1. Let G be a group. Let H be the subgroup of G generated by $\left\{x^{2} \mid x \in G\right\}$. Let H^{\prime} be the commutator subgroup of G, i.e., the subgroup generated by $\left\{x y x^{-1} y^{-1} \mid x, y \in G\right\}$. Show that $H \supset H^{\prime}$.
2. Let p be a prime number, and let G be a finite group whose order is a power of p. Let F be a field of characteristic p, and V a nonzero vector space over F equipped with a linear action of $G .{ }^{1}$ Prove that there exists a nonzero subspace $W \subset V$ such that G acts trivially on W.
Hint: One possible strategy involves first proving the result in the special case where F is the finite field \mathbb{F}_{p} and V is finite dimensional (so that V is a finite set), and using this special case to prove the general case.
3. Find the characteristic polynomial of A^{7}, where A is the real matrix:

$$
\left(\begin{array}{cc}
3 & 1 \\
-4 & -1
\end{array}\right)
$$

4. Let S be the set of all lines in \mathbb{R}^{2} that pass through the origin and have either rational or infinite slope. Show that the usual action of $\mathrm{SL}_{2}(\mathbb{Z})$ (the group of 2×2 integer matrices with determinant 1) on \mathbb{R}^{2} induces a transitive action of $\mathrm{SL}_{2}(\mathbb{Z})$ on S.
5. Consider the ring $C(0,1)$ of continuous real-valued functions on $(0,1)$. For any $P \in(0,1)$, write \mathfrak{m}_{P} for the ideal:

$$
\mathfrak{m}_{P}:=\{f \in C(0,1) \mid f(P)=0\} .
$$

(a) Show that $C(0,1)$ contains infinitely many maximal ideals that are not of the form \mathfrak{m}_{P} for any $P \in(0,1)$.
(b) Consider the map $\mathbb{R} \rightarrow C(0,1)$ which sends $a \in \mathbb{R}$ to the constant function with value a. Suppose $\mathfrak{m} \subset C(0,1)$ is a maximal ideal with the property that the composition $\mathbb{R} \rightarrow C(0,1) \rightarrow C(0,1) / \mathfrak{m}$ is an isomorphism. Show that $\mathfrak{m}=\mathfrak{m}_{P}$ for some $P \in(0,1)$.
6. Suppose f is a continuous function on \mathbb{R} such that we have:

$$
\forall x \in \mathbb{R}, \quad f(x)=f\left(x^{2}\right)
$$

Show that f is constant.

[^0]7. Let f be a continuous real-valued function on $[0,1]$. Show that:
$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) \sin (n x) d x=0
$$
8. Suppose $f:[0,1] \rightarrow[0,1]$ is a nondecreasing function, which may or may not be continuous. Show that there exists $x \in[0,1]$ such that $f(x)=x$.
9. Let $D: \mathbb{C}[x] \rightarrow \mathbb{C}[x]$ be the \mathbb{C}-linear map given by $D f=d f / d x$. Let $e^{D}: \mathbb{C}[x] \rightarrow \mathbb{C}[x]$ be the induced linear map given by:
$$
f \mapsto\left(e^{D}\right)(f)=\sum_{n \geq 0} \frac{1}{n!} D^{n}(f)
$$
(a) Show that the above formula does give a well-defined map, which is linear.
(b) Compute $\operatorname{ker}\left(e^{D}\right)$ and $\operatorname{coker}\left(e^{D}\right)$.
10. Prove or disprove: any bijective continuous function $(0,1) \rightarrow \mathbb{R}$ has a continuous inverse.
11. Prove or disprove: $\mathbb{R}^{3} \backslash\{(0,0,0)\}$ and $\mathbb{R}^{3} \backslash B_{\varepsilon}$ are homeomorphic, where $\varepsilon>0$ is a real number and B_{ε} is the closed ball given by $\left\{(x, y, z) \in \mathbb{R}^{3} \mid \sqrt{x^{2}+y^{2}+z^{2}} \leq \varepsilon\right\}$.
12. Prove or disprove the following assertion. Let S be a subset of \mathbb{R}, with the induced order, such that every nonempty subset of S contains a minimum element (in other words, S is well-ordered). Then S is necessarily countable (i.e., empty, finite or countably infinite).
13. Given any two ellipses in \mathbb{R}^{2}, show that there exists a linear (but not necessarily orthogonal) change of coordinates $\left(x^{\prime}=a x+b y+k, y^{\prime}=c x+d y+l ; a d-b c \neq 0\right)$ so that both the ellipses have axes parallel to the new coordinate axes - namely, under the new coordinate system, each of them can be described by an equation of the form:
$$
\frac{\left(x^{\prime}-\alpha\right)^{2}}{r^{2}}+\frac{\left(y^{\prime}-\beta\right)^{2}}{s^{2}}=1 .
$$
14. For any $n \geq 1$, let $P_{n}(x)=\frac{d^{n}}{d x^{n}}\left(x^{n}(1-x)^{n}\right)$. Show that for $m \neq n$:
$$
\int_{0}^{1} P_{n}(x) P_{m}(x) d x=0
$$

[^0]: ${ }^{1}$ In other words, we have an action $G \times V \rightarrow V$ of the group G on the set V, written $(g, v) \mapsto g \cdot v$, such that for all $g \in G$, the map $v \mapsto g \cdot v$ is an F-linear transformation of the F-vector space V.

