Non-admissible irreducible representations of $\operatorname{GL}_2(\mathbb{Q}_{p^2})$ in characteristic p(joint work with E. Ghate)

Mihir Sheth

Tata Institute of Fundamental Research Mumbai

Mumbai-Pune Number Theory Seminar 2020

Outline

2/18

Outline

- Introduction
- Formalism of diagrams
- Diagrams associated to Galois representations
- Infinite-dimensional diagrams and the construction

3/18

Let G be a reductive p-adic group, e.g., $G=\mathrm{GL}_n(\mathbb{Q}_p)$

Let G be a reductive p-adic group, e.g., $G = \mathrm{GL}_n(\mathbb{Q}_p)$, and let C be an algebraically closed field.

Let G be a reductive p-adic group, e.g., $G = \mathrm{GL}_n(\mathbb{Q}_p)$, and let C be an algebraically closed field.

Definition

A representation π of G on a C-vector space is called smooth if every vector $v \in \pi$ is fixed by an open subgroup of G.

Let G be a reductive p-adic group, e.g., $G = \mathrm{GL}_n(\mathbb{Q}_p)$, and let C be an algebraically closed field.

Definition

A representation π of G on a C-vector space is called smooth if every vector $v \in \pi$ is fixed by an open subgroup of G. A smooth representation π is called admissible if $\dim_C \pi^H < \infty$ for every open subgroup $H \subseteq G$.

Let G be a reductive p-adic group, e.g., $G = \mathrm{GL}_n(\mathbb{Q}_p)$, and let C be an algebraically closed field.

Definition

A representation π of G on a C-vector space is called *smooth* if every vector $v \in \pi$ is fixed by an open subgroup of G. A smooth representation π is called *admissible* if $\dim_C \pi^H < \infty$ for every open subgroup $H \subseteq G$.

Example

Let $\pi=C^\infty(\mathbb{P}^1(\mathbb{Q}_p))=$ the space of locally constant C-valued functions on $\mathbb{P}^1(\mathbb{Q}_p)$ equipped with a natural action of $G=\mathrm{GL}_2(\mathbb{Q}_p)$. Then π is a smooth admissible C-linear representation of G.

$$C=\mathbb{C}$$

$$C = \overline{\mathbb{F}_p}$$

$$C=\mathbb{C}$$

$$C=\overline{\mathbb{F}_p}$$
 • Can use Haar measure on G to study representations. • G does not admit a non-zero C -valued Haar measure.

$$C = \mathbb{C}$$

$$C=\overline{\mathbb{F}_p}$$

- \bullet Can use Haar measure on ${\cal G}$ to study representations.
- Classification of irreducible representations is known.
- *G* does not admit a non-zero *C*-valued Haar measure.
- Classification of irreducible representations is not known beyond the group $GL_2(\mathbb{Q}_p)$.

$$C = \mathbb{C}$$

$$C = \overline{\mathbb{F}_p}$$

- \bullet Can use Haar measure on ${\cal G}$ to study representations.
- Classification of irreducible representations is known.
- Every smooth irreducible representation is admissible (Harish-Chandra, Jacquet).

- ullet G does not admit a non-zero C-valued Haar measure.
- Classification of irreducible representations is not known beyond the group $\mathrm{GL}_2(\mathbb{Q}_p)$.
- ullet Not true. Examples constructed by D. Le for $\mathrm{GL}_2(\mathbb{Q}_{p^f})$ with f>2 and by Ghate-S. for $\mathrm{GL}_2(\mathbb{Q}_{p^2})$.

Smooth representation theory of G is sensitive to the field C.

$$C = \mathbb{C}$$

$$C=\overline{\mathbb{F}_p}$$

- \bullet Can use Haar measure on ${\cal G}$ to study representations.
- Classification of irreducible representations is known.
- Every smooth irreducible representation is admissible (Harish-Chandra, Jacquet).

- ullet G does not admit a non-zero C-valued Haar measure.
- Classification of irreducible representations is not known beyond the group $\mathrm{GL}_2(\mathbb{Q}_p)$.
- ullet Not true. Examples constructed by D. Le for $\mathrm{GL}_2(\mathbb{Q}_{p^f})$ with f>2 and by Ghate-S. for $\mathrm{GL}_2(\mathbb{Q}_{p^2})$.

Diagrams of Schneider-Stuhler can be used to construct mod p representations of reductive p-adic groups.

• p > 2, F = a finite extension of \mathbb{Q}_p , $F \supset \mathcal{O} \twoheadrightarrow \mathcal{O}/\varpi \mathcal{O} = \mathbb{F}_{p^f}$.

• p > 2, F = a finite extension of \mathbb{Q}_p , $F \supset \mathcal{O} \twoheadrightarrow \mathcal{O}/\varpi \mathcal{O} = \mathbb{F}_{p^f}$. $\mathbb{Q}_{p^f} = \text{the maximal unramified subextension of } \mathbb{Q}_p \text{ inside } F$.

• p>2, F= a finite extension of \mathbb{Q}_p , $F\supset\mathcal{O}\twoheadrightarrow\mathcal{O}/\varpi\mathcal{O}=\mathbb{F}_{p^f}$. $\mathbb{Q}_{p^f}=$ the maximal unramified subextension of \mathbb{Q}_p inside F. Fix $\mathbb{F}_{p^f}\hookrightarrow\overline{\mathbb{F}_p}=C$.

- p>2, F= a finite extension of \mathbb{Q}_p , $F\supset\mathcal{O}\twoheadrightarrow\mathcal{O}/\varpi\mathcal{O}=\mathbb{F}_{p^f}$. $\mathbb{Q}_{p^f}=$ the maximal unramified subextension of \mathbb{Q}_p inside F. Fix $\mathbb{F}_{p^f}\hookrightarrow\overline{\mathbb{F}_p}=C$.
- $G = \mathrm{GL}_2(F)$, $K = \mathrm{GL}_2(\mathcal{O}) \subset G$ a maximal compact subgroup.

5/18

•

- p>2, F= a finite extension of \mathbb{Q}_p , $F\supset\mathcal{O}\twoheadrightarrow\mathcal{O}/\varpi\mathcal{O}=\mathbb{F}_{p^f}$. $\mathbb{Q}_{p^f}=$ the maximal unramified subextension of \mathbb{Q}_p inside F. Fix $\mathbb{F}_{p^f}\hookrightarrow\overline{\mathbb{F}_p}=C$.
- $G = \mathrm{GL}_2(F)$, $K = \mathrm{GL}_2(\mathcal{O}) \subset G$ a maximal compact subgroup.

 $K_{1} = \begin{pmatrix} 1 + \varpi \mathcal{O} & \varpi \mathcal{O} \\ \varpi \mathcal{O} & 1 + \varpi \mathcal{O} \end{pmatrix} \subset I_{1} = \begin{pmatrix} 1 + \varpi \mathcal{O} & \mathcal{O} \\ \varpi \mathcal{O} & 1 + \varpi \mathcal{O} \end{pmatrix}$ $\subset I = \begin{pmatrix} \mathcal{O} & \mathcal{O} \\ \varpi \mathcal{O} & \mathcal{O} \end{pmatrix} \qquad \subset K = \mathrm{GL}_{2}(\mathcal{O}).$

•

- p>2, F= a finite extension of \mathbb{Q}_p , $F\supset\mathcal{O}\twoheadrightarrow\mathcal{O}/\varpi\mathcal{O}=\mathbb{F}_{p^f}$. $\mathbb{Q}_{p^f}=$ the maximal unramified subextension of \mathbb{Q}_p inside F. Fix $\mathbb{F}_{p^f}\hookrightarrow\overline{\mathbb{F}_p}=C$.
- $G = \mathrm{GL}_2(F)$, $K = \mathrm{GL}_2(\mathcal{O}) \subset G$ a maximal compact subgroup.

 $K_{1} = \begin{pmatrix} 1 + \varpi \mathcal{O} & \varpi \mathcal{O} \\ \varpi \mathcal{O} & 1 + \varpi \mathcal{O} \end{pmatrix} \subset I_{1} = \begin{pmatrix} 1 + \varpi \mathcal{O} & \mathcal{O} \\ \varpi \mathcal{O} & 1 + \varpi \mathcal{O} \end{pmatrix}$ $\subset I = \begin{pmatrix} \mathcal{O} & \mathcal{O} \\ \varpi \mathcal{O} & \mathcal{O} \end{pmatrix} \qquad \subset K = GL_{2}(\mathcal{O}).$

• $N=N_G(I)$, a subgroup of G generated by I and $\Pi=\left(\begin{smallmatrix}0&1\\\varpi&0\end{smallmatrix}\right)$. Z= Center of G.

Fact (Ihara-Tits): Let V be a vector space endowed with actions of K and N that coincide on $I=K\cap N$. Then V admits a unique action of G extending the actions of K and N.

Fact (Ihara-Tits): Let V be a vector space endowed with actions of K and N that coincide on $I=K\cap N$. Then V admits a unique action of G extending the actions of K and N.

Definition

A diagram is a triple (D_0, D_1, r) consisting of

- ullet D_0 a smooth representation of KZ over $\overline{\mathbb{F}_p}$ with a trivial action of ϖ ,
- ullet D_1 a smooth representation of N over $\overline{\mathbb{F}_p}$,
- $r: D_1 \xrightarrow{\sim} D_0^{I_1}$ an isomorphism of IZ-representations.

Fact (Ihara-Tits): Let V be a vector space endowed with actions of K and N that coincide on $I=K\cap N$. Then V admits a unique action of G extending the actions of K and N.

Definition

A diagram is a triple (D_0, D_1, r) consisting of

- D_0 a smooth representation of KZ over $\overline{\mathbb{F}_p}$ with a trivial action of ϖ ,
- ullet D_1 a smooth representation of N over $\overline{\mathbb{F}_p}$,
- $r: D_1 \xrightarrow{\sim} D_0^{I_1}$ an isomorphism of IZ-representations.

In all the diagrams of this talk, D_0 will be a finite dimensional representation of $\mathrm{GL}_2(\mathbb{F}_{p^f})$.

7/18

The injective K-envelope of $\operatorname{inj}_K D_0$ of D_0 is an injective object in the category of smooth K-representations over $\overline{\mathbb{F}_p}$ defined by the property

$$\operatorname{soc}_K D_0 = \operatorname{soc}_K \operatorname{inj}_K D_0.$$

The injective K-envelope of $\operatorname{inj}_K \underline{D}_0$ of D_0 is an injective object in the category of smooth K-representations over $\overline{\mathbb{F}_p}$ defined by the property

$$\operatorname{soc}_K D_0 = \operatorname{soc}_K \operatorname{inj}_K D_0.$$

The injective envelope $\operatorname{inj}_K D_0$ exists: $\operatorname{inj}_K D_0 = \varinjlim_n \operatorname{inj}_{K/K_n} D_0$.

The injective K-envelope of $\operatorname{inj}_K D_0$ of D_0 is an injective object in the category of smooth K-representations over $\overline{\mathbb{F}_p}$ defined by the property

$$\operatorname{soc}_K D_0 = \operatorname{soc}_K \operatorname{inj}_K D_0.$$

The injective envelope $\operatorname{inj}_K D_0$ exists: $\operatorname{inj}_K D_0 = \varinjlim_n \operatorname{inj}_{K/K_n} D_0$.

It contains D_0 and is unique upto isomorphism.

The injective K-envelope of $\operatorname{inj}_K D_0$ of D_0 is an injective object in the category of smooth K-representations over $\overline{\mathbb{F}_p}$ defined by the property

$$\operatorname{soc}_K D_0 = \operatorname{soc}_K \operatorname{inj}_K D_0.$$

The injective envelope $\operatorname{inj}_K D_0$ exists: $\operatorname{inj}_K D_0 = \varinjlim_n \operatorname{inj}_{K/K_n} D_0$.

It contains D_0 and is unique upto isomorphism.

Theorem (Breuil-Paskunas)

The data of a diagram allows one to obtain a (non-canonical) N-action on the smooth injective K-envelope $\operatorname{inj}_K D_0$ whose restriction to I coincides with the I-action on $\operatorname{inj}_K D_0$.

The injective K-envelope of $\operatorname{inj}_K D_0$ of D_0 is an injective object in the category of smooth K-representations over $\overline{\mathbb{F}_p}$ defined by the property

$$\operatorname{soc}_K D_0 = \operatorname{soc}_K \operatorname{inj}_K D_0.$$

The injective envelope $\operatorname{inj}_K D_0$ exists: $\operatorname{inj}_K D_0 = \varinjlim_n \operatorname{inj}_{K/K_n} D_0$.

It contains D_0 and is unique upto isomorphism.

Theorem (Breuil-Paskunas)

The data of a diagram allows one to obtain a (non-canonical) N-action on the smooth injective K-envelope $\operatorname{inj}_K D_0$ whose restriction to I coincides with the I-action on $\operatorname{inj}_K D_0$.

To sum up, given a diagram (D_0,D_1,r) , there is a (non-canonical) smooth G-action on $\operatorname{inj}_K D_0$.

How to construct diagrams?

How to construct diagrams?

• Start with a finite dimensional representation D_0 of $\mathrm{GL}_2(\mathbb{F}_{p^f})$ over $\overline{\mathbb{F}_p}$.

How to construct diagrams?

• Start with a finite dimensional representation D_0 of $\mathrm{GL}_2(\mathbb{F}_{p^f})$ over $\overline{\mathbb{F}_p}$. The I-representation $D_0^{I_1}$ is a direct sum of I/I_1 -characters. We need to put a Π -action on $D_0^{I_1}$.

- Start with a finite dimensional representation D_0 of $\mathrm{GL}_2(\mathbb{F}_{p^f})$ over $\overline{\mathbb{F}_p}$. The I-representation $D_0^{I_1}$ is a direct sum of I/I_1 -characters. We need to put a Π -action on $D_0^{I_1}$.
- For an I-character χ , let χ^s be the character that takes $g \in I$ to $\chi(\Pi g \Pi^{-1})$.

- Start with a finite dimensional representation D_0 of $\mathrm{GL}_2(\mathbb{F}_{p^f})$ over $\overline{\mathbb{F}_p}$. The I-representation $D_0^{I_1}$ is a direct sum of I/I_1 -characters. We need to put a Π -action on $D_0^{I_1}$.
- For an I-character χ , let χ^s be the character that takes $g \in I$ to $\chi(\Pi g \Pi^{-1})$.
- \bullet For $D_0^{I_1}$ to admit an N-action that extends the given I-action, Π must map χ to χ^s

July 3 2020

- Start with a finite dimensional representation D_0 of $\mathrm{GL}_2(\mathbb{F}_{p^f})$ over $\overline{\mathbb{F}_p}$. The I-representation $D_0^{I_1}$ is a direct sum of I/I_1 -characters. We need to put a Π -action on $D_0^{I_1}$.
- For an I-character χ , let χ^s be the character that takes $g \in I$ to $\chi(\Pi g \Pi^{-1})$.
- For $D_0^{I_1}$ to admit an N-action that extends the given I-action, Π must map χ to χ^s , and therefore $D_0^{I_1}$ must be a direct sum of pairs of I-characters and their conjugates.

- Start with a finite dimensional representation D_0 of $\mathrm{GL}_2(\mathbb{F}_{p^f})$ over $\overline{\mathbb{F}_p}$. The I-representation $D_0^{I_1}$ is a direct sum of I/I_1 -characters. We need to put a Π -action on $D_0^{I_1}$.
- For an I-character χ , let χ^s be the character that takes $g \in I$ to $\chi(\Pi g \Pi^{-1})$.
- For $D_0^{I_1}$ to admit an N-action that extends the given I-action, Π must map χ to χ^s , and therefore $D_0^{I_1}$ must be a direct sum of pairs of I-characters and their conjugates.

Definition

A weight is a smooth irreducible $\overline{\mathbb{F}_p}$ -linear representations of K,

July 3 2020

- Start with a finite dimensional representation D_0 of $\mathrm{GL}_2(\mathbb{F}_{p^f})$ over $\overline{\mathbb{F}_p}$. The I-representation $D_0^{I_1}$ is a direct sum of I/I_1 -characters. We need to put a Π -action on $D_0^{I_1}$.
- For an I-character χ , let χ^s be the character that takes $g \in I$ to $\chi(\Pi g \Pi^{-1})$.
- For $D_0^{I_1}$ to admit an N-action that extends the given I-action, Π must map χ to χ^s , and therefore $D_0^{I_1}$ must be a direct sum of pairs of I-characters and their conjugates.

Definition

A weight is a smooth irreducible $\overline{\mathbb{F}_p}$ -linear representations of K, i.e., an irreducible $\overline{\mathbb{F}_p}$ -linear representations of $K/K_1=\mathrm{GL}_2(\mathbb{F}_{p^f})$.

- Start with a finite dimensional representation D_0 of $\mathrm{GL}_2(\mathbb{F}_{p^f})$ over $\overline{\mathbb{F}_p}$. The I-representation $D_0^{I_1}$ is a direct sum of I/I_1 -characters. We need to put a Π -action on $D_0^{I_1}$.
- For an I-character χ , let χ^s be the character that takes $g \in I$ to $\chi(\Pi g \Pi^{-1})$.
- For $D_0^{I_1}$ to admit an N-action that extends the given I-action, Π must map χ to χ^s , and therefore $D_0^{I_1}$ must be a direct sum of pairs of I-characters and their conjugates.

Definition

A weight is a smooth irreducible $\overline{\mathbb{F}_p}$ -linear representations of K, i.e., an irreducible $\overline{\mathbb{F}_p}$ -linear representations of $K/K_1=\mathrm{GL}_2(\mathbb{F}_{p^f})$.

Fact: Given a weight σ , the space σ^{I_1} has dimension 1; let χ_{σ} be the corresponding character. If $\chi_{\sigma} \neq \chi_{\sigma}^s$ then there is a unique weight σ^s such that $\chi_{\sigma^s} = \chi_{\sigma}^s$.

Let σ be a weight such that $\chi_{\sigma} \neq \chi_{\sigma}^{s}$.

Let σ be a weight such that $\chi_{\sigma} \neq \chi_{\sigma}^{s}$.

Example

• Let $D_0 = \sigma \oplus \sigma^s$. Then $D_1 = D_0^{I_1} = \chi_\sigma \oplus \chi_\sigma^s$. By making ϖ act trivially on D_0 and letting Π take a basis vector of χ_σ to that of χ_σ^s , we get a diagram (D_0, D_1, r) .

Let σ be a weight such that $\chi_{\sigma} \neq \chi_{\sigma}^{s}$.

Example

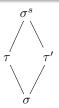
- Let $D_0 = \sigma \oplus \sigma^s$. Then $D_1 = D_0^{I_1} = \chi_\sigma \oplus \chi_\sigma^s$. By making ϖ act trivially on D_0 and letting Π take a basis vector of χ_σ to that of χ_σ^s , we get a diagram (D_0, D_1, r) .
- ② Let $D_0 = \operatorname{Ind}_I^K \chi_\sigma^s$. Then $D_1 = D_0^{I_1} = \chi_\sigma \oplus \chi_\sigma^s$. By making ϖ act trivially on D_0 and letting Π take a basis vector of χ_σ to that of χ_σ^s , we get a diagram (D_0, D_1, r) .

Let σ be a weight such that $\chi_{\sigma} \neq \chi_{\sigma}^{s}$.

Example

- Let $D_0 = \sigma \oplus \sigma^s$. Then $D_1 = D_0^{I_1} = \chi_\sigma \oplus \chi_\sigma^s$. By making ϖ act trivially on D_0 and letting Π take a basis vector of χ_σ to that of χ_σ^s , we get a diagram (D_0, D_1, r) .
- ② Let $D_0 = \operatorname{Ind}_I^K \chi_\sigma^s$. Then $D_1 = D_0^{I_1} = \chi_\sigma \oplus \chi_\sigma^s$. By making ϖ act trivially on D_0 and letting Π take a basis vector of χ_σ to that of χ_σ^s , we get a diagram (D_0, D_1, r) .

When f=2, $D_0=\operatorname{Ind}_I^K\chi_\sigma^s$ in Example 2 has 3-step socle filtration with socle and cosocle weights contributing to the space of its I_1 -fixed vectors.



$\overline{\text{Diagrams and mod } p}$ representations of G

Recall that, given a diagram (D_0, D_1, r) , there is a smooth G-action on $\operatorname{inj}_K D_0$.

Recall that, given a diagram (D_0, D_1, r) , there is a smooth G-action on $\operatorname{inj}_K D_0$. Let $\pi \subset \operatorname{inj}_K D_0$ be the subrepresentation generated by D_0 . Note that $\operatorname{soc}_K \pi = \operatorname{soc}_K D_0$.

Recall that, given a diagram (D_0,D_1,r) , there is a smooth G-action on $\operatorname{inj}_K D_0$. Let $\pi\subset\operatorname{inj}_K D_0$ be the subrepresentation generated by D_0 . Note that $\operatorname{soc}_K\pi=\operatorname{soc}_K D_0$.

Theorem (Breuil-Paskunas)

When $F=\mathbb{Q}_p$, the above construction gives a bijection between the set of diagrams of type mentioned in Example 1 and the set of smooth admissible irreducible supercuspidal representations of $G=\mathrm{GL}_2(\mathbb{Q}_p)$ over $\overline{\mathbb{F}_p}$. The inverse map is given by $\pi\mapsto (\langle K\cdot \pi^{I_1}\rangle,\pi^{I_1},r)$.

Recall that, given a diagram (D_0,D_1,r) , there is a smooth G-action on $\operatorname{inj}_K D_0$. Let $\pi\subset\operatorname{inj}_K D_0$ be the subrepresentation generated by D_0 . Note that $\operatorname{soc}_K\pi=\operatorname{soc}_K D_0$.

Theorem (Breuil-Paskunas)

When $F=\mathbb{Q}_p$, the above construction gives a bijection between the set of diagrams of type mentioned in Example 1 and the set of smooth admissible irreducible supercuspidal representations of $G=\mathrm{GL}_2(\mathbb{Q}_p)$ over $\overline{\mathbb{F}_p}$. The inverse map is given by $\pi\mapsto (\langle K\cdot \pi^{I_1}\rangle,\pi^{I_1},r)$.

In the process of generalizing the above theorem to representations of $\mathrm{GL}_2(\mathbb{Q}_{p^f})$, Breuil and Paskunas constructed several interesting families of diagrams and interesting corresponding representations of $\mathrm{GL}_2(\mathbb{Q}_{p^f})$ with fixed socle.

From now on, $G = GL_2(\mathbb{Q}_{p^f})$.

From now on, $G = \mathrm{GL}_2(\mathbb{Q}_{p^f})$. Let

$$\rho: \operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_{p^f}) \to \operatorname{GL}_2(\overline{\mathbb{F}_p})$$

be a continuous semi-simple generic representation.

From now on, $G = \mathrm{GL}_2(\mathbb{Q}_{p^f})$. Let

$$\rho: \operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_{p^f}) \to \operatorname{GL}_2(\overline{\mathbb{F}_p})$$

be a continuous semi-simple generic representation.

Buzzard, Diamond and Jarvis associate to ρ a unique finite set $W(\rho)$ of irreducible $\overline{\mathbb{F}_p}$ -representations of $\mathrm{GL}_2(\mathbb{F}_{p^f})$ (Diamond weights).

From now on, $G = \mathrm{GL}_2(\mathbb{Q}_{p^f})$. Let

$$\rho: \operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_{p^f}) \to \operatorname{GL}_2(\overline{\mathbb{F}_p})$$

be a continuous semi-simple generic representation.

Buzzard, Diamond and Jarvis associate to ρ a unique finite set $W(\rho)$ of irreducible $\overline{\mathbb{F}_p}$ -representations of $\mathrm{GL}_2(\mathbb{F}_{p^f})$ (Diamond weights).

The set $W(\rho)$ gives information about the weight of the Hilbert modular form attached to a global Galois representation by the general Serre weight conjecture.

From now on, $G = \mathrm{GL}_2(\mathbb{Q}_{p^f})$. Let

$$\rho: \operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_{p^f}) \to \operatorname{GL}_2(\overline{\mathbb{F}_p})$$

be a continuous semi-simple generic representation.

Buzzard, Diamond and Jarvis associate to ρ a unique finite set $W(\rho)$ of irreducible $\overline{\mathbb{F}_p}$ -representations of $\mathrm{GL}_2(\mathbb{F}_{p^f})$ (Diamond weights).

The set $W(\rho)$ gives information about the weight of the Hilbert modular form attached to a global Galois representation by the general Serre weight conjecture.

Theorem (Breuil-Paskunas)

There exists a family of diagrams $(D_0(\rho), D_1(\rho), r)$ such that $\operatorname{soc}_K D_0(\rho) = \bigoplus_{\sigma \in W(\rho)} \sigma$.

From now on, $G = \mathrm{GL}_2(\mathbb{Q}_{p^f})$. Let

$$\rho: \operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_{p^f}) \to \operatorname{GL}_2(\overline{\mathbb{F}_p})$$

be a continuous semi-simple generic representation.

Buzzard, Diamond and Jarvis associate to ρ a unique finite set $W(\rho)$ of irreducible $\overline{\mathbb{F}_p}$ -representations of $\mathrm{GL}_2(\mathbb{F}_{p^f})$ (Diamond weights).

The set $W(\rho)$ gives information about the weight of the Hilbert modular form attached to a global Galois representation by the general Serre weight conjecture.

Theorem (Breuil-Paskunas)

There exists a family of diagrams $(D_0(\rho), D_1(\rho), r)$ such that $\operatorname{soc}_K D_0(\rho) = \bigoplus_{\sigma \in W(\rho)} \sigma$.

Diagrams in the above theorem are called Diamond diagrams.

Theorem (Breuil-Paskunas)

Given a Diamond diagram $(D_0(\rho), D_1(\rho), r)$ associated to an irreducible ρ , the smooth $\overline{\mathbb{F}_p}$ -representation π of $\mathrm{GL}_2(\mathbb{Q}_{p^f})$ generated by $D_0(\rho)$ inside $\mathrm{inj}_K D_0(\rho)$ is admissible irreducible and supercuspidal.

12/18

Theorem (Breuil-Paskunas)

Given a Diamond diagram $(D_0(\rho),D_1(\rho),r)$ associated to an irreducible ρ , the smooth $\overline{\mathbb{F}_p}$ -representation π of $\mathrm{GL}_2(\mathbb{Q}_{p^f})$ generated by $D_0(\rho)$ inside $\mathrm{inj}_K D_0(\rho)$ is admissible irreducible and supercuspidal.

Diamond diagrams associated to irreducible ho were used by Daniel Le to show that

Theorem (Le '19)

There exists a smooth irreducible non-admissible $\overline{\mathbb{F}_p}$ -representation of $\mathrm{GL}_2(\mathbb{Q}_{p^f})$ for f>2.

Theorem (Breuil-Paskunas)

Given a Diamond diagram $(D_0(\rho), D_1(\rho), r)$ associated to an irreducible ρ , the smooth $\overline{\mathbb{F}_p}$ -representation π of $\mathrm{GL}_2(\mathbb{Q}_{p^f})$ generated by $D_0(\rho)$ inside $\mathrm{inj}_K D_0(\rho)$ is admissible irreducible and supercuspidal.

Diamond diagrams associated to irreducible ho were used by Daniel Le to show that

Theorem (Le '19)

There exists a smooth irreducible non-admissible $\overline{\mathbb{F}_p}$ -representation of $\mathrm{GL}_2(\mathbb{Q}_{p^f})$ for f>2.

His idea was to construct an indecomposable infinite-dimensional diagram from a Diamond diagram $(D_0(\rho), D_1(\rho), r)$ making use of extra characters in $D_1(\rho)$.

Theorem (Breuil-Paskunas)

Given a Diamond diagram $(D_0(\rho), D_1(\rho), r)$ associated to an irreducible ρ , the smooth $\overline{\mathbb{F}_p}$ -representation π of $\mathrm{GL}_2(\mathbb{Q}_{p^f})$ generated by $D_0(\rho)$ inside $\mathrm{inj}_K D_0(\rho)$ is admissible irreducible and supercuspidal.

Diamond diagrams associated to irreducible ho were used by Daniel Le to show that

Theorem (Le '19)

There exists a smooth irreducible non-admissible $\overline{\mathbb{F}_p}$ -representation of $\mathrm{GL}_2(\mathbb{Q}_{p^f})$ for f>2.

His idea was to construct an indecomposable infinite-dimensional diagram from a Diamond diagram $(D_0(\rho), D_1(\rho), r)$ making use of extra characters in $D_1(\rho)$.

When f=2, $D_1(\rho)$ in a Diamond diagram associated to **irreducible** ρ does not have enough extra characters. However, $D_1(\rho)$ in a Diamond diagram associated to **reducible split** ρ does!

Theorem (Breuil-Paskunas)

Given a Diamond diagram $(D_0(\rho), D_1(\rho), r)$ associated to an irreducible ρ , the smooth $\overline{\mathbb{F}_p}$ -representation π of $\mathrm{GL}_2(\mathbb{Q}_{p^f})$ generated by $D_0(\rho)$ inside $\mathrm{inj}_K D_0(\rho)$ is admissible irreducible and supercuspidal.

Diamond diagrams associated to irreducible ho were used by Daniel Le to show that

Theorem (Le '19)

There exists a smooth irreducible non-admissible $\overline{\mathbb{F}_p}$ -representation of $\mathrm{GL}_2(\mathbb{Q}_{p^f})$ for f>2.

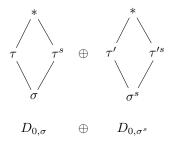
His idea was to construct an indecomposable infinite-dimensional diagram from a Diamond diagram $(D_0(\rho), D_1(\rho), r)$ making use of extra characters in $D_1(\rho)$.

When f=2, $D_1(\rho)$ in a Diamond diagram associated to **irreducible** ρ does not have enough extra characters. However, $D_1(\rho)$ in a Diamond diagram associated to **reducible split** ρ does!

Let $(D_0(\rho), D_1(\rho), r)$ be a Diamond diagram associated to reducible split ρ .

Let $(D_0(\rho), D_1(\rho), r)$ be a Diamond diagram associated to reducible split ρ .

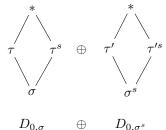
The diagram $(D_0(\rho),D_1(\rho),r)$ has a subdiagram (D_0,D_1,r) such that the socle filtration of D_0 has the following form



and $D_1 = \chi_{\sigma} \oplus \chi_{\tau} \oplus \chi_{\tau}^s \oplus \chi_{\sigma}^s \oplus \chi_{\tau'} \oplus \chi_{\tau'}^s$ for some weights σ, τ and τ' .

Let $(D_0(\rho), D_1(\rho), r)$ be a Diamond diagram associated to reducible split ρ .

The diagram $(D_0(\rho), D_1(\rho), r)$ has a subdiagram (D_0, D_1, r) such that the socle filtration of D_0 has the following form



and $D_1 = \chi_{\sigma} \oplus \chi_{\tau} \oplus \chi_{\tau}^s \oplus \chi_{\sigma}^s \oplus \chi_{\tau'} \oplus \chi_{\tau'}^s$ for some weights σ, τ and τ' .

We use this subdiagram (D_0, D_1, r) to construct indecomposable infinite-dimensional diagrams.

Infinite-dimensional diagrams and the construction

Infinite-dimensional diagrams and the construction

• Define $D_0(\infty) = \bigoplus_{\mathbb{Z}} D_0$ with component-wise KZ-action.

Infinite-dimensional diagrams and the construction

- Define $D_0(\infty) = \bigoplus_{\mathbb{Z}} D_0$ with component-wise KZ-action.
- Take $D_1(\infty) = D_0(\infty)^{I_1} = \bigoplus_{\mathbb{Z}} D_1$.

$$\Pi \cdot (\chi_{\sigma})_{i} = (\chi_{\sigma}^{s})_{i}$$

$$\Pi \cdot (\chi_{\tau})_{i} = (\chi_{\tau}^{s})_{i+1}$$

$$\Pi \cdot (\chi_{\tau'})_{i} = (\chi_{\tau'}^{s})_{i}$$

Infinite-dimensional diagrams and the construction

- Define $D_0(\infty) = \bigoplus_{\mathbb{Z}} D_0$ with component-wise KZ-action.
- Take $D_1(\infty) = D_0(\infty)^{I_1} = \bigoplus_{\mathbb{Z}} D_1$.

$$\begin{split} &\Pi \cdot (\chi_{\sigma})_i = (\chi_{\sigma}^s)_i \\ &\Pi \cdot (\chi_{\tau})_i = (\chi_{\tau}^s)_{i+1} \\ &\Pi \cdot (\chi_{\tau'})_i = (\chi_{\tau'}^s)_i \end{split}$$

• Let $\Omega(\infty) = \bigoplus_{\mathbb{Z}} \operatorname{inj}_K D_0$ with component-wise KZ-action. One uses N-action on $\operatorname{inj}_K D_0$ to define an N-action $\Omega(\infty)$ such that $D_1(\infty) \hookrightarrow \Omega(\infty)$ is N-equivariant.

Infinite-dimensional diagrams and the construction

- Define $D_0(\infty) = \bigoplus_{\mathbb{Z}} D_0$ with component-wise KZ-action.
- Take $D_1(\infty) = D_0(\infty)^{I_1} = \bigoplus_{\mathbb{Z}} D_1$.

$$\begin{split} &\Pi \cdot (\chi_{\sigma})_i = (\chi_{\sigma}^s)_i \\ &\Pi \cdot (\chi_{\tau})_i = (\chi_{\tau}^s)_{i+1} \\ &\Pi \cdot (\chi_{\tau'})_i = (\chi_{\tau'}^s)_i \end{split}$$

- Let $\Omega(\infty) = \bigoplus_{\mathbb{Z}} \operatorname{inj}_K D_0$ with component-wise KZ-action. One uses N-action on $\operatorname{inj}_K D_0$ to define an N-action $\Omega(\infty)$ such that $D_1(\infty) \hookrightarrow \Omega(\infty)$ is N-equivariant.
- The K and N actions on $\Omega(\infty)$ coincide on I and hence glue together to give a smooth G-action on $\Omega(\infty)$.

Infinite-dimensional diagrams and the construction

- Define $D_0(\infty) = \bigoplus_{\mathbb{Z}} D_0$ with component-wise KZ-action.
- Take $D_1(\infty) = D_0(\infty)^{I_1} = \bigoplus_{\mathbb{Z}} D_1$.

$$\Pi \cdot (\chi_{\sigma})_i = (\chi_{\sigma}^s)_i$$

$$\Pi \cdot (\chi_{\tau})_i = (\chi_{\tau}^s)_{i+1}$$

$$\Pi \cdot (\chi_{\tau'})_i = (\chi_{\tau'}^s)_i$$

- Let $\Omega(\infty) = \bigoplus_{\mathbb{Z}} \operatorname{inj}_K D_0$ with component-wise KZ-action. One uses N-action on $\operatorname{inj}_K D_0$ to define an N-action $\Omega(\infty)$ such that $D_1(\infty) \hookrightarrow \Omega(\infty)$ is N-equivariant.
- The K and N actions on $\Omega(\infty)$ coincide on I and hence glue together to give a smooth G-action on $\Omega(\infty)$.
- Let $\pi \subset \Omega(\infty)$ be the subrepresentation of G generated by $D_0(\infty)$.

15 / 18

Theorem (Ghate-S. '20)

 π is a smooth irreducible non-admissible $\overline{\mathbb{F}_p}$ -representation of $\mathrm{GL}_2(\mathbb{Q}_{p^2})$.

Sketch of proof:

Theorem (Ghate-S. '20)

 π is a smooth irreducible non-admissible $\overline{\mathbb{F}_p}$ -representation of $\mathrm{GL}_2(\mathbb{Q}_{p^2})$.

Sketch of proof:

• Non-admissibility: $\operatorname{soc}_K \pi = \operatorname{soc}_K D_0(\infty) = \bigoplus_{\mathbb{Z}} \operatorname{soc}_K D_0$. Thus π^{K_1} is not finite dimensional.

Theorem (Ghate-S. '20)

 π is a smooth irreducible non-admissible $\overline{\mathbb{F}_p}$ -representation of $\mathrm{GL}_2(\mathbb{Q}_{p^2})$.

Sketch of proof:

- Non-admissibility: $\operatorname{soc}_K \pi = \operatorname{soc}_K D_0(\infty) = \bigoplus_{\mathbb{Z}} \operatorname{soc}_K D_0$. Thus π^{K_1} is not finite dimensional.
- ullet Irreducibility: Let $\pi'\subset\pi$ be a non-zero subrepresentation and let σ at i-th index belongs to π' (we ignore the case of diagonal embedding).

Theorem (Ghate-S. '20)

 π is a smooth irreducible non-admissible $\overline{\mathbb{F}_p}$ -representation of $\mathrm{GL}_2(\mathbb{Q}_{p^2})$.

Sketch of proof:

- Non-admissibility: $\operatorname{soc}_K \pi = \operatorname{soc}_K D_0(\infty) = \bigoplus_{\mathbb{Z}} \operatorname{soc}_K D_0$. Thus π^{K_1} is not finite dimensional.
- ullet Irreducibility: Let $\pi'\subset\pi$ be a non-zero subrepresentation and let σ at i-th index belongs to π' (we ignore the case of diagonal embedding). We show that $D_0(\infty)\subset\pi'$ using the following highly non-trivial result of Breuil-Paskunas:

Theorem (Ghate-S. '20)

 π is a smooth irreducible non-admissible $\overline{\mathbb{F}_p}$ -representation of $\mathrm{GL}_2(\mathbb{Q}_{p^2})$.

Sketch of proof:

- Non-admissibility: $\operatorname{soc}_K \pi = \operatorname{soc}_K D_0(\infty) = \bigoplus_{\mathbb{Z}} \operatorname{soc}_K D_0$. Thus π^{K_1} is not finite dimensional.
- ullet Irreducibility: Let $\pi'\subset\pi$ be a non-zero subrepresentation and let σ at i-th index belongs to π' (we ignore the case of diagonal embedding). We show that $D_0(\infty)\subset\pi'$ using the following highly non-trivial result of Breuil-Paskunas:

Key Proposition

If σ (or σ^s) at i-th index is in π' then D_{0,σ^s} (resp. $D_{0,\sigma}$) at i-th index is a K-subrepresentation of π' .

$$D_0$$
 at $(i-1)$ -th index \oplus

$$D_0$$
 at $\emph{i}\text{-th}$ index

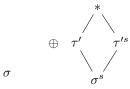
$$\oplus \quad D_0 \text{ at } (i+1)\text{-th index}$$

$$D_0$$
 at $(i-1)$ -th index \circ

$$\stackrel{\circ}{D}_0$$
 at $i\text{-th}$ index

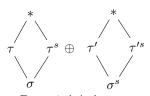
$$D_0$$
 at $(i-1)$ -th index \oplus D_0 at i -th index \oplus D_0 at $(i+1)$ -th index

Sketch of proof continued:



 D_0 at (i-1)-th index \oplus D_0 at i-th index \oplus D_0 at (i+1)-th index

Sketch of proof continued:



 D_0 at (i-1)-th index

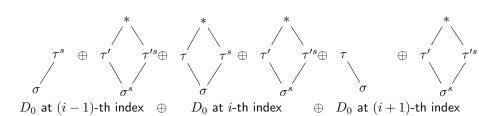
 D_0 at $\emph{i}\text{-th}$ index

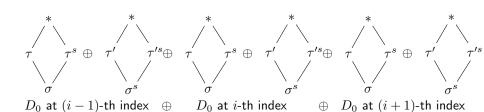
 $\oplus \ \ D_0$ at (i+1)-th index

Sketch of proof continued:

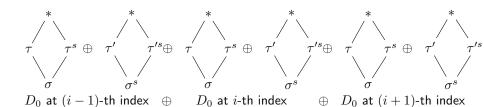
 D_0 at (i-1)-th index $\ \oplus \ D_0$ at i-th index

 $\oplus \quad D_0 \text{ at } (i+1)\text{-th index}$



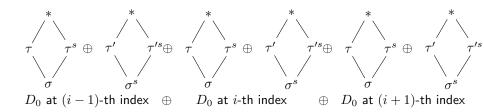


Sketch of proof continued:



It follows that $D_0(\infty) \subset \pi'$ and since π is generated by $D_0(\infty)$, $\pi' = \pi$.

Sketch of proof continued:



It follows that $D_0(\infty) \subset \pi'$ and since π is generated by $D_0(\infty)$, $\pi' = \pi$.

Remark

- It is possible to define π over the finite field \mathbb{F}_{p^2} .
- The \mathbb{F}_{p^2} -model of π can be used to produce a smooth irreducible non-admissible representation of $\mathrm{GL}_2(\mathbb{Q}_{p^2})$ over any field of characteristic p.

• It is expected that $\mathrm{GL}_2(F)$ admits smooth irreducible non-admissible $\overline{\mathbb{F}_p}$ -representations as soon as $F \neq \mathbb{Q}_p$. Can we use diagrams to construct those when F is ramified?

- It is expected that $\mathrm{GL}_2(F)$ admits smooth irreducible non-admissible $\overline{\mathbb{F}_p}$ -representations as soon as $F \neq \mathbb{Q}_p$. Can we use diagrams to construct those when F is ramified?
- ullet What about connected reductive groups other than ${\rm GL}_2$? The formalism of diagrams for the groups of semi-simple rank 1 has been developed by Koziol, Xu, Herzig and Vignéras.

- It is expected that $\mathrm{GL}_2(F)$ admits smooth irreducible non-admissible $\overline{\mathbb{F}_p}$ -representations as soon as $F \neq \mathbb{Q}_p$. Can we use diagrams to construct those when F is ramified?
- ullet What about connected reductive groups other than ${\rm GL}_2$? The formalism of diagrams for the groups of semi-simple rank 1 has been developed by Koziol, Xu, Herzig and Vignéras.
- Does every smooth irreducible representation of $\mathrm{GL}_2(F)$ over $\overline{\mathbb{F}_p}$ possess a central character? It does when $F=\mathbb{Q}_p$, and also when F is any finite extension of \mathbb{Q}_p but the representations are over algebraically closed uncountable field of characteristic p.

References

- **Q** C. Breuil, V. Paskunas, *Towards a modulo* p *Langlands correspondence for* GL_2 , Mem. Amer. Math. Soc. 216 (2012).
- **②** E. Ghate, M. Sheth, On smooth irreducible non-admissible modulo p representations of $\mathrm{GL}_2(\mathbb{Q}_{p^2})$, to appear in C. R. Math. Acad. Sci. Paris.
- E. Ghate, M. Sheth, Diagrams and mod p representations of p-adic groups, expository article submitted.
- \bullet D. Le, On some non-admissible smooth representations of ${\rm GL}_2,$ Math. Res. Lett. 26 (2019).
- V. Paskunas, Coefficient systems and supersingular representations of GL₂(F), Mém. Soc. Math. Fr. (N.S.) 99 (2004).

Thank you!