QUESTION PAPER

GS2020 - PART 2

Question 1. Let k be a field and let $f: M_{n}(k) \rightarrow k$ be a k-linear transformation such that $f(A B)=f(B A)$, for all $A, B \in M_{n}(k)$. Show that f is a scalar multiple of the trace map.

Question 2. Let R be a finite commutative ring such that R^{\times}has odd cardinality. Show that the cardinality of R is a power of 2 .

Question 3. Let (X, d) be a metric space with the property that $d(x, z) \leq \max \{d(x, y), d(y, z)\}$ for all $x, y, z \in X$. Show that for any $x \in X$, the unit ball

$$
B_{x}=\{y \in X \mid d(x, y) \leq 1\}
$$

is both open and closed in X.
Question 4. Let k be a field and let $S \subset \mathbb{N}$ be an infinite subset. Let $f \in k[t]$ be a polynomial. Show that there exists a polynomial $g \in k[t]$ such that $f(t) g(t)=\sum_{i \geq 0} a_{i} t^{i}$, where $a_{i}=0$ for every $i \notin S$.

Question 5. Let $G L_{n+1}(\mathbb{R}) \subset M_{n+1}(\mathbb{R})$ be given the subspace topology and identify $G L_{n}(\mathbb{R})$ with the subset of $G L_{n+1}(\mathbb{R})$ consisting of matrices of the form

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & A
\end{array}\right)
$$

with $A \in G L_{n}(\mathbb{R})$. Show that $G L_{n+1}(\mathbb{R}) / G L_{n}(\mathbb{R})$ is not compact in the quotient topology.

Question 6. Let H denote the set of homeomorphisms of \mathbb{R} onto itself, viewed as a group under composition. Consider the elements $f_{1}, f_{2} \in H$ defined by $f_{1}(x)=2 x$ and $f_{2}(x)=3 x$, for all $x \in \mathbb{R}$. Show that f_{1} and f_{2} belong to the same conjugacy class in H.

Question 7. Does there exist a sequence $\left\{a_{n}\right\}_{n}$ in \mathbb{R}^{2} such that

$$
\left|a_{n}-a_{m}\right|=\sqrt[4]{n-m},
$$

for all natural numbers $n \geq m$?
Question 8. Does there exist a nonconstant polynomial $f \in \mathbb{Z}[t]$ such that $|f(n)|$ is a power of some prime number (depending on n), for every $n \in \mathbb{Z}$?
Hint: It may help to first consider the case where the prime number is independent of n.

Question 9. Let P be a convex octagon which can be inscribed in a circle such that four of its sides have length 2 and the other four sides have length 3. Find all possible values of the area of P.

Question 10. Construct a continuous function $f:[0,1] \rightarrow \mathbb{R}$ that cannot be written in the form $g_{1}-g_{2}$, where $g_{1}, g_{2}:[0,1] \rightarrow \mathbb{R}$ are continuous, increasing functions.

