Brief survey of Viazovska's work on sphere packing

TIFR

August 23, 2022

(IISc, Bangalore)

August 23, 2022 1 / 19

Definition

A lattice in \mathbb{R}^d is a discrete subgroup of \mathbb{R}^d of rank d. Equivalently, it is the integral span of a basis of \mathbb{R}^d .

Lattice packing

Let Λ be a lattice in \mathbb{R}^d . Sphere packing on lattice Λ is putting spheres of radius *r* centred at each of point of Λ , where

$$r = \frac{1}{2} \min_{x \in \Lambda \setminus \{0\}} |x|$$

Density of lattice packing is

$$\frac{\pi^{d/2} r^d}{\Gamma\left(\frac{d}{2}+1\right)} \cdot \frac{1}{\operatorname{vol}(\mathbb{R}^d/\Lambda)}.$$

Example: \mathbb{Z}^2 in \mathbb{R}^2

Example: \mathbb{Z}^2 in \mathbb{R}^2

(IISc, Bangalore)

Example: Lattice D_d in \mathbb{R}^d

 $\{e_1 + e_i : 1 \leq i \leq d\}$ is a \mathbb{Z} -basis of D_d .

Note that the minimum distance between lattice points in D_d is $\sqrt{2}$.

Example: Lattice D_d in \mathbb{R}^d

Example

Theorem (Hales)

 D_3 gives the densest sphere packing in \mathbb{R}^3 .

Figure: By Funkdooby - A load of old balls. (wikipedia)

 D_4 and D_5 give the densest known sphere packings in \mathbb{R}^4 and \mathbb{R}^5 , respectively.

(IISc, Bangalore)

Densest packing in dimension 2

This is the A_2 lattice in \mathbb{R}^2 .

The E_8 lattice

When $d \ge 6$ there are "holes" in the D_d lattice packing. The hole at $(\frac{1}{2}, \ldots, \frac{1}{2})$ is at a distance of $\sqrt{d/4}$ from lattice points. This hole is exactly enough to fit another sphere (of radius $\sqrt{2}/2$) when d = 8.

$$E_8 = D_8 \cup D_8 + \left(\frac{1}{2}, \dots, \frac{1}{2}\right).$$
$$\left\{ \left(\frac{1}{2}, \dots, \frac{1}{2}\right), e_1 + e_j : 1 \le j \le 7 \right\}$$

is a \mathbb{Z} -basis for E_8 .

 E_8 is an integral, even, unimodular lattice (distance between any vectors in E_8 is of the form $\sqrt{2k}$ for some integer $k \ge 0$ and $\operatorname{vol}(\mathbb{R}^8/E_8) = 1$). The packing radius of E_8 is $r = \sqrt{2}/2$. Hence the density of E_8 packing is $\frac{\pi^4(\sqrt{2}/2)^8}{4!} = \frac{\pi^4}{384} = 0.2536 \dots$ As we saw in the previous talk, we need an even Schwartz function $f:\mathbb{R}^8\to\mathbb{R}$ such that

$$f(x) \leq 0$$
 for all $x \in \mathbb{R}^8$ satisfying $|x| \ge \sqrt{2}$,
 $\hat{f}(y) \ge 0$ for all $y \in \mathbb{R}^8$,
 $f(0) = \hat{f}(0) = 1$.

Enough to assume that f is "radial" i.e. depends only on |x|.

For numerical computations Cohn and Miller used functions of the form

$$f(x) = p(|x|^2)e^{-\pi|x|^2},$$

where p is a well-chosen polynomial.

$$\mathcal{H} = \{ z \in \mathbb{C} : \operatorname{Im}(z) > 0 \}.$$

The group $SL_2(\mathbb{Z})$ acts on \mathcal{H} by

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) z = \frac{az+b}{cz+d}.$$

For an integer $N \ge 1$, define

$$\Gamma(N) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in SL_2(\mathbb{Z}) : \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \equiv \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \pmod{N} \right\}$$

< 4[™] ▶

Weight k actions of $SL_2(\mathbb{Z})$ on a function $f : \mathcal{H} \to \mathbb{C}$ is defined by

$$f|_k \begin{pmatrix} a & b \\ c & d \end{pmatrix} (z) = (cz+d)^{-k} f\left(\frac{az+b}{cz+d}\right).$$

A weight k holomorphic modular form for $SL_2(\mathbb{Z})$ is a holomorphic function $f : \mathcal{H} \to \mathbb{C}$ such that

If there are finitely many terms with negative indices, then f is called *weakly holomorphic*.

A weight k holomorphic modular form for $\Gamma(N)$ is a holomorphic function $f: \mathcal{H} \to \mathbb{C}$ such that

(1)
$$f|_k \gamma = f$$
 for all $\gamma \in \Gamma(N)$.
e.g. $f|_k \begin{pmatrix} 1 & N \\ 0 & 1 \end{pmatrix} = f(z+N) = f(z)$.

(2) *f* is holomorphic at cusps i.e.
$$f|_k \gamma(z)$$
 has Fourier expansion $f|_k \gamma(z) = \sum_{n=0}^{\infty} a_n e^{\frac{2\pi i n z}{N}}$, for all $\gamma \in SL_2(\mathbb{Z})$.
 $SL_2(\mathbb{Z})$ is generated by $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Hence one only needs to check

$$f(z+1) = f(z),$$
 $f(-1/z) = z^k f(z).$

Image: A matrix and a matrix

э

Examples of modular forms

For an even integer $k \ge 4$, define

$$E_{k}(z) = \frac{1}{2\zeta(k)} \sum_{(c,d) \in \mathbb{Z}^{2} \setminus \{(0,0)\}} (cz+d)^{-k}$$
$$= 1 + \frac{2}{\zeta(1-k)} \sum_{n=1}^{\infty} \sigma_{k-1}(n) e^{2\pi i n z}.$$

Fact: Product of modular forms of weight k and weight ℓ is a modular form of weight $k + \ell$. The graded ring of modular forms for $SL_2(\mathbb{Z})$ is generated by E_4 and E_6 .

$$\Theta_{E_8}(z) = \sum_{x \in E_8} e^{\pi i |x|^2 z} = E_4(z).$$

$$E_2(z) = 1 - 24 \sum_{n=1}^{\infty} \sigma_1(n) e^{2\pi i n z}$$

satisfies $z^{-2}E_2(-1/z) = E_2(z) - 6i/\pi z$ (quasimodular form).

Ramanujan's Delta function

$$\Delta(z) = \frac{E_4(z)^3 - E_6(z)^2}{1728} = q \prod_{n=1}^{\infty} (1 - q^n)^{24}$$

is the unique cusp form of weight 12 for $SL_2(\mathbb{Z})$. It vanishes at cusp but not at any point in \mathcal{H} .

$$\begin{aligned} &U(z) = \left(\sum_{n \in \mathbb{Z}} e^{\pi i n z}\right)^4 \text{ is a modular form of weight 2 for } \Gamma(2).\\ &\text{Define } W = U|_2 T(z) = U(z+1) \text{ and } V = U - W. \end{aligned}$$

The graded ring of $\Gamma(2)$ modular forms is generated by U and W.

We write $f = f_+ + f_-$, where $f_+ = (f + \hat{f})/2$ and $f_- = (f - \hat{f})/2$. So f_+ and f_- are eigenfunctions for Fourier transform. Thus we want radial eigenfunctions f_{\pm} for Fourier transform with single root at $\sqrt{2}$ and double roots at $\sqrt{2n}$, for $n \ge 2$.

To illustrate the method, we construct a radial Fourier eigenfunction g, with Fourier eigenvalue -1, and simple roots at \sqrt{n} for all $n \ge 3$.

$$g(x) = \frac{1}{2} \int_{-1}^{1} \psi(z) e^{\pi i z |x|^2} dz,$$

where ψ is a holomorphic function on \mathcal{H} and the contour from -1 to 1 is the semicircle centred at 0.

Magic functions!

If $\psi(z+2) = \psi(z)$, then ψ has Fourier expansion $\psi(z) = \sum_{n \in \mathbb{Z}} a_n e^{\pi i n z}$. Thus we get

$$g(\sqrt{n}) = \frac{1}{2} \int_{-1}^{1} \psi(z) e^{\pi i z n} dz = a_{-n}.$$

(Assuming interchanging sum and integral is OK).

As the Fourier transform of $x \mapsto e^{\pi i z |x|^2}$ is $y \mapsto z^{-4} e^{\pi i (-1/z)|y|^2}$, we get

$$\widehat{g}(y) = \frac{1}{2} \int_{-1}^{1} \psi(z) z^{-4} e^{\pi i (-1/z)|y|^2} dz.$$

To get $\hat{g} = -g$, we must have $z^4\psi(-1/z) = \psi(z)$. In other words, $\psi(z)$ should be a *weakly holomorphic* modular form of weight -2 on $\Gamma = \langle S, T^2 \rangle \subset SL_2(\mathbb{Z})$. It suffices to construct a holomorphic modular form $\Delta \psi$ of weight 10 on Γ .

Magic functions!

Put

$$\psi = \frac{-U^5 + 2U^4W}{\Delta}.$$

This ψ works and we get

$$g(\sqrt{n}) = \begin{cases} -240 & \text{if } n = 0, \\ 8 & \text{if } n = 1, \\ 1 & \text{if } n = 2, \\ 0 & \text{if } n \ge 3. \end{cases}$$

We can rewrite the contour integral defining g as

$$g(x) = \frac{e^{-\pi i |x|^2} - e^{\pi i |x|^2}}{2} \int_0^{i\infty} \psi(u+1) e^{\pi i u |x|^2} du$$
$$= \sin(\pi |x|^2) \int_0^\infty \psi(it+1) e^{-\pi t |x|^2} dt.$$

The last expression "generalises":

$$f_{-}(x) = 4\sin(\pi |x|^2/2)^2 \int_0^\infty \psi(it) e^{-\pi t |x|^2} dt$$

with

$$\psi = \frac{W^3(5U^2 - 5UW + 2W^2)}{\Delta}.$$

$$f_+(x) = -4i\sin(\pi|x|^2/2)^2 \int_0^{i\infty} z^{-2}\chi(-1/z)e^{\pi i z|x|^2} dz,$$

with

$$\chi = \frac{(E_2 E_4 - E_6)^2}{\Delta}.$$

Image: A matched black

э