The work of James Maynard

Anish Ghosh

Tata Institute
August 25, 2022
$\mathfrak{C}^{(G)}$ tifr

PRIME PATTERNS

- $2,3,5,7,11,13, \ldots$

PRIME PATTERNS

- $2,3,5,7,11,13, \ldots$
- $(3,5),(5,7),(11,13), \ldots,(71,73), \ldots,(137,139), \ldots$?

PRIME PATTERNS

- $2,3,5,7,11,13, \ldots$
- $(3,5),(5,7),(11,13), \ldots,(71,73), \ldots,(137,139), \ldots ?$
- $(5,7,11),(7,11,13),(11,13,17),(13,17,19), \ldots$?

PRIME PATTERNS

- $2,3,5,7,11,13, \ldots$
- $(3,5),(5,7),(11,13), \ldots,(71,73), \ldots,(137,139), \ldots ?$
- $(5,7,11),(7,11,13),(11,13,17),(13,17,19), \ldots ?$
- Yitang Zhang (2013): there are infinitely many pairs of primes that differ by at most 70 million

PRIME PATTERNS

- $2,3,5,7,11,13, \ldots$
- $(3,5),(5,7),(11,13), \ldots,(71,73), \ldots,(137,139), \ldots ?$
- $(5,7,11),(7,11,13),(11,13,17),(13,17,19), \ldots ?$
- Yitang Zhang (2013): there are infinitely many pairs of primes that differ by at most 70 million
- Toy examples of a beautiful result of Maynard:

PRIME PATTERNS

- $2,3,5,7,11,13, \ldots$
- $(3,5),(5,7),(11,13), \ldots,(71,73), \ldots,(137,139), \ldots ?$
- $(5,7,11),(7,11,13),(11,13,17),(13,17,19), \ldots ?$
- Yitang Zhang (2013): there are infinitely many pairs of primes that differ by at most 70 million
- Toy examples of a beautiful result of Maynard:
- can replace 70 million by 246

PRIME PATTERNS

- $2,3,5,7,11,13, \ldots$
- $(3,5),(5,7),(11,13), \ldots,(71,73), \ldots,(137,139), \ldots ?$
- $(5,7,11),(7,11,13),(11,13,17),(13,17,19), \ldots ?$
- Yitang Zhang (2013): there are infinitely many pairs of primes that differ by at most 70 million
- Toy examples of a beautiful result of Maynard:
- can replace 70 million by 246
- there are infinitely many triples of primes within 433992 of each other.

DIophantine approximation

- The resolution of the Duffin-Schaeffer conjecture by Koukoulopoulos and Maynard.

DIophantine approximation

- The resolution of the Duffin-Schaeffer conjecture by Koukoulopoulos and Maynard.
- How well can we approximate real numbers by rational ones?

DIophantine approximation

- The resolution of the Duffin-Schaeffer conjecture by Koukoulopoulos and Maynard.
- How well can we approximate real numbers by rational ones?
- Theorem (Dirichlet): If $x \in \mathbb{R} \backslash \mathbb{Q}$, then $|x-a / q|<q^{-2}$ for infinitely many pairs $(a, q) \in \mathbb{Z} \times \mathbb{N}$.

PRECISION

- It is very difficult to determine Diophantine properties of individual numbers

PRECISION

- It is very difficult to determine Diophantine properties of individual numbers
- $\mu(x):=\sup \{v>0: 0<|x-a / q|<$
q^{-v} for infinitely many pairs $\left.(a, q) \in \mathbb{Z} \times \mathbb{N}\right\}$.

PRECISION

- It is very difficult to determine Diophantine properties of individual numbers
- $\mu(x):=\sup \{v>0: 0<|x-a / q|<$
q^{-v} for infinitely many pairs $\left.(a, q) \in \mathbb{Z} \times \mathbb{N}\right\}$.
- Roth: $\mu(x)=2$ for algebraic x

PRECISION

- It is very difficult to determine Diophantine properties of individual numbers
- $\mu(x):=\sup \{v>0: 0<|x-a / q|<$
q^{-v} for infinitely many pairs $\left.(a, q) \in \mathbb{Z} \times \mathbb{N}\right\}$.
- Roth: $\mu(x)=2$ for algebraic x
- $\mu(\pi)=$?

Sparsity

- Another difficult problem is to sample the denominators in special sets

Sparsity

- Another difficult problem is to sample the denominators in special sets
- Theorem (Matömaki). Let x be an irrational number and let $\varepsilon>0$. Then there are infinitely many integers a and prime numbers p such that $|x-a / p|<p^{-4 / 3+\varepsilon}$.

Sparsity

- Another difficult problem is to sample the denominators in special sets
- Theorem (Matömaki). Let x be an irrational number and let $\varepsilon>0$. Then there are infinitely many integers a and prime numbers p such that $|x-a / p|<p^{-4 / 3+\varepsilon}$.
- The conjectured correct exponent is 2 .

A Probabilistic Perspective

- It may be more productive to characterize Diophantine properties probabilistically

A Probabilistic Perspective

- It may be more productive to characterize Diophantine properties probabilistically
- "Metric" Diophantine approximation

A Probabilistic Perspective

- It may be more productive to characterize Diophantine properties probabilistically
- "Metric" Diophantine approximation
- $A:=\{x \in[0,1]:|x-a / q|<$ $\psi(q)$ for infinitely many pairs $(a, q) \in \mathbb{Z} \times \mathbb{N}\}$

A Probabilistic Perspective

- It may be more productive to characterize Diophantine properties probabilistically
- "Metric" Diophantine approximation
- $A:=\{x \in[0,1]:|x-a / q|<$ $\psi(q)$ for infinitely many pairs $(a, q) \in \mathbb{Z} \times \mathbb{N}\}$
- Theorem (Khintchine):
(1) If $\sum_{q} q \psi(q)<\infty$ then $\operatorname{Leb}(A)=0$.
(2) If $\sum_{q} q \psi(q)=\infty$ and $q^{2} \psi(q)$ is decreasing, then $\operatorname{Leb}(A)=1$.

Borel Cantelli Lemma

- $A_{q}=\{x \in[0,1]$: there is $a \in \mathbb{Z}$ such that $|x-a / q|<\psi(q)\}$.

Borel Cantelli Lemma

- $A_{q}=\{x \in[0,1]$: there is $a \in \mathbb{Z}$ such that $|x-a / q|<\psi(q)\}$.
- So $A_{q}=[0,1] \cap \bigcup_{0 \leq a \leq q}\left(\frac{a}{q}-\psi(q), \frac{a}{q}+\psi(q)\right)$

Borel Cantelli Lemma

- $A_{q}=\{x \in[0,1]$: there is $a \in \mathbb{Z}$ such that $|x-a / q|<\psi(q)\}$.
- So $A_{q}=[0,1] \cap \bigcup_{0 \leq a \leq q}\left(\frac{a}{q}-\psi(q), \frac{a}{q}+\psi(q)\right)$
- And $A=\left\{x \in[0,1]: x \in A_{q}\right.$ for infinitely many $\left.q\right\}=$ $\lim \sup _{q \rightarrow \infty} A_{q}$.

Borel Cantelli Lemma

- $A_{q}=\{x \in[0,1]$: there is $a \in \mathbb{Z}$ such that $|x-a / q|<\psi(q)\}$.
- So $A_{q}=[0,1] \cap \bigcup_{0 \leq a \leq q}\left(\frac{a}{q}-\psi(q), \frac{a}{q}+\psi(q)\right)$
- And $A=\left\{x \in[0,1]: x \in A_{q}\right.$ for infinitely many $\left.q\right\}=$ $\lim \sup _{q \rightarrow \infty} A_{q}$.
- Let (X, B, μ) be a probability space, let A_{1}, A_{2}, \ldots be measurable sets, and let $A=\lim \sup _{n \rightarrow \infty} A_{n}$. Then
(1) (The first Borel-Cantelli lemma) If $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)<\infty$ then $\mu(A)=0$
(2) (The second Borel-Cantelli lemma) If $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)=\infty$ and A_{1}, A_{2}, \ldots are pairwise independent, then $\mu(A)=1$.
- One applies Borel-Cantelli to $[0,1]$ equipped with Lebesgue measure. We have $\mu\left(A_{q}\right)=2 q \psi(q)$.
- One applies Borel-Cantelli to [0,1] equipped with Lebesgue measure. We have $\mu\left(A_{q}\right)=2 q \psi(q)$.
- The convergence case follows directly
- One applies Borel-Cantelli to [0,1] equipped with Lebesgue measure. We have $\mu\left(A_{q}\right)=2 q \psi(q)$.
- The convergence case follows directly
- The second BC lemma cannot be used directly because the sets are not pairwise independent
- One applies Borel-Cantelli to $[0,1]$ equipped with Lebesgue measure. We have $\mu\left(A_{q}\right)=2 q \psi(q)$.
- The convergence case follows directly
- The second BC lemma cannot be used directly because the sets are not pairwise independent
- One instead uses an enhanced version which permits the use of "independence on average"

Aside: DYNAMICS

- Many Diophantine properties admit interpretations in terms of flows on homogeneous spaces

Aside: DYnamics

- Many Diophantine properties admit interpretations in terms of flows on homogeneous spaces
- Khintchine's theorem translates to cusp excursions of the geodesic flow on the modular surface

Aside: DYnamics

- Many Diophantine properties admit interpretations in terms of flows on homogeneous spaces
- Khintchine's theorem translates to cusp excursions of the geodesic flow on the modular surface
- In this interpretation, the mixing of the geodesic flow provides independence on average
- Can the monotonicity condition in Khintchine's theorem be dropped?
- Can the monotonicity condition in Khintchine's theorem be dropped?
- No. One can create dependencies using redundancies in denominators
- Can the monotonicity condition in Khintchine's theorem be dropped?
- No. One can create dependencies using redundancies in denominators
- An explicit example was given by Duffin and Schaeffer in 1941
- Can the monotonicity condition in Khintchine's theorem be dropped?
- No. One can create dependencies using redundancies in denominators
- An explicit example was given by Duffin and Schaeffer in 1941
- Namely, they gave an example of ψ such that $\sum_{q=1}^{\infty} q \psi(q)=\infty$ but $\mu(A)=0$

The conjecture

- $A^{*}:=\{x \in[0,1]:|x-a / q|<$
$\psi(q)$ for infinitely many reduced fractions $a / q\}$

The Conjecture

- $A^{*}:=\{x \in[0,1]:|x-a / q|<$ $\psi(q)$ for infinitely many reduced fractions $a / q\}$
- As before, A^{*} is the limsup of sets A_{q}^{*} which have measure $2 \phi(q) \psi(q)$

The conjecture

- $A^{*}:=\{x \in[0,1]:|x-a / q|<$ $\psi(q)$ for infinitely many reduced fractions $a / q\}$
- As before, A^{*} is the limsup of sets A_{q}^{*} which have measure $2 \phi(q) \psi(q)$
- Conjecture (Duffin-Schaeffer, 1941) proved by Koukoulopoulos and Maynard in 2020.
(1) If $\sum_{q} \phi(q) \psi(q)<\infty$ then $\operatorname{Leb}\left(A^{*}\right)=0$.
(2) If $\sum_{q} \phi(q) \psi(q)=\infty$ then $\operatorname{Leb}\left(A^{*}\right)=1$.
- Theorem (Duffin-Schaeffer): The Duffin-Schaeffer conjecture is true provided that
- Theorem (Duffin-Schaeffer): The Duffin-Schaeffer conjecture is true provided that
- $\limsup \sin _{Q \rightarrow \infty} \frac{\sum_{q \leq Q} \phi(q) \psi(q)}{\sum_{q \leq Q} q \psi(q)}>0$.
- Theorem (Duffin-Schaeffer): The Duffin-Schaeffer conjecture is true provided that
- $\lim \sup _{Q \rightarrow \infty} \frac{\sum_{q \leq Q} \phi(q) \psi(q)}{\sum_{q \leq Q} q \psi(q)}>0$.
- This settles the conjecture when $\psi(q)$ is supported on integers without too many small prime factors.
- Theorem (Duffin-Schaeffer): The Duffin-Schaeffer conjecture is true provided that
- $\lim \sup _{Q \rightarrow \infty} \frac{\sum_{q \leq Q} \phi(q) \psi(q)}{\sum_{q \leq Q} q \psi(q)}>0$.
- This settles the conjecture when $\psi(q)$ is supported on integers without too many small prime factors.
- For almost all $x \in \mathbb{R}$, there are infinitely many reduced fractions a / p such that p is prime, and $|x-a / p|<p^{-2}$.
- Theorem (Duffin-Schaeffer): The Duffin-Schaeffer conjecture is true provided that
- $\lim \sup _{Q \rightarrow \infty} \frac{\sum_{q \leq Q} \phi(q) \psi(q)}{\sum_{q \leq Q} q \psi(q)}>0$.
- This settles the conjecture when $\psi(q)$ is supported on integers without too many small prime factors.
- For almost all $x \in \mathbb{R}$, there are infinitely many reduced fractions a / p such that p is prime, and $|x-a / p|<p^{-2}$.
- Theorem (Gallagher): $\mu\left(A^{*}\right) \in\{0,1\}$.
- Theorem (Duffin-Schaeffer): The Duffin-Schaeffer conjecture is true provided that
- $\lim \sup _{Q \rightarrow \infty} \frac{\sum_{q \leq Q} \phi(q) \psi(q)}{\sum_{q \leq Q} q \psi(q)}>0$.
- This settles the conjecture when $\psi(q)$ is supported on integers without too many small prime factors.
- For almost all $x \in \mathbb{R}$, there are infinitely many reduced fractions a / p such that p is prime, and $|x-a / p|<p^{-2}$.
- Theorem (Gallagher): $\mu\left(A^{*}\right) \in\{0,1\}$.
- The proof uses Birkhoff's ergodic theorem applied to multiplication by 2 map on the circle.
- Theorem (Erdös, Vaaler): The Duffin-Schaeffer conjecture is true for all functions $\psi(q) \leq 1 / q^{2}$
- Theorem (Erdös, Vaaler): The Duffin-Schaeffer conjecture is true for all functions $\psi(q) \leq 1 / q^{2}$
- The higher dimensional analogue of the Duffin-Schaeffer conjecture is much easier and was proved by Pollington and Vaughan in 1990.
- Theorem (Erdös, Vaaler): The Duffin-Schaeffer conjecture is true for all functions $\psi(q) \leq 1 / q^{2}$
- The higher dimensional analogue of the Duffin-Schaeffer conjecture is much easier and was proved by Pollington and Vaughan in 1990.
- Since $\sum_{q} \phi(q) \psi(q)=\infty, \phi(q) \leq q$, we have that $\sum_{S} 1 / q=\infty$
- Theorem (Erdös, Vaaler): The Duffin-Schaeffer conjecture is true for all functions $\psi(q) \leq 1 / q^{2}$
- The higher dimensional analogue of the Duffin-Schaeffer conjecture is much easier and was proved by Pollington and Vaughan in 1990.
- Since $\sum_{q} \phi(q) \psi(q)=\infty, \phi(q) \leq q$, we have that $\sum_{s} 1 / q=\infty$
- Where $S=\{q: \psi(q)>0\}$.
- Theorem (Erdös, Vaaler): The Duffin-Schaeffer conjecture is true for all functions $\psi(q) \leq 1 / q^{2}$
- The higher dimensional analogue of the Duffin-Schaeffer conjecture is much easier and was proved by Pollington and Vaughan in 1990.
- Since $\sum_{q} \phi(q) \psi(q)=\infty, \phi(q) \leq q$, we have that $\sum_{S} 1 / q=\infty$
- Where $S=\{q: \psi(q)>0\}$.
- So S has to be somewhat dense.
- Let q, r be two distinct integers >2, let $\psi(q), \psi(r)>0$, and let $M(q, r)=2 \max \{\psi(q), \psi(r)\} \operatorname{lcm}[q, r]$. If $M(q, r) \leq 1$, then $A_{q}^{*} \cap A_{r}^{*}=\emptyset$. Otherwise,

$$
\mu\left(A_{q}^{*} \cap A_{r}^{*}\right) \ll \phi(q) \psi(q) \phi(r) \psi(r) \exp \left(\sum_{\substack{p \mid q r / g c d(q, r) \\ p>M(q, r)}} \frac{1}{p}\right) .
$$

- Let q, r be two distinct integers >2, let $\psi(q), \psi(r)>0$, and let $M(q, r)=2 \max \{\psi(q), \psi(r)\} \operatorname{lcm}[q, r]$. If $M(q, r) \leq 1$, then $A_{q}^{*} \cap A_{r}^{*}=\emptyset$. Otherwise,

$$
\mu\left(A_{q}^{*} \cap A_{r}^{*}\right) \ll \phi(q) \psi(q) \phi(r) \psi(r) \exp \left(\sum_{\substack{p \mid q r / g c d(q, r) \\ p>M(q, r)}} \frac{1}{p}\right) .
$$

- Model Problem. Let $D>1$ and $\delta \in(0,1]$, and let $S \subset[Q, 2 Q] \cap \mathbb{Z}$ be a set of $\delta Q / D$ elements such that there are $>\delta \# S^{2}$ pairs $(q, r) \in S \times S$ with $\operatorname{gcd}(q, r)>D$. Must there be an integer $d>D$ that divides $\gg \delta 100 Q / D$ elements of S ?
- Model Problem. Let $D>1$ and $\delta \in(0,1]$, and let $S \subset[Q, 2 Q] \cap \mathbb{Z}$ be a set of $\delta Q / D$ elements such that there are $>\delta \# S^{2}$ pairs $(q, r) \in S \times S$ with $\operatorname{gcd}(q, r)>D$. Must there be an integer $d>D$ that divides $\gg \delta 100 Q / D$ elements of S ?
- Model Problem. Let $D>1$ and $\delta \in(0,1]$, and let $S \subset[Q, 2 Q] \cap \mathbb{Z}$ be a set of $\delta Q / D$ elements such that there are $>\delta \# S^{2}$ pairs $(q, r) \in S \times S$ with $\operatorname{gcd}(q, r)>D$. Must there be an integer $d>D$ that divides $\gg \delta 100 Q / D$ elements of S ?
- A key innovation is the concept of a GCD graph
- Model Problem. Let $D>1$ and $\delta \in(0,1]$, and let $S \subset[Q, 2 Q] \cap \mathbb{Z}$ be a set of $\delta Q / D$ elements such that there are $>\delta \# S^{2}$ pairs $(q, r) \in S \times S$ with $\operatorname{gcd}(q, r)>D$. Must there be an integer $d>D$ that divides $\gg \delta 100 Q / D$ elements of S ?
- A key innovation is the concept of a GCD graph
- An iterative Compression Algorithm inspired by Erdös-Ko-Rado and Dyson.

Thante Wout

