| \leqslant C,$$
 for some $C = C(X,P,m) > 0.$

• $D_{\Gamma} > \frac{d_H}{2} \cdot \log a$.

Growth

• $W_G(n,r)=$ set of nearest points in $\Gamma\subset X$ to e, of cosets in an annulus of width r at distance $n\cdot r$.

Lemma

There exists $R_X > 0$ such that, for any $x \in \Gamma$, U any ball in $(\partial X, d_G)$, and $n \in \mathbb{N}$ large

$$\#\{g \in W_G(n, R_X) \mid S_G(x, B_G(\gamma, R_X)) \cap U \neq \emptyset, \} \approx e^{n \cdot R_X} \cdot \nu_x(U),$$

and if U is a ball in $(\partial X, d_X)$, for n large enough,

$$\#\{g \in W_G(n, R_X) \mid S_X(x, B_G(\gamma, R_X)) \cap U \neq \emptyset, \} \approx e^{n \cdot D_{\Gamma} \cdot R_X} \cdot \mu_x(U),$$

Tracking

Lemma

Let $x \in X$. Let $k \in \mathbb{N}$. Then for any D > 0,

$$\mathbb{P}_x[\rho_G(Y_k, \gamma^{x, Y_\infty}) \geqslant D] \leqslant C \cdot e^{-D},$$

for some C > 0. In particular, \mathbb{P}_x -a.e $\omega \in X^{\mathbb{N}}$,

$$\limsup_{n\to\infty}\frac{\rho_G\big(Y_n(\omega),\gamma^{x,Y_\infty(\omega)}\big)}{\log n}\leqslant 1.$$

• Same for (ρ_X, μ) (by QI).

Cusp-excursions

Lemma

We have for $x \in X$.

$$\nu_x\left(\left\{\gamma^x_\infty\in\partial X\;\middle|\;\limsup_{t\to\infty}\frac{\rho_G(\gamma^x(t),\Gamma)}{\log t}=1\right\}\right)=1,$$

and

$$\mu_x\left(\left\{\gamma_\infty^x\in\partial X\;\middle|\;\limsup_{t\to\infty}\frac{\rho_X(\gamma^x(t),\Gamma)}{\log t}=\frac{1}{2\cdot D_\Gamma-d_H\cdot\log a}\right\}\right)=1.$$

where γ_x is any (X, ρ_X) -geodesic ray starting at X (the first limit is on times where $\gamma^x(t) \in V_\Gamma$).

Ergodic aspects

$$\bullet \ X^{\mathbb{N}_0} \longrightarrow \Gamma \backslash X \times X^{\mathbb{N}}.$$

•
$$\mathbb{P}_m = \sum_{z \in X} m(z) \cdot \mathbb{P}_z \longrightarrow \mathbb{P}'_{\overline{m}} = \sum_{n \in \mathbb{N}_0} m((e, n)) \cdot \mathbb{P}_{(e, n)}.$$

Ergodicity..generators

• Pick a connected set of X (containing e; exists by connectedness of the graph) as the set of representatives of $\Gamma \backslash X$, namely $\{e\} \times \mathbb{N}_0$. Then

$$\begin{split} S_X &= \left\{ y \in X \ | \ p(x,y) \neq 0, \, x \in \Gamma \backslash X \right\} \\ &= \left\{ (s,n) \in \Gamma \times \mathbb{N}_0 \ \middle| \begin{array}{l} s \in B_\Gamma(e,a), \text{ if } n = 0 \text{ and,} \\ \\ s \in B_H(e,a^{n+1}), \text{ if } n \in \mathbb{N}. \end{array} \right\} \end{split}$$

ullet For this walk, S_X generates X as a semigroup under

$$(g,n)*(g',n') = (gg',n').$$

Ergodicity.. Markov shift

•
$$T(\{(s_1^{(n_1)}, n_1), \dots, (s_k^{(n_k)}, n_k), \dots\}) = \{(s_2^{(n_2)}, n_2), \dots, (s_{k+1}^{(n_{k+1})}, n_{k+1}), \dots\}.$$

•
$$\mathbb{P}_{\overline{m}}(\{\omega \mid X_i(\omega) = (s_i, n_i), 1 \leq i \leq k\})$$

$$= \sum_{(e,n) \in \Gamma \backslash X} \overline{m}((e,n)) \cdot p((e,n), (s_1^{(n_1)}, n_1)) \cdot \prod_{j=1}^{k-1} p((e,n_j), (s_{j+1}^{(n_{j+1})}, n_{j+1})).$$

•
$$\overline{m}((e,k)) = \frac{m((e,k))}{\sum_{n \in \mathbb{N}_0} m((e,n))}$$
.

This left-shift is mixing.

Ergodicity..two-sided shift

- $(\partial X, \Gamma, \mu)$ and $(\partial X, \Gamma, \nu)$ are ergodic.
- $(\partial X \times \partial X, \Gamma, \mu \times \mu)$, $(\partial X \times \partial X, \Gamma, \nu \times \nu)$ are ergodic.

•
$$\omega = \{\dots, (s_{-i}^{-1}, n_{-i}), \dots (s_{-1}^{-1}, n_{-1}), (e, n_0), (s_1, n_1), \dots, (s_j, n_j), \dots \},$$

$$T(\omega) = \{\dots, (s_{-i}^{-1}, n_{-i}), \dots (s_{-1}^{-1}, n_{-1}), (s_1^{-1}, n_0), (e, n_1), (s_2, n_2), \dots (s_j, n_j), \dots \},$$

- $(\Omega, \tilde{\mathbb{P}}_{\overline{m}}) \longrightarrow (\partial X \times \partial X, \sum_{n \in \mathbb{N}_0} \overline{m}((e, n)) \cdot \nu_{(e, n)} \otimes \nu_{(e, n)}).$
 - Convex combination of the harmonic measures.
 - $\omega \mapsto (Z_{-\infty}(\omega), Z_{\infty}(\omega)).$

Drift, Entropy

Theorem

For $\{Y_i\}_{i\in\mathbb{N}_0}$, a process corresponding to (X,P,m) the following limits exist and are constants \mathbb{P}_m -a.e $\omega\in X^\mathbb{N}$:

$$(\textit{drift}) \qquad \lim_{n \to \infty} \frac{\rho_X(Y_0(\omega), Y_n(\omega))}{n} =: l,$$

$$(\textit{Green drift}) \qquad \lim_{n \to \infty} \frac{\rho_G(Y_0(\omega), Y_n(\omega))}{n} =: l_G,$$

$$(\textit{asymptotic entropy}) \quad \lim_{n \to \infty} \frac{-\log \, p^{(n)}(Y_0(\omega), Y_n(\omega))}{n} =: h.$$

Relations

Proposition

- $c \cdot l \leq h \leq l \cdot D_{\Gamma}$.
- $h = l \cdot D_{\Gamma}$ iff:
 - $\nu \approx \mu$.
 - $|\rho_G D_{\Gamma} \cdot \rho_X| \lesssim 1$.
- $h = l_G = \int_{\Omega_1 \times \partial X} \beta_{\xi}^G(X_1(\omega)^{-1}, (e, n_{X_2(\omega)})) d\nu_{X_2(\omega)}(\xi) d\mathbb{P}_{\overline{m}}(\omega).$

Corollary

If $h=l\cdot D_\Gamma \implies$ then all the parabolic subgroups have rank $=D_\Gamma/\log a.$

Dimension

Theorem

We have for the harmonic measure ν_x supported in ∂X ,

$$\lim_{r\to 0} \frac{\log(\nu_x(B^X_\infty(\xi,r)))}{\log r} = \frac{l_G}{\epsilon_X \cdot l}, \quad \lim_{r\to 0} \frac{\log(\nu_x(B^G_\infty(\xi,r)))}{\log r} = \frac{1}{\epsilon_G},$$

and

$$\lim_{r\to 0}\frac{\log(\nu_x(B^X_\infty(\xi,r)))}{\log r}=\frac{h}{\epsilon_X\cdot l},\quad \lim_{r\to 0}\frac{\log(\nu_x(B^G_\infty(\xi,r)))}{\log r}=\frac{h}{\epsilon_G\cdot l_G}.$$

For the Patterson-Sullivan density μ of (Γ, X) , we have

$$\lim_{r\to 0}\frac{\log(\mu_x(B_\infty^X(\xi,r)))}{\log r}=\frac{D_\Gamma}{\epsilon_X}.$$

Thank You!