GOA, FEBRUARY 2016

DIOPHANTINE APPROXIMATION ON TRANSLATION SURFACES

$$\alpha \in \mathbb{R}, p, q \in \mathbb{Z}$$

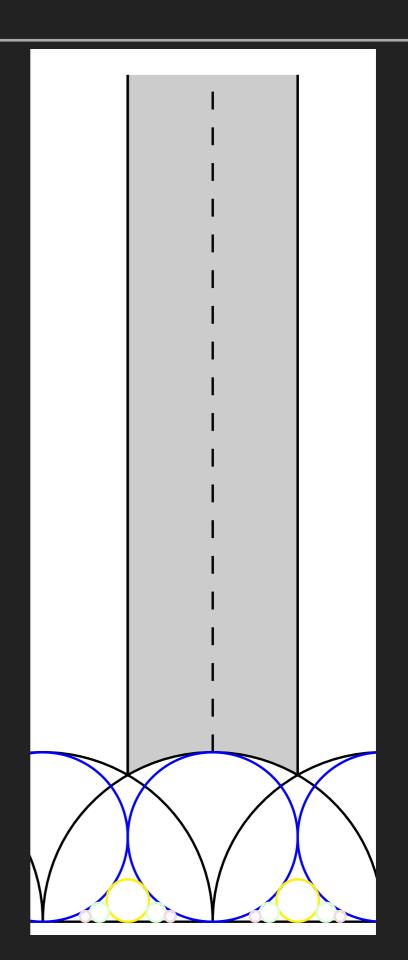
$$\left| \alpha - \frac{p}{q} \right| < \psi(q)$$

Classical Diophantine Approximation

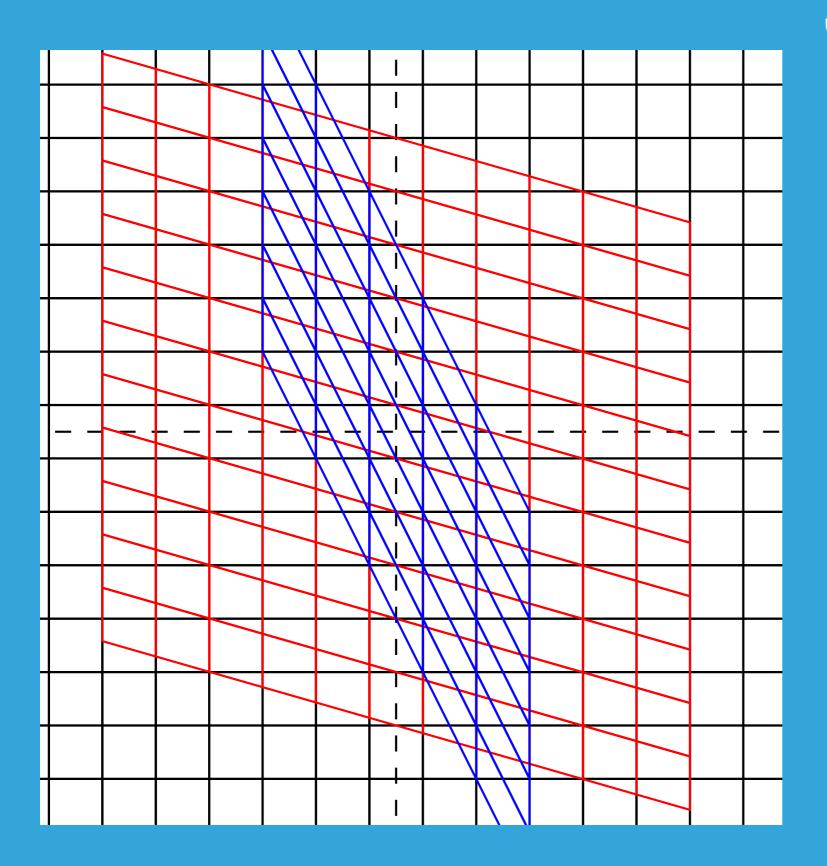
LATTICES

- For a geometer, this is a statement about the geometry of (a family of) lattices.
- In particular, this is a family of shears of the standard integer lattice.

$$\Lambda_{\alpha} = \begin{pmatrix} 1 & -\alpha \\ 0 & 1 \end{pmatrix} \mathbb{Z}^2$$



SHEARING



- A typical vector in Λ_{lpha} has the form $\left(egin{array}{c} p-qlpha \\ q \end{array}
 ight)$
- So asking to solve the inequality

$$\left| \alpha - \frac{p}{q} \right| < \psi(q)$$

Is the same as finding lattice points

$$\begin{pmatrix} x \\ y \end{pmatrix} \in \Lambda_{\alpha} \text{ such that } |x| < y\psi(y)$$

1/31/2016

CLASSICAL EXAMPLE

$$\psi(y) = \frac{1}{y^2}$$

PIGEONHOLE PRINCIPLE

APPROXIMATIONS AND PROBABILITY

Fix
$$\psi$$
, vary α

infinitely many solutions

measure/hdim of set of alpha

Fix
$$\alpha$$
, vary ψ

infinitely many solutions

diophantine exponent of alpha

$$\psi(y) = A/y \text{ solutions in range } \\ \text{cN < q< dN}$$

limit measure as N grows

$$\psi(y) = A/N \begin{array}{c} \text{solutions in range} \\ \text{cN} < \text{q} < \text{dN} \end{array}$$

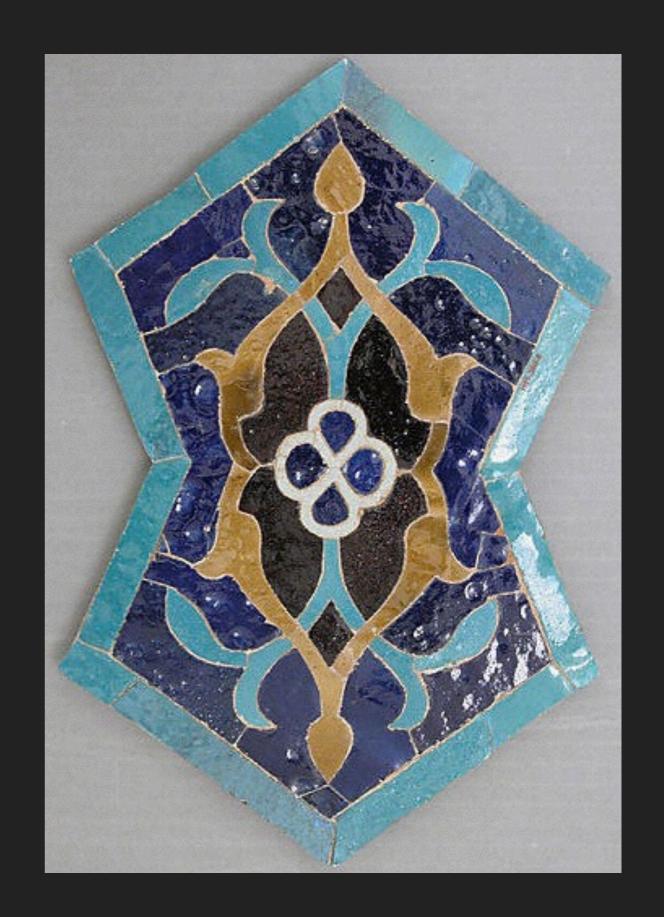
limit measure as N grows

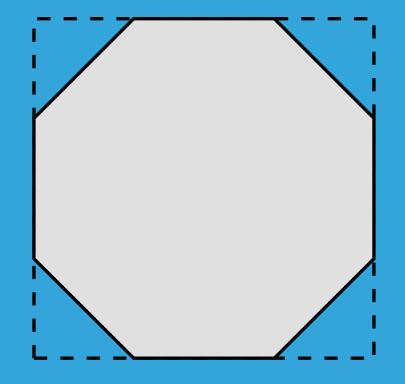
HOW DO WE GENERALIZE?

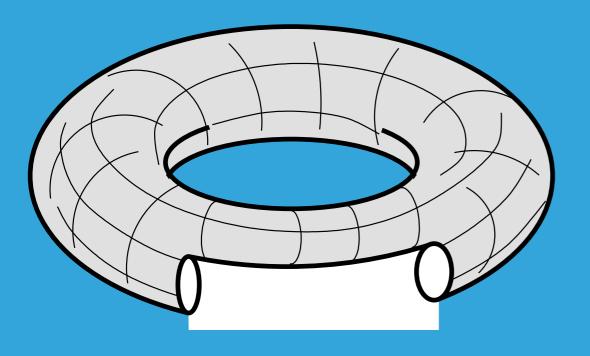
ALSO, HOW DO WE SOLVE?

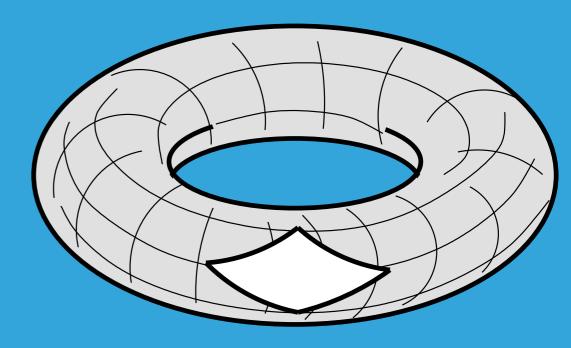
HIGHER DIMENSION/GENUS

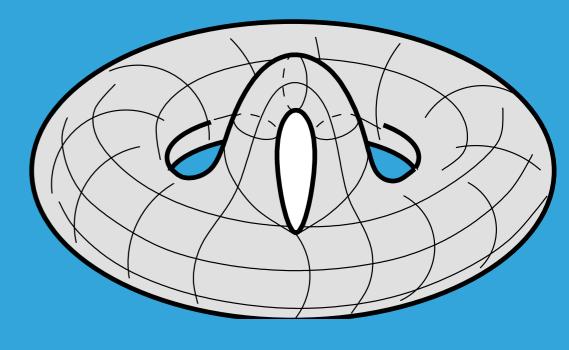
- A lattice Λ yields a flat torus \mathbb{C}/Λ .
- Higher-dimensional Diophantine approximation, related to higherdimensional lattices (or flat tori).
- Higher genus (flat) surfaces.
- A flat torus is a parallelogram with parallel sides identified by translation.
- A translation surface is a general Euclidean polygon with parallel sides identified by translation.











Cutting Sequences on the Double Pentagon

A Mathematical Theorem

from the

Ph.D. thesis

of

Diana Davis

- Translation surfaces of genus at least 2 have isolated cone type singularities, with angles integer multiples of 2π .
- The order of a singularity is a measure of the excess angle. A singular point has order k if the angle is $2\pi(k+1)$.
- In complex analytic terms, we obtain a Riemann surface X and a holomorphic one-form w. Singular points of order k are zeros of w of order k.

SADDLE CONNECTIONS

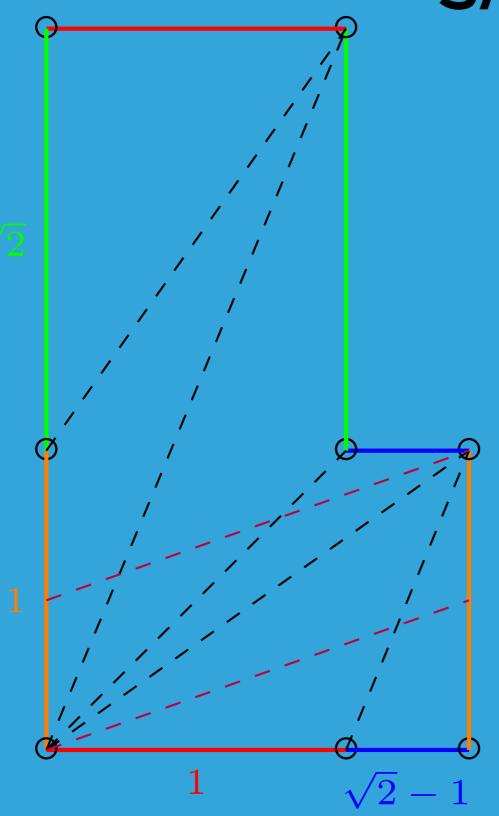
straight line trajectory connecting two zeros

HOLONOMY VECTORS

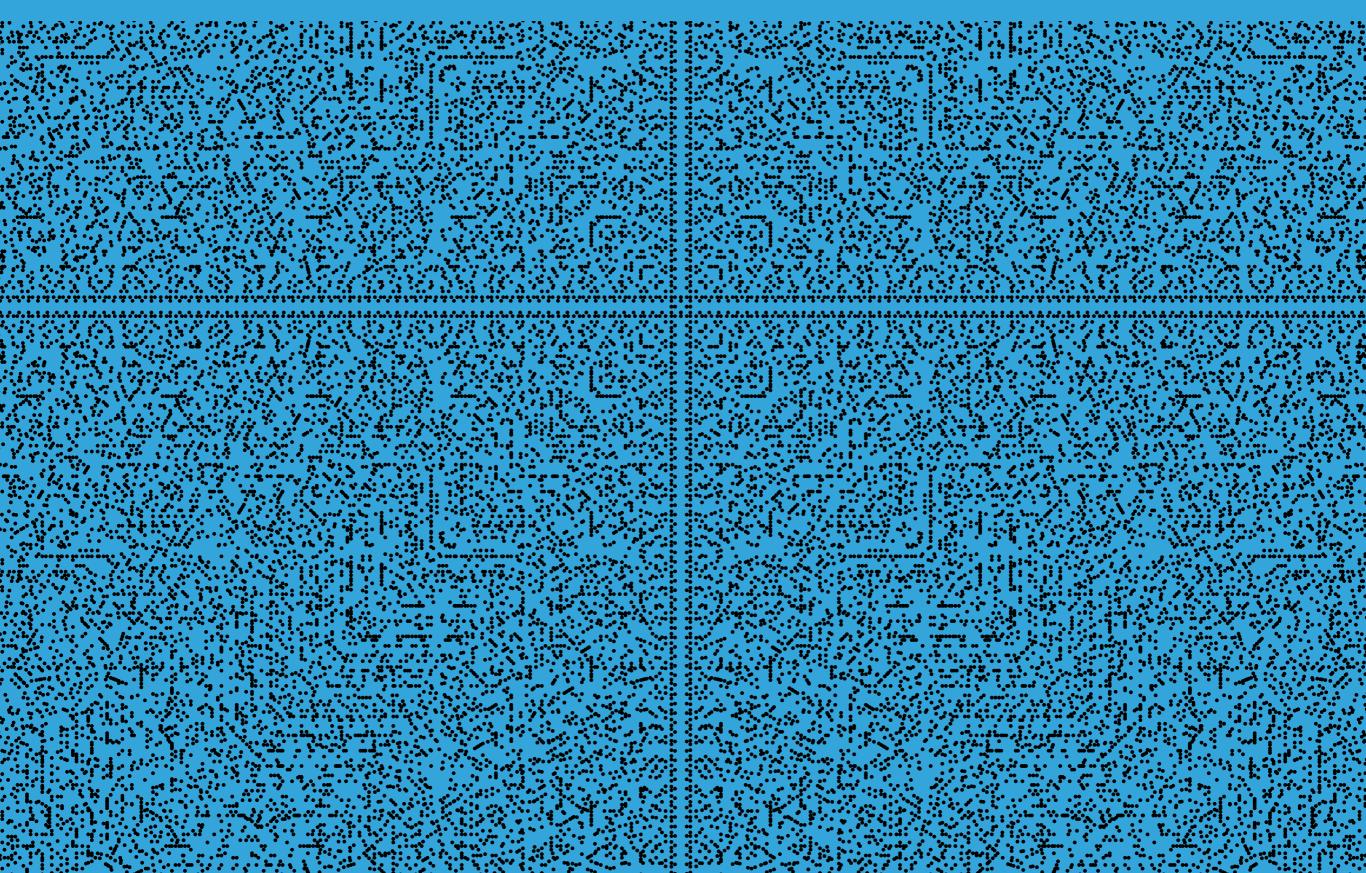
To each saddle connection, we associate a holonomy vector

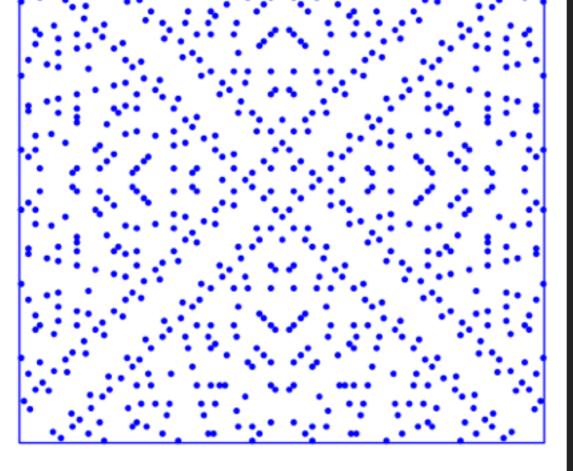
$$\gamma \longmapsto \int_{\gamma} \omega \in \mathbb{C}$$

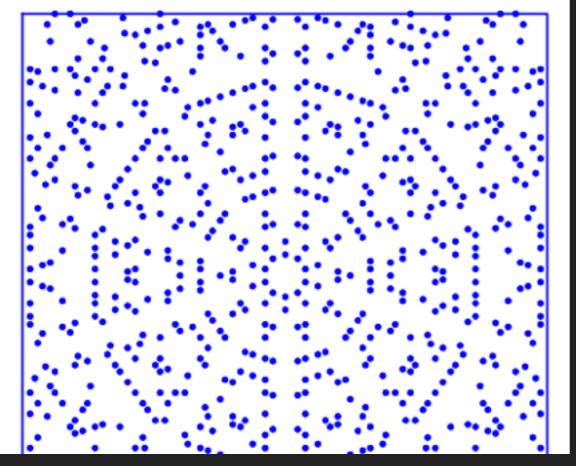
The set of holonomy vectors of the surface (X, w) is denoted (X, w)



THE SET OF HOLONOMY VECTORS IS DISCRETE







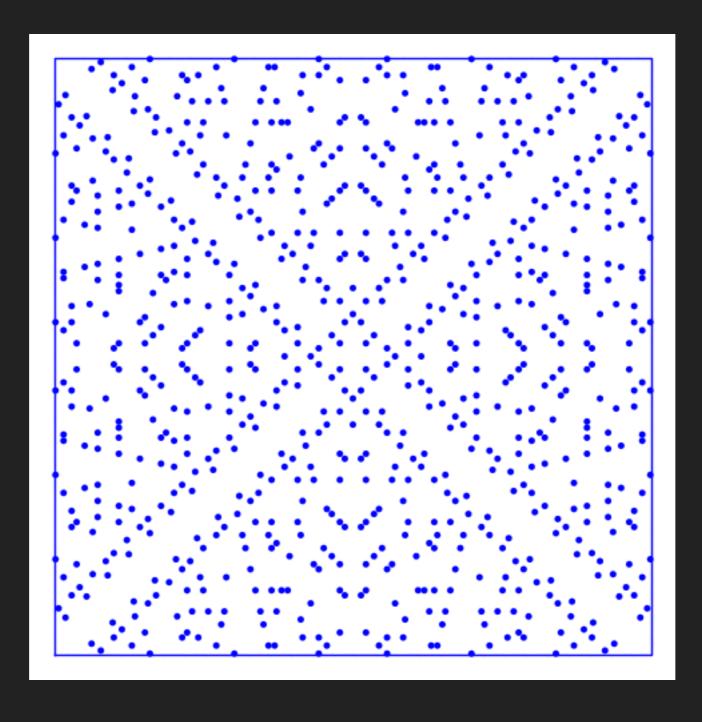
SL(2, R) ACTS ON THE SPACE OF TRANSLATION SURFACES

LINEAR ACTION ON POLYGONS

ERGODIC ABSOLUTELY CONTINUOUS INVARIANT MEASURE

HOLONOMY VECTORS VARY EQUIVARIANTLY

$$\Lambda_{g\omega} = g\Lambda_{\omega}$$



SADDLE CONNECTION HOLONOMIES HAVE QUADRATIC GROWTH.

Masur, Veech, Eskin-Masur, Vorobets

UNDERSTANDING SADDLE CONNECTIONS

- How well does this set approximate lines?
- Are there analogues of classical Diophantine results?
- What is the (fine scale) distribution of directions?

REVISITING THE CLASSICAL SETTING

- A typical vector in Λ_{α} has the form $\begin{pmatrix} p-q\alpha\\q\end{pmatrix}$
- So asking to solve the inequality

$$\left| \alpha - \frac{p}{q} \right| \le q^{-\nu}$$

Is the same as finding lattice points

$$\begin{pmatrix} x \\ y \end{pmatrix} \in \Lambda_{\alpha} \text{ such that } |x| < |y|^{-(\nu-1)}$$

▶ The diophantine exponent is the supremum of values with infinitely many solutions.

DIOPHANTINE EXPONENT OF A TRANSLATION SURFACE

$$\sup \left\{ \nu : \begin{pmatrix} x \\ y \end{pmatrix} \in \Lambda_{\omega} \text{ such that } |x| < |y|^{-(\nu-1)} \text{ has infinitely many solutions } \right\}$$

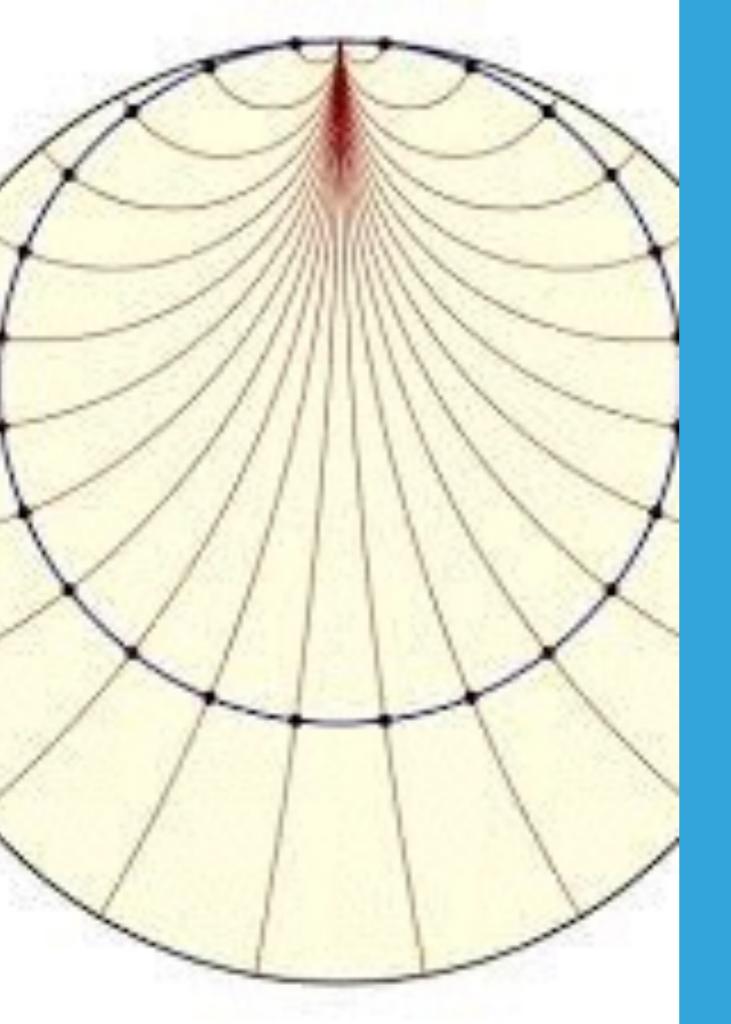
$$:=\mu(\omega)$$

HOW WELL CAN YOU APPROXIMATE THE VERTICAL DIRECTION?

- Space X (moduli space of lattices, translation surfaces), SL(2, R) equivariant assignment of discrete set Λ_x in the plane.
- For x in X,

$$\ell(x) = \min\{||v|| : v \in \Lambda_x\}$$

$$\alpha(x) = \max\{||v||^{-1} : v \in \Lambda_x\}$$



$$g_t = \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}$$

$$h_s = \begin{pmatrix} 1 & 0 \\ -s & 1 \end{pmatrix}$$

For translation surfaces, lattices, and other discrete equivariant assignments

EXPONENTS AND ORBITS

$$\limsup_{t \to \infty} \frac{\log \alpha(g_t x)}{t} = 1 - \frac{1}{\mu(x)}$$
$$\limsup_{|s| \to \infty} \frac{\log \alpha(h_s x)}{\log |s|} = \frac{1}{2} - \frac{1}{\mu(x)}$$

CUSP EXCURSIONS ON PARAMETER SPACES, JLMS

WHEN DO VECTORS GET SHORT?

- A geodesic orbit of a vector is shortest when the components of the vector become equal.
- A horocycle orbit of a vector is shortest when the vector becomes horizontal.
- The arguments generalize to higher dimensions, subspaces, matrices, etc.
- Measure estimates + Borel-Cantelli imply that for almost every translation surface, the diophantine exponent is 2.

DISTRIBUTION OF APPROXIMATES

Given an object x, what is the distribution of vectors v in the associate discrete set satisfying $|v_1||v_2| < A$

$$N < |v_2| < cN$$

Here, A>0, c>1.

- Special case: suppose $h_1x=x$
- Consider the measure

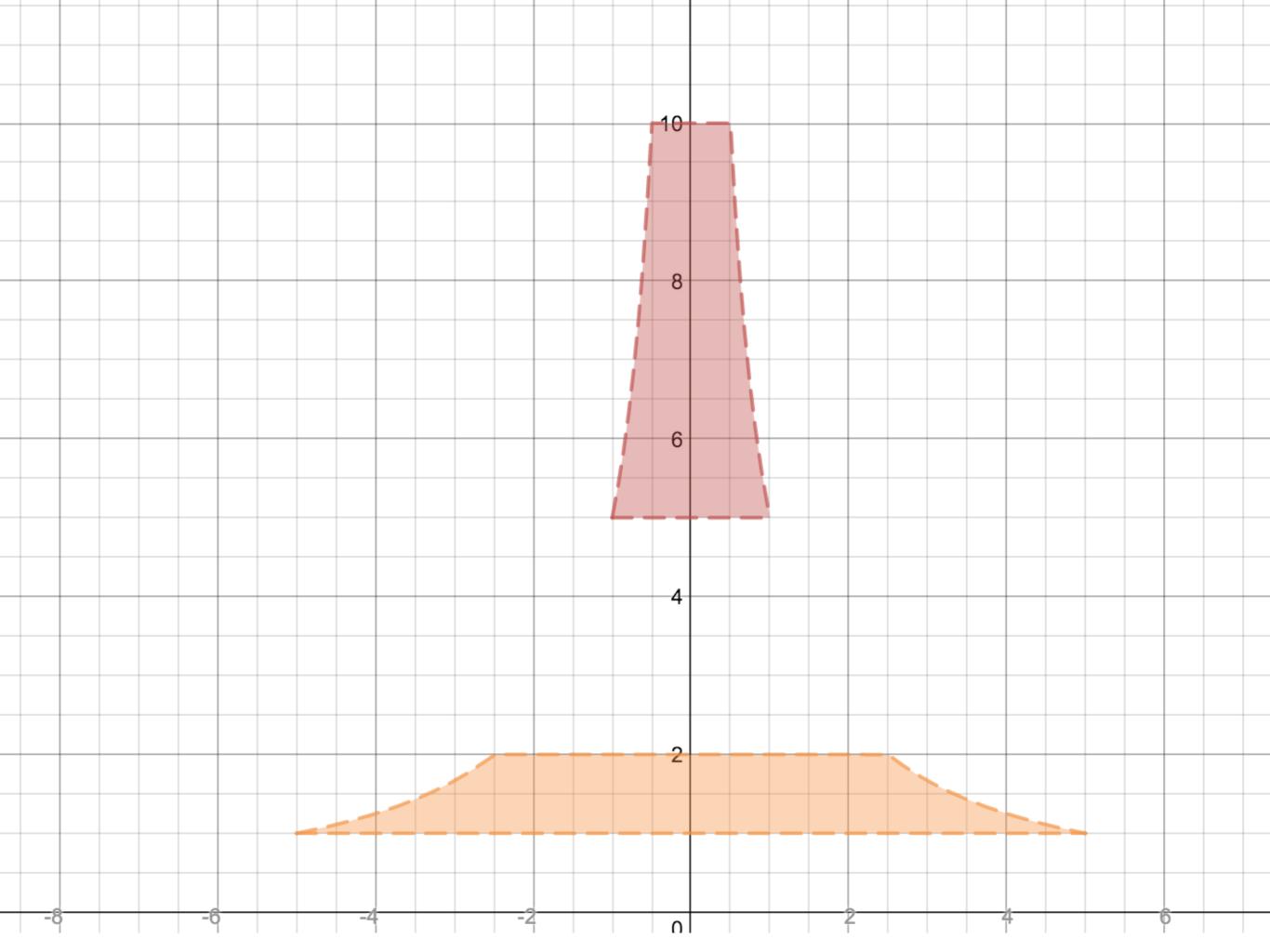
$$|\{\alpha: \# (\Lambda_{h_{\alpha}x} \cap R_{A,c,N}) = k\}|$$

$$R_{A,c,N} = \{(v_1, v_2) \in \mathbb{R}^2 : |v_1||v_2| < A, N < v_2 < CN\}$$

Does this have a limit as N grows?

K=0 STUDIED EXTENSIVELY

PAUL TURAN AND VERA SOS

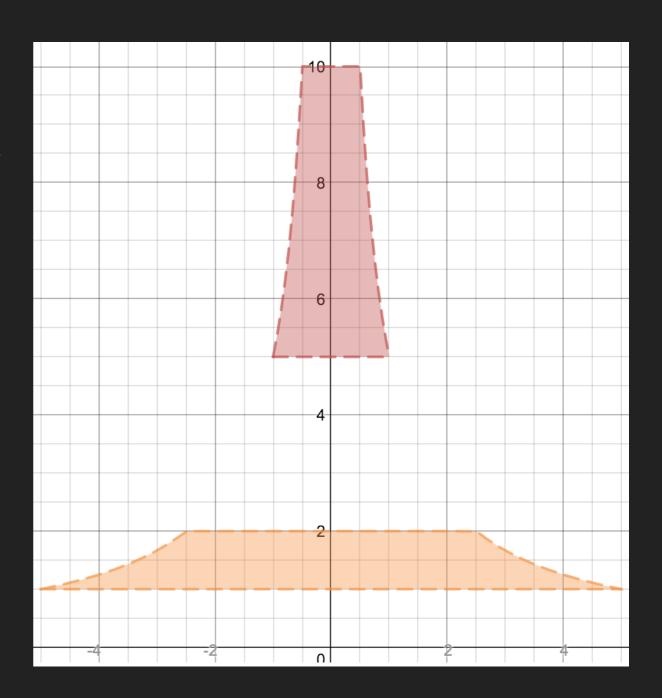


TRANSLATES OF HOROCYCLES

$$g_{\log N} R_{A,c,N} = R_{A,c,1}$$

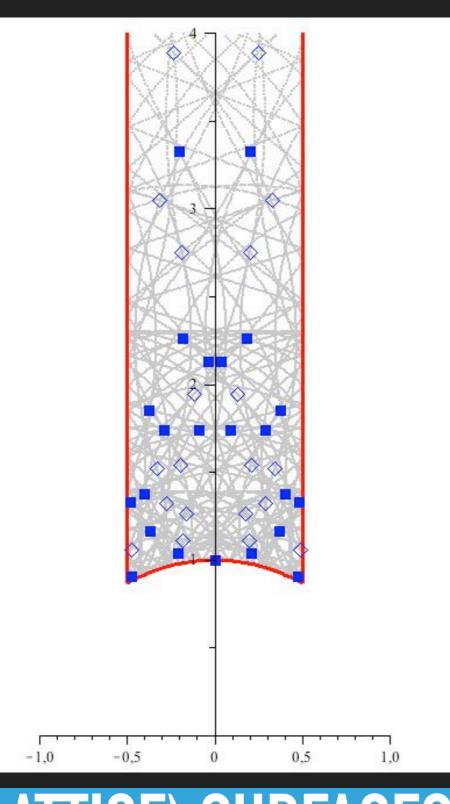
$$# (\Lambda_{h_{\alpha}x} \cap R_{A,c,N}) =$$

$$# (g_{\log N} \Lambda_{h_{\alpha}x} R_{A,c,1})$$



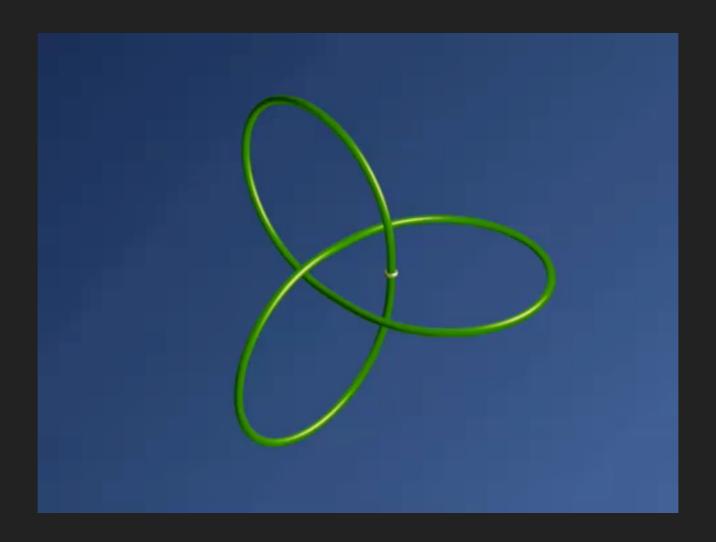
Reduces to limiting distribution of $d\alpha$ on $\{g_{\log N}h_{\alpha}x:0\leq\alpha\leq1\}$ in X

IN MANY SETTINGS. THESE LONG **CLOSED** HOROCYCLES EQUIDISTRIBUTE WITH RESPECT TO SOME **NATURAL** MEASURE.



TRANSLATION SURFACES. UNDERSTANDING THE LIMIT MEASURE IS A DEEP QUESTION.

FOR SPECIAL (LATTICE) SURFACES, REDUCES TO THE HYEPRBOLIC SETTING.



GENERALIZATION TO EQUIVARIANT PROCESSES, APPLICATIONS TO DIOPHANTINE PROBLEMS IN MANY CONTEXTS

A.-Ghosh-Taha, forthcoming

QUESTIONS/CONJECTURES

- Khintchin's theorem for translation surfaces (shrinking target property for geodesic flow on space of translation surfaces).
- Duffin-Schaefer for translation surfaces.
- Applications to approximation in algebraic number fields.