Instructions

- 1. Every claim needs a justification.
- 2. Do NOT write your name or affiliation or any personal detail other than application number (of the form GS2023MTHPHDxxxxx or GS2023MTHIPHxxxxx) on the paper.
- 3. There are 10 problems in this paper. All of these carry equal marks.
- 4. Use both sides of each sheet for writing your answers.
- 5. Extra/rough sheets: Two extra sheets have been provided. If these do not suffice, you can ask the invigilator for more sheets.
- 6. Extra sheet etiquette:
 - On the top of each extra sheet, write clearly which problem is being attempted on that sheet. Do not do more than one problem on one extra sheet.
 - Write your application number clearly at the top of each extra sheet.
 - All extra sheet(s) should be stapled onto this answer booklet, whether or not you consider them rough work.
- 7. If a given sheet contains part of your work on a particular problem, and that work is continued on some other page, indicate this clearly.
- 8. No books, notes, electronic devices etc. are allowed.
- 9. \mathbb{N} denotes the set of natural numbers $\{0, 1, 2, 3, ...\}$, \mathbb{Z} denotes the set of integers, \mathbb{Q} the set of rational numbers, \mathbb{R} the set of real numbers, and \mathbb{C} the set of complex numbers. These sets are assumed to carry the usual algebraic and metric structures.
- 10. All rings are assumed to be associative and containing a multiplicative identity denoted by 1.
- 11. $\mathbb{C}\llbracket x \rrbracket$ denotes the formal power series ring in the variable x over \mathbb{C} : its elements are formal sums $\sum_{n=0}^{\infty} a_n x^n$ with $a_n \in \mathbb{C}$ for each n, and its addition and multiplication are given as follows. For $f = \sum_{n=0}^{\infty} a_n x^n$, $g = \sum_{n=0}^{\infty} b_n x^n \in \mathbb{C}\llbracket x \rrbracket$:

$$f + g = \sum_{n=0}^{\infty} (a_n + b_n) x^n$$
, and $fg = \sum_{n=0}^{\infty} (\sum_{i=0}^n a_i b_{n-i}) x^n$.

- 12. For a positive integer n and a field k, $M_n(k)$ denotes the set of $n \times n$ matrices with entries in k, viewed as a vector space of dimension n^2 over k and also as a ring.
- 13. We give $M_n(\mathbb{C})$ the unique topology for which any \mathbb{C} -linear isomorphism $M_n(\mathbb{C}) \to \mathbb{C}^{n^2}$ is a homeomorphism.
- 14. A map $f : \mathbb{R} \to \mathbb{R}$ is said to be a diffeomorphism if it is a differentiable homeomorphism whose inverse is also differentiable.

1. Let X be a compact subset of $M_n(\mathbb{C})$ and let

$$S = \{ \lambda \in \mathbb{C} \mid \lambda \text{ is an eigenvalue of a matrix in } X \}.$$

Show that S is compact.

2. Let X denote the set of isomorphism classes of all finite groups. For any finite group G, let [G] denote its class in X. Does there exist an injective function $f: X \to \mathbb{Z}$ such that for every finite group G and a normal subgroup H of G, we have

$$f([G]) = f([H]) \cdot f([G/H])?$$

3. Determine the cardinality of the set

 $\{(a_1, \ldots, a_{10}) \in \{0, 1\}^{10} \mid a_i \text{ and } a_{i+1} \text{ are not both } 0 \text{ for any } 1 \le i \le 9\}.$

4. Let n be a positive integer and let $f \in \mathbb{C}[z_1, \ldots, z_n]$ be a nonzero polynomial. If

$$X = \{ z = (z_1, \dots, z_n) \in \mathbb{C}^n \mid f(z) = 0 \},\$$

then show that $\mathbb{C}^n \setminus X$ is path connected.

- 5. (a) Show that there is a piecewise linear homeomorphism $f : \mathbb{R} \to \mathbb{R}$ with f(2x) = 3f(x), for all $x \in \mathbb{R}$.
 - (b) Does there exist a diffeomorphism $f : \mathbb{R} \to \mathbb{R}$ with f(2x) = 3f(x), for all $x \in \mathbb{R}$?
- 6. Let R be a commutative ring in which 2 is invertible. Show that the cardinality of the set $\{x \in R \mid x^2 = 1\}$ is the same as the cardinality of the set $\{x \in R \mid x^2 = x\}$.
- 7. Let $A \in M_n(\mathbb{C})$. Show that the following statements are equivalent.
 - (i) A is nilpotent (i.e., $A^m = 0$ for some positive integer m).
 - (ii) There exists a \mathbb{C} -linear ring homomorphism $\mathbb{C}[\![x]\!] \to M_n(\mathbb{C})$ taking x to A.
- 8. Let $z \in \mathbb{C}^{\times}$ and let C_z denote the closure of the cyclic subgroup generated by z in \mathbb{C}^{\times} . Show that \mathbb{C}^{\times}/C_z is isomorphic as a group to one of the following three groups: \mathbb{C}^{\times} , \mathbb{R} , and $S^1 \times S^1$. Here, \mathbb{R} is the additive group of real numbers, \mathbb{C}^{\times} is the multiplicative group of nonzero complex numbers, and $S^1 \subset \mathbb{C}^{\times}$ is the subgroup consisting of complex numbers of absolute value one.

9. Let $f_0: [0,1] \to \mathbb{R}$ be a continuous function and inductively define

$$f_n(x) := \int_0^x f_{n-1}(t)dt,$$

for $n \ge 1$. Assume that for every $x \in [0, 1]$, there exists a positive integer n_x such that $f_{n_x}(x) = 0$. Show that there exists a subinterval $[a, b] \subseteq [0, 1]$, with a < b, such that f_0 is identically zero on [a, b].

- 10. Let k be a field of characteristic 0 and let n be a positive integer. Show that the following two statements are equivalent.
 - (i) If V is a finite dimensional k-vector space and $T: V \to V$ is a k-linear map satisfying

$$\underbrace{T \circ \cdots \circ T}_{n\text{-times}} = \mathrm{Id},$$

then V is spanned by eigenvectors for T. Here, $\text{Id} : V \to V$ is the identity linear transformation.

(ii) The cardinality of the set $\{x \in k \mid x^n = 1\}$ is precisely n.