GS 2024, Mathematics: Stage II

Instructions

- 1. Every claim needs a justification.
- 2. If a question consists of two parts, (a) and (b), you may use part (a) to solve part (b), even if you have not worked (a) out.
- 3. Do NOT write your name or affiliation or any personal detail other than application number (of the form GS2024MTHPHDxxxxxx or GS2024MTHIPHxxxxxx) on the paper.
- 4. There are 10 problems in this paper. Each of these carries 10 points.
- 5. Use both sides of each sheet for writing your answers.
- 6. Extra/rough sheets: Two extra sheets have been provided. If these do not suffice, you can ask the invigilator for more sheets.
- 7. Extra sheet etiquette:
 - On the top of each extra sheet, write clearly which problem is being attempted on that sheet. Do not do more than one problem on one extra sheet.
 - Write your application number clearly at the top of each extra sheet.
 - All extra sheet(s) should be stapled onto this answer booklet, whether or not you consider them rough work.
- 8. If a given sheet contains part of your work on a particular problem, and that work is continued on some other page, indicate this clearly.
- 9. No books, notes, electronic devices etc. are allowed.
- 10. \mathbb{N} denotes the set of natural numbers $\{0, 1, 2, 3, ...\}$, \mathbb{Z} denotes the set of integers, \mathbb{Q} the set of rational numbers, \mathbb{R} the set of real numbers, and \mathbb{C} the set of complex numbers. These sets are assumed to carry the usual algebraic and metric structures.
- 11. All rings are assumed to be associative and containing a multiplicative identity denoted by 1.

- 1. Let X denote the set of sequences of 0's and 1's. Define $d : X \times X \to \mathbb{R}$ by $d((x_n), (y_n)) = \sup_{n \in \mathbb{N}} \{(1/2^n) | x_n y_n | \}.$
 - (a) Show that (X, d) is a metric space.
 - (b) Show that X is complete with respect to d.
- 2. Let G be a finite group of square-free order, and let H be a subgroup of G with the following property: for any nontrivial subgroup $K \subseteq G$, the subgroup $H \cap K$ is nontrivial. Show that H = G.
- 3. Consider the real vector space $V = \{p(x) \in \mathbb{R}[x] | \deg p(x) \le 10\}$. Consider the linear transformations $S, T : V \to V$ defined by

$$S: p(x) \mapsto p(x) + p'(x),$$

$$T: p(x) \mapsto p(x+1).$$

Are the linear transformations S and T similar over the real numbers?

- 4. Let n be a positive integer and let p be a prime number such that $p \equiv 1 \pmod{n}$. Let A be a square matrix with entries in $\mathbb{Z}/p\mathbb{Z}$ such that $A^n = I$. Prove that A is diagonalizable over $\mathbb{Z}/p\mathbb{Z}$.
- 5. (a) Let $f, g: [0,1] \to \mathbb{R}$ be continuous functions such that for $a, b \in [0,1]$, we have

$$f(a) = f(b) \implies g(a) = g(b).$$

Show that there exists a continuous map $h: f([0,1]) \to \mathbb{R}$ such that

$$g \equiv h \circ f$$
 on $[0,1]$.

- (b) Conclude that there exists a sequence $\{p_n\}$ of polynomials such that $\{p_n \circ f\}$ converges to g uniformly on [0, 1].
- 6. Let (X, d) be a nonempty compact metric space. Let $f: X \to X$ be a continuous function such that d(f(x), f(y)) < d(x, y) for all $x \neq y$. Show that f has a unique fixed point.
- 7. Let R and S be distinct subrings of \mathbb{Q} , each with exactly two prime ideals. Show that 1/2 belongs to at least one of R and S.
- 8. (a) Show that if n and m are positive integers such that $n \equiv m \pmod{20}$, then we have $n^n \equiv m^m \pmod{10}$.
 - (b) Which of the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 occur as the last digit of n^n , for infinitely many positive integers n?

9. Let $f: (0, \infty) \to (0, \infty)$ be a continuously differentiable function: this means that f is differentiable at x for all $x \in (0, \infty)$, and that $f': (0, \infty) \to \mathbb{R}$ is continuous. Assume that

$$\lim_{x \to \infty} (f'(x) + f(x)) = 0$$

Show that $\lim_{x \to \infty} f(x) = 0.$

Hint. First show that for all $\varepsilon > 0$ and $M \in (0, \infty)$, there exists $x_0 > M$ such that $f(x_0) < \epsilon$.

- 10. Suppose that we are given two bags A and B each containing finitely many balls labelled with a number in the set $\{0, \ldots, 10\}$. It is given that on choosing a ball from bag A and a ball from bag B at random, the sum of the numbers on them takes each of the values $0, \ldots, 10$ with probability $\frac{1}{11}$ each.
 - (a) Show that one of the bags A and B has all its balls labelled with 0.
 - (b) What are the possibilities for the labels on the balls in the other bag?