C. S. Seshadri Memorial Lectures Standard Monomials

Peter Littelmann Universität zu Köln

August 11, 2020

Seshadri's interpretation of STANDARD MONOMIAL THEORY started in 1978 with the following article:

Geometry of G/P-I
Theory of Standard Monomials for
Minuscule Representations

By C.S. Seshadri

$$p_{\tau_1} p_{\tau_2} \dots p_{\tau_m} \in H^0(G/P, L^m)$$

is standard if $\tau_1 \leqslant \tau_2 \leqslant \ldots \leqslant \tau_m$ (cf. Def. 1). Then the main result of this paper is the following (cf. . Th. 1):

Standard monomials of length m, which are distinct, form a basis of $H^0(G/P, L^m)$, $m \ge 0$. P minuscule.

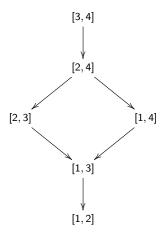
It is proved that this result holds also in arbitrary characteristic.

When G = SL(n), every maximal parabolic subgroup is minuscule. In this case, when the base field k is of characteristic zero, (*) is due

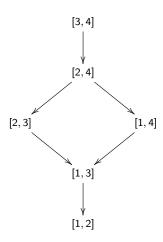
245

Inclusions of Schubert varieties

 \mathbb{K} algebraically closed

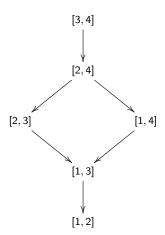


Inclusions of Schubert varieties



 \mathbb{K} algebraically closed algebraic group $SL_4(\mathbb{K})$ weights - one Weyl group orbit weight spaces - one dimensional

Inclusions of Schubert varieties

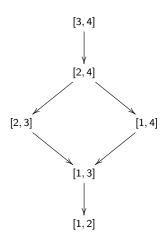


 \mathbb{K} algebraically closed

algebraic group $SL_4(\mathbb{K})$ weights - one Weyl group orbit weight spaces - one dimensional dual space - Plücker coordinates $p_{1,2}, p_{1,3}, p_{1,4}, p_{2,3}, p_{2,4}, p_{3,4}$

Plücker coordinates generate homogeneous coordinate ring of $G_{2,4}$.

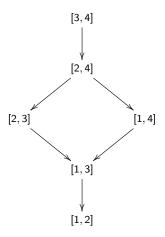
Inclusions of Schubert varieties



product of Plücker coordinates:

$$p_{i_1,j_1}\cdots p_{i_\ell,j_\ell}=\left|egin{array}{c} i_1 & \cdots & i_\ell \ \hline j_1 & \cdots & j_\ell \end{array}
ight|$$

Inclusions of Schubert varieties



product of Plücker coordinates:

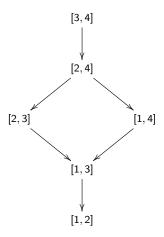
$$p_{i_1,j_1}\cdots p_{i_\ell,j_\ell}= rac{i_1 \cdots i_\ell}{j_1 \cdots j_\ell}$$

standard monomial

Young tableau (semi-) standard

$$[i_1, j_1] \geq [i_2, j_2] \geq \cdots \geq [i_\ell, j_\ell]$$

Inclusions of Schubert varieties



product of Plücker coordinates:

$$p_{i_1,j_1}\cdots p_{i_\ell,j_\ell} = \begin{bmatrix} i_1 & \cdots & i_\ell \\ j_1 & \cdots & j_\ell \end{bmatrix}$$

standard monomial

Young tableau (semi-) standard

$$[i_1,j_1]\geq [i_2,j_2]\geq \cdots \geq [i_\ell,j_\ell]$$

can be adapted to Grassmann variety $G_{d,n}$.

Grassmann variety $G_{d,n} \hookrightarrow \mathbb{P}(\Lambda^d \mathbb{K}^n)$

Theorem The standard monomials form a basis of the homogeneous coordinate ring of the Grassmann variety $G_{d,n}$.

The basis is compatible with Schubert varieties. I.e. the standard monomials which do not vanish identically on a Schubert variety, they form a basis for the homogeneous coordinate ring of the Schubert variety.

WHAT IS STANDARD MONOMIAL THEORY

Grassmann variety $G_{d,n} \hookrightarrow \mathbb{P}(\Lambda^d \mathbb{K}^n)$

Theorem The standard monomials form a basis of the homogeneous coordinate ring of the Grassmann variety $G_{d,n}$.

The basis is compatible with Schubert varieties. I.e. the standard monomials which do not vanish identically on a Schubert variety, they form a basis for the homogeneous coordinate ring of the Schubert variety.

Consequence: Schubert varieties are defined linearly.

Grassmann variety $G_{d,n} \hookrightarrow \mathbb{P}(\Lambda^d \mathbb{K}^n)$

Theorem The standard monomials form a basis of the homogeneous coordinate ring of the Grassmann variety $G_{d,n}$.

The basis is compatible with Schubert varieties. I.e. the standard monomials which do not vanish identically on a Schubert variety, they form a basis for the homogeneous coordinate ring of the Schubert variety.

Consequence: Schubert varieties are defined linearly.

Char $\mathbb{K} = 0$: Hodge (1943) (inspired by Young).

Char $\mathbb{K} = p > 0$: Musili (1972).

Both proofs use Plücker relations, describing $G_{d,n} \hookrightarrow \mathbb{P}(\Lambda^d \mathbb{K}^n)$

Seshadri's approach:

G simply connected, simple algebraic group, P maximal parabolic, ϖ minuscule fundamental weight,

$$G/P \hookrightarrow \mathbb{P}(V(\varpi)), \quad R = \bigoplus_{n \geq 0} H^0(G/P, \mathcal{L}_{n\varpi})$$

minuscule: weights = one Weyl group orbit

Seshadri's approach:

G simply connected, simple algebraic group, P maximal parabolic, ϖ minuscule fundamental weight,

$$G/P \hookrightarrow \mathbb{P}(V(\varpi)), \quad R = \bigoplus_{n \geq 0} H^0(G/P, \mathcal{L}_{n\varpi})$$

minuscule: weights = one Weyl group orbit generalized Plücker coordinates $p_{ au} \in H^0(G/P, \mathcal{L}_{\varpi}), \ au \in W/W_P$

Seshadri's approach:

G simply connected, simple algebraic group, P maximal parabolic, ϖ minuscule fundamental weight,

$$G/P \hookrightarrow \mathbb{P}(V(\varpi)), \quad R = \bigoplus_{n \geq 0} H^0(G/P, \mathcal{L}_{n\varpi})$$

minuscule: weights = one Weyl group orbit generalized Plücker coordinates $p_{\tau} \in H^0(G/P, \mathcal{L}_{\varpi}), \ \tau \in W/W_P$ monomial $p_{\tau_1} \cdots p_{\tau_\ell}$ standard iff $\tau_1 \geq \cdots \geq \tau_\ell$ (Bruhat order)

Seshadri's approach:

G simply connected, simple algebraic group, P maximal parabolic, ϖ minuscule fundamental weight,

$$G/P \hookrightarrow \mathbb{P}(V(\varpi)), \quad R = \bigoplus_{n \geq 0} H^0(G/P, \mathcal{L}_{n\varpi})$$

minuscule: weights = one Weyl group orbit generalized Plücker coordinates $p_{\tau} \in H^0(G/P, \mathcal{L}_{\varpi}), \ \tau \in W/W_P$ monomial $p_{\tau_1} \cdots p_{\tau_\ell}$ standard iff $\tau_1 \geq \cdots \geq \tau_\ell$ (Bruhat order)

Theorem: standard monomials form a basis of R, compatible with Schubert varieties. I.e. $H^0(G/P, \mathcal{L}_{n\varpi}) \to H^0(X(\tau), \mathcal{L}_{n\varpi})$ is surjective, not identically vanishing standard monomials remain linearly independent.

Seshadri's approach:

G simply connected, simple algebraic group, P maximal parabolic, ϖ minuscule fundamental weight,

$$G/P \hookrightarrow \mathbb{P}(V(\varpi)), \quad R = \bigoplus_{n \geq 0} H^0(G/P, \mathcal{L}_{n\varpi})$$

minuscule: weights = one Weyl group orbit generalized Plücker coordinates $p_{\tau} \in H^0(G/P, \mathcal{L}_{\varpi}), \ \tau \in W/W_P$ monomial $p_{\tau_1} \cdots p_{\tau_\ell}$ standard iff $\tau_1 \geq \cdots \geq \tau_\ell$ (Bruhat order)

Theorem: standard monomials form a basis of R, compatible with Schubert varieties. I.e. $H^0(G/P, \mathcal{L}_{n\varpi}) \to H^0(X(\tau), \mathcal{L}_{n\varpi})$ is surjective, not identically vanishing standard monomials remain linearly independent.

NEW STRATEGY: NO use of global relations

 ${\it G}$ simply connected, simple algebraic group, ${\it Q}$ parabolic, ${\it \lambda}$ dominant weight such that:

$$G/Q \hookrightarrow \mathbb{P}(V(\lambda)), \quad R = \bigoplus_{n \geq 0} H^0(G/Q, \mathcal{L}_{n\lambda})$$

To do: basis $\mathbb B$ of $H^0(G/Q,\mathcal L_\lambda)$ compatible with Schubert varieties indexing system define standard monomials

 ${\it G}$ simply connected, simple algebraic group, ${\it Q}$ parabolic, ${\it \lambda}$ dominant weight such that:

$$G/Q \hookrightarrow \mathbb{P}(V(\lambda)), \quad R = \bigoplus_{n \geq 0} H^0(G/Q, \mathcal{L}_{n\lambda})$$

To do: basis \mathbb{B} of $H^0(G/Q, \mathcal{L}_{\lambda})$ compatible with Schubert varieties indexing system define standard monomials

To prove: standard monomials form a basis of *R*, compatible with Schubert varieties

and to go beyond:

 ${\it G}$ simply connected, simple algebraic group, ${\it Q}$ parabolic, ${\it \lambda}$ dominant weight such that:

$$G/Q \hookrightarrow \mathbb{P}(V(\lambda)), \quad R = \bigoplus_{n \geq 0} H^0(G/Q, \mathcal{L}_{n\lambda})$$

To do: basis \mathbb{B} of $H^0(G/Q, \mathcal{L}_{\lambda})$ compatible with Schubert varieties indexing system define standard monomials

To prove: standard monomials form a basis of *R*, compatible with Schubert varieties

and to go beyond:
"T-equivariant Pieri-Chevalley
formula"

 ${\it G}$ simply connected, simple algebraic group, ${\it Q}$ parabolic, ${\it \lambda}$ dominant weight such that:

$$G/Q \hookrightarrow \mathbb{P}(V(\lambda)), \quad R = \bigoplus_{n \geq 0} H^0(G/Q, \mathcal{L}_{n\lambda})$$

To do:

basis \mathbb{B} of $H^0(G/Q, \mathcal{L}_{\lambda})$ compatible with Schubert varieties indexing system define standard monomials

To prove:

standard monomials form a basis of *R*, compatible with Schubert varieties

and to go beyond:

"T-equivariant Pieri-Chevalley formula"

Aims:

Vanishing of higher cohomology

(projective) normality of Schubert varieties

Cohen-Macaulayness of the multicone over Schubert varieties

Singular locus of Schubert varieties

Character formulae

Behaviour of unions and intersections of Schubert varieties

Applications to GIT

Some comments

omitted the multicone case for simplicity

Strategy: the term *standard monomial* is used in Groebner theory too, (and there is no contradiction, i.e. for an appropriate choice of a monomials order . . .) but the strategy is different.

Some comments

omitted the multicone case for simplicity

Strategy: the term *standard monomial* is used in Groebner theory too, (and there is no contradiction, i.e. for an appropriate choice of a monomials order . . .) but the strategy is different.

Together with his collaborators, Lakshmibai and Musili, Seshadri developed a machinery to construct a standard monomial theory by increasing induction via chains of Schubert varieties.

Suppose
$$G/Q \hookrightarrow \mathbb{P}(V(\lambda))$$
, for $\tau \in W/W_Q$ let

$$p_{\tau} \in H^0(G/Q, \mathcal{L}_{\lambda})$$
, of weight $-\tau(\lambda)$ extremal weight vector, generalized Plücker coordinate

multiplication by this section

$$0 \longrightarrow \mathcal{O}_{X(\tau)}(\mathcal{L}_{(n-1)\lambda})) \xrightarrow{\cdot \rho_{\tau}} \mathcal{O}_{X(\tau)}(\mathcal{L}_{n\lambda})) \to \mathcal{O}_{H_{\tau}}(\mathcal{L}_{n\lambda})) \to 0$$

This sequence plays a special role:

$$0 \longrightarrow \mathcal{O}_{X(\tau)}(\mathcal{L}_{(n-1)\lambda}) \xrightarrow{\cdot p_{\tau}} \mathcal{O}_{X(\tau)}(\mathcal{L}_{n\lambda}) \to \mathcal{O}_{H_{\tau}}(\mathcal{L}_{n\lambda}) \to 0$$

Set theoretically, $H_{\tau}=X(\tau)\cap\{p_{\tau}=0\}$ is the union of all codimension one Schubert varieties. If H_{τ} is reduced, then by passing to the long exact cohomology sequence one sees how the increasing induction works.

This sequence plays a special role:

$$0 \longrightarrow \mathcal{O}_{X(\tau)}(\mathcal{L}_{(n-1)\lambda}) \xrightarrow{\cdot p_{\tau}} \mathcal{O}_{X(\tau)}(\mathcal{L}_{n\lambda}) \to \mathcal{O}_{H_{\tau}}(\mathcal{L}_{n\lambda}) \to 0$$

Set theoretically, $H_{\tau}=X(\tau)\cap\{p_{\tau}=0\}$ is the union of all codimension one Schubert varieties. If H_{τ} is reduced, then by passing to the long exact cohomology sequence one sees how the increasing induction works.

Crucial part for the other cases: to define a filtration of $\mathcal{O}_{H_{\tau}}(\mathcal{L}_{n\lambda})$.

This sequence plays a special role:

$$0 \longrightarrow \mathcal{O}_{X(\tau)}(\mathcal{L}_{(n-1)\lambda}) \xrightarrow{\cdot p_{\tau}} \mathcal{O}_{X(\tau)}(\mathcal{L}_{n\lambda}) \to \mathcal{O}_{H_{\tau}}(\mathcal{L}_{n\lambda}) \to 0$$

Set theoretically, $H_{\tau}=X(\tau)\cap\{p_{\tau}=0\}$ is the union of all codimension one Schubert varieties. If H_{τ} is reduced, then by passing to the long exact cohomology sequence one sees how the increasing induction works.

Crucial part for the other cases: to define a filtration of $\mathcal{O}_{H_{\tau}}(\mathcal{L}_{n\lambda})$.

For n=1: filtration of $\mathcal{O}_{X(\tau)}(\mathcal{L}_{\lambda}) \rightsquigarrow$ sum of structure sheaves $\mathcal{O}_{X(\kappa)}$. The construction leads, step by step, to a basis of $H^0(X(\tau),\mathcal{L}_{\lambda})$ and an indexing system for the basis by sequences of Weyl group elements and rational numbers, for example, for all classical type groups, E_6, G_2 .

This sequence plays a special role:

$$0 \longrightarrow \mathcal{O}_{X(\tau)}(\mathcal{L}_{(n-1)\lambda}) \xrightarrow{\cdot p_{\tau}} \mathcal{O}_{X(\tau)}(\mathcal{L}_{n\lambda}) \to \mathcal{O}_{H_{\tau}}(\mathcal{L}_{n\lambda}) \to 0$$

Set theoretically, $H_{\tau}=X(\tau)\cap\{p_{\tau}=0\}$ is the union of all codimension one Schubert varieties. If H_{τ} is reduced, then by passing to the long exact cohomology sequence one sees how the increasing induction works.

Crucial part for the other cases: to define a filtration of $\mathcal{O}_{H_{\tau}}(\mathcal{L}_{n\lambda})$.

For n=1: filtration of $\mathcal{O}_{X(\tau)}(\mathcal{L}_{\lambda}) \rightsquigarrow$ sum of structure sheaves $\mathcal{O}_{X(\kappa)}$. The construction leads, step by step, to a basis of $H^0(X(\tau),\mathcal{L}_{\lambda})$ and an indexing system for the basis by sequences of Weyl group elements and rational numbers, for example, for all classical type groups, E_6, G_2 .

In its most general form (even Kac-Moody groups) an indexing system was formulated as a conjecture by Lakshmibai. The conjecture has been proved, and the system is called the set of *Lakshmibai-Seshadri paths*, it turned out to be a special class within a combinatorial tool now called path models for representations.

The problem of constructing a standard monomial theory was solved by Seshadri and his collaborators for many cases using this filtration as a tool (for example all classical type groups). The type free proof I gave in 1998 was by different means (quantum groups at a root of unity), but the existence of this filtration is a very important property.

The problem of constructing a standard monomial theory was solved by Seshadri and his collaborators for many cases using this filtration as a tool (for example all classical type groups). The type free proof I gave in 1998 was by different means (quantum groups at a root of unity), but the existence of this filtration is a very important property.

It leads to very interesting connections of standard monomial theory with equivariant K-theory and representation theory, which were studied by Seshadri and others:

- T-equivariant Pieri-Chevalley formula: $\mathcal{O}_{X(\tau)}(\mathcal{L}_{\lambda})$ admits a filtration \to associated graded $\bigoplus_j \mathcal{O}_{X(\kappa_j)} \otimes \chi_j$; the κ_j , χ_j are determined by Lakshmibai-Seshadri paths; $K_T(G/Q)$ Grothendieck ring of T-equivariant sheaves;
- good filtrations of tensor products; generalization of Littlewood Richardson rule

BACK TO THE CHALLENGE AT THE BEGINNING OF THE INDUCTIVE PROCEDURE

To find a basis of $H^0(G/Q, \mathcal{L}_{\lambda})$: Today have several bases of representations: canonical basis, dual canonical basis, semicanonical basis, MV-cycle basis, standard monomial basis, . . . But at that time? For $G = SL_n$,...

To find an indexing system: Today one has several combinatorial tools: crystal bases, integral points in polytopes and cones (toric degeneration via a cluster variety structure or Newton-Okounkov theory), path model theory . . .

But at that time? For $G = SL_n$,...

BACK TO THE CHALLENGE

Only somebody like Seshadri, with a great vision, an incredible geometric intuition and a fair degree of optimism and humour was able to take up this challenge.

BACK TO THE CHALLENGE

Only somebody like Seshadri, with a great vision, an incredible geometric intuition and a fair degree of optimism and humour was able to take up this challenge.

I remember very well his course on STANDARD MONOMIAL THEORY at Brandeis University in 1983/84. I was a visiting phd student for that year, being one of the note writers for this book. I remember with great pleasure the many meetings I had then with Seshadri. He explaining me the mathematics and, with a fine sense of humour, the up and downs in the development of standard monomial theory.

Seshadri has had a new look at the approach by Hodge, it is time to have a new look at Seshadri's approach. For example, the indexing system (LS-paths) turns up in other contexts: affine buildings, Brownian motion, affine Grassmannian, NO-theory... Let me mention two connections:

LS-paths
 ↔ MV cycle basis: Weyl group combinatoric translates into a parameterization of an open and dense subset of an MV cycle: natural indexing of another basis; finite dimensional flag variety
 ↔ affine Grassmannian;

Seshadri has had a new look at the approach by Hodge, it is time to have a new look at Seshadri's approach. For example, the indexing system (LS-paths) turns up in other contexts: affine buildings, Brownian motion, affine Grassmannian, NO-theory... Let me mention two connections:

- LS-paths
 ↔ MV cycle basis: Weyl group combinatoric translates into a parameterization of an open and dense subset of an MV cycle: natural indexing of another basis; finite dimensional flag variety
 ↔ affine Grassmannian;
- Newton Okounkov theory: chains of Schubert varieties \rightarrow valuations of $R = \bigoplus_{n \geq 0} H^0(G/Q, \mathcal{L}_{n\lambda})$ via successive vanishing multiplicities \rightarrow Newton-Okounkov body: integral points = basis (example: Gelfand-Tsetlin patterns and generalizations by Zhelobenko).

Seshadri has had a new look at the approach by Hodge, it is time to have a new look at Seshadri's approach. For example, the indexing system (LS-paths) turns up in other contexts: affine buildings, Brownian motion, affine Grassmannian, NO-theory... Let me mention two connections:

- LS-paths
 ↔ MV cycle basis: Weyl group combinatoric translates into a parameterization of an open and dense subset of an MV cycle: natural indexing of another basis; finite dimensional flag variety
 ↔ affine Grassmannian;
- Newton Okounkov theory: chains of Schubert varieties \rightarrow valuations of $R = \bigoplus_{n \geq 0} H^0(G/Q, \mathcal{L}_{n\lambda})$ via successive vanishing multiplicities \rightarrow Newton-Okounkov body: integral points = basis (example: Gelfand-Tsetlin patterns and generalizations by Zhelobenko).

Running over all chains + taking minimum \rightarrow quasivaluation, Newton-Okounkov body \rightarrow integral points = LS-paths.

Seshadri has had a new look at the approach by Hodge, it is time to have a new look at Seshadri's approach. For example, the indexing system (LS-paths) turns up in other contexts: affine buildings, Brownian motion, affine Grassmannian, NO-theory... Let me mention two connections:

- LS-paths
 ↔ MV cycle basis: Weyl group combinatoric translates into a parameterization of an open and dense subset of an MV cycle: natural indexing of another basis; finite dimensional flag variety
 ↔ affine Grassmannian;
- Newton Okounkov theory: chains of Schubert varieties \rightarrow valuations of $R = \bigoplus_{n \geq 0} H^0(G/Q, \mathcal{L}_{n\lambda})$ via successive vanishing multiplicities \rightarrow Newton-Okounkov body: integral points = basis (example: Gelfand-Tsetlin patterns and generalizations by Zhelobenko).

Running over all chains + taking minimum \rightarrow quasivaluation, Newton-Okounkov body \rightarrow integral points = LS-paths.

Standard monomials are a perfect section to the associated filtration.

Outlook by Seshadri

A picture from a meeting in Rome

OUTLOOK BY SESHADRI

Quote from "Standard Monomial Theory-A historical account"

In retrospect the proof of SMT in G/P-V could be termed K-theoretic. It would indeed by very nice to have a similar proof of the general SMT \dots

I have felt that a good understanding of SMT would be via a cellular Riemann-Roch formula as the definition of LS paths could be formulated geometrically in terms of the canonical cellular decomposition of G/B. The formulation via B-filtrations and Grothendieck rings seems to provide this approach.

A FEW REFERENCES

- C. S. **Seshadri**, Geometry of G/P I, pp. 207–239, Tata Inst. Fund. Res. Studies in Math., 8, Springer, Berlin-New York, (1978).
- V. Lakshmibai; C. S. **Seshadri**, *Geometry of G/P II*, Proc. Indian Acad. Sci. Sect. A 87, no. 2, 1–54, (1978).
- V. Lakshmibai; C. Musili; C. S. **Seshadri**, *Geometry of G/P III*, Proc. Indian Acad. Sci. Sect. A Math. Sci. 88, no. 3, 93–177, (1979).
- V. Lakshmibai; C. Musili; C. S. **Seshadri**, *Geometry of G/P IV*, Proc. Indian Acad. Sci. Sect. A Math. Sci. 88, no. 4, 279–362, (1979).
- V. Lakshmibai; C. S. **Seshadri**, *Geometry of G/P V*, J. Algebra 100, no. 2, 462–557, (1986).
- C. S. **Seshadri**, *Introduction to the theory of standard monomials*, Second edition. Texts and Readings in Mathematics, 46. Hindustan Book Agency, New Delhi, (2014).
- P. Littelmann; C. S. **Seshadri**, A Pieri-Chevalley type formula for K(G/B) and standard monomial theory, pp. 155–176, Progr. Math., 210, Birkhäuser Boston, Boston, MA, (2003).
- C. S. **Seshadri**, *Standard Monomial Theory-A historical account*, Collected papers of C. S. Seshadri. Volume 2. Schubert geometry and representation theory. Hindustan Book Agency, New Delhi, (2012).

Some further references

where LS-paths and related objects show up...far from being complete!

- N. Bardy-Panse; S. Gaussent; G. Rousseau, Macdonald's formula for Kac-Moody groups over local fields. Proc. Lond. Math. Soc. (3) 119 (2019), no. 1, 135–175.
- P. Baumann, Pierre; S. Gaussent, *On Mirković-Vilonen cycles and crystal combinatorics*. Represent. Theory 12 (2008), 83–130
- P. Biane; P. Bougerol; N. O'Connell, *Littelmann paths and Brownian paths*. Duke Math. J. 130 (2005), no. 1, 127–167.
- R. Chirivì, LS algebras and application to Schubert varieties. Transform. Groups 5 (2000), no. 3, 245–264.
- S. Gaussent; P. Littelmann, One-skeleton galleries, the path model, and a generalization of Macdonald's formula for Hall-Littlewood polynomials. Int. Math. Res. Not. IMRN 2012, no. 12, 2649–2707.
- S. Gaussent; G. Rousseau, Spherical Hecke algebras for Kac-Moody groups over local fields, Ann. of Math. (2) 180 (2014), no. 3, 1051–1087
- S. Gaussent; G. Rousseau, Kac-Moody groups, hovels and Littelmann paths, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 7, 2605–2657.
- J. Guilhot, Admissible subsets and Littelmann paths in affine Kazhdan-Lusztig theory, Transform. Groups 23 (2018), no. 4, 915–938.
- P. Hitzelberger Kostant convexity for affine buildings, Forum Math. 22 (2010), no. 5, 959-971
- M. Kapovich; J. Millson, A path model for geodesics in Euclidean buildings and its applications to representation theory. Groups Geom. Dyn. 2 (2008), no. 3, 405–480
- E. Milićević, P. Schwer, A. Thomas, Affine Deligne-Lusztig varieties and folded galleries governed by chimneys, arXiv:2006.16288, (2020).
- S. Naito, F. Nomoto, D. Sagaki, Representation-theoretic interpretation of Cherednik-Orr's recursion formula for the specialization of nonsymmetric Macdonald polynomials at $T=\infty$, Transform. Groups 24 (2019), no. 1, 155–191
- K. Naoi, Weyl modules, Demazure modules and finite crystals for non-simply laced type, Adv. Math. 229 (2012), no. 2, 875–934.
- H. Pittie, A. Ram, A Pieri-Chevalley formula in the K-theory of a G/B-bundle. Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 102–107.
- A. Ram; M. Yip; A combinatorial formula for Macdonald polynomials. Adv. Math. 226 (2011), no. 1, 309-331.

