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Matrices

Consider the set of columns of a matrix

A ··=


...

...
...

v1 v2 . . . vn
...

...
...


and the sets

I ··= {S ⊆ columns (A) | S is linearly independent}
B ··= {B ∈ I | B is “maximal”} the “bases” of the column space

Exchange property

B1, B2 ∈ B and a1 ∈ B1 \B2 =⇒ there exists a2 ∈ B2 \B1 s.t. (B1 \ {a1}) ∪ {a2} ∈ B
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Matroids: Combinatorial “geometries” [Nakasawa/Whitney, 1935]

M = (Ω,B)

where

• Ω is a finite ground set
• B (set of “bases”) is a collection of subsets of Ω which satisfy the exchange property

• . . . they must therefore all be of the same size!
• I (“independent sets”) are then all subsets of elements of B
• rank(M) is the size of any base

Exchange property

B1, B2 ∈ B and a1 ∈ B1 \B2 =⇒ there exists a2 ∈ B2 \B1 s.t. (B1 \ {a1}) ∪ {a2} ∈ B
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Example: Linear matroids

Consider the set of columns of a matrix (entries in R, or C, or Q, or . . . )

A ··=


...

...
...

v1 v2 . . . vn
...

...
...


and the sets

I ··= {S ⊆ columns (A) | S is linearly independent}
B ··= {B ∈ I | B is “maximal”} the “bases” of the column space



Example: Graphic matroids

G = (V,E) is an undirected graph
B ··= {S ⊆ E | the graph (V, S) has no cycles}

The bases are the spanning trees of G
The independent sets are the spanning forests of G

An example graph An example spanning tree An example spanning forest
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The bases generating polynomial

Let M be a matroid with ground set Ω and bases B

The bases generating polynomial

gM
(
(xe)e∈Ω

) ··= ∑
B∈B

∏
e∈B

xe

Special case: the Spanning-Tree polynomial of graph G = (V,E)

Spanning-TreeG
(
(xe)e∈E

)
=

∑
T : spanning tree of G

∏
e∈T

xe

Theorem [“classical”, similar to Kirchoff’s matrix-tree theorem]

For any graph G = (V,E), Spanning-TreeG is upper-half plane “stable”, i.e.,

ℑ(ze) > 0 for all e ∈ E =⇒ Spanning-TreeG
(
(ze)e∈E

)
̸= 0.
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From geometry (of roots) to matroids

Theorem [“classical”, similar to Kirchoff’s matrix-tree theorem]

For any graph G = (V,E), Spanning-TreeG is upper-half plane “stable”, i.e.,

ℑ(ze) > 0 for all e ∈ E =⇒ Spanning-TreeG
(
(ze)e∈E

)
̸= 0.

Theorem [Choe, Oxley, Sokal, and Wagner, 2004]
If a homogenous multilinear polynomial with non-negative coefficients is upper half-plane stable,
then the “support” set of the non-zero coefficients of the polynomial must be the bases of a matroid

But there are matroids for which the bases generating polynomial is not upper half-plane stable

Question
So what is the precise geometric characterization of matroids?



From geometry (of roots) to matroids

Theorem [“classical”, similar to Kirchoff’s matrix-tree theorem]

For any graph G = (V,E), Spanning-TreeG is upper-half plane “stable”, i.e.,

ℑ(ze) > 0 for all e ∈ E =⇒ Spanning-TreeG
(
(ze)e∈E

)
̸= 0.

Theorem [Choe, Oxley, Sokal, and Wagner, 2004]
If a homogenous multilinear polynomial with non-negative coefficients is upper half-plane stable,
then the “support” set of the non-zero coefficients of the polynomial must be the bases of a matroid

But there are matroids for which the bases generating polynomial is not upper half-plane stable

Question
So what is the precise geometric characterization of matroids?



From geometry (of roots) to matroids

Theorem [“classical”, similar to Kirchoff’s matrix-tree theorem]

For any graph G = (V,E), Spanning-TreeG is upper-half plane “stable”, i.e.,

ℑ(ze) > 0 for all e ∈ E =⇒ Spanning-TreeG
(
(ze)e∈E

)
̸= 0.

Theorem [Choe, Oxley, Sokal, and Wagner, 2004]
If a homogenous multilinear polynomial with non-negative coefficients is upper half-plane stable,
then the “support” set of the non-zero coefficients of the polynomial must be the bases of a matroid
But there are matroids for which the bases generating polynomial is not upper half-plane stable

Question
So what is the precise geometric characterization of matroids?



Interlude: Geometry and probability

Theorem [“classical”, similar to Kirchoff’s matrix-tree theorem]

For any graph G = (V,E), Spanning-TreeG is upper-half plane “stable”, i.e.,

ℑ(ze) > 0 for all e ∈ E =⇒ Spanning-TreeG
(
(ze)e∈E

)
̸= 0.

The generating polynomial of a multinomial distribution being upper half-plane stable has
important probabilistic consequences: [Borcea, Brändén, and Liggett, 2009]

Corollary: “Negative association”
If A and B are disjoint subsets of E and T is sampled uniformly at random from the set of spanning trees
of G?

P [A ∪B ⊆ T ] ≤ P [A ⊆ T ] · P [B ⊆ T ]

Question
Can one get such negative dependence properties more generally in the matroid setting?
E.g. with |S| = |T | = 1, but we choose a uniformly random spanning forest?

[conjectured by Kahn, and Grimmett and Winkler]
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Strongly log concave / Lorentzian polynomials
[Gurvits, 2010; Anari, Gharan, and Vinzant, 2018; Brändén and Huh, 2020]

Strictly Lorentzian polynomials [Brändén and Huh, 2020]

A homogeneous polynomial with positive coefficients is called strictly Lorentzian if all its partial
derivatives of degree exactly two have a Hessiana with a “Lorentzian” signature, i.e., with exactly
one positive eigenvalue
Lorentzian polynomials are “limits” of strictly Lorentzian polynomials
athe matrix of second derivatives

Strongly log concave (SLC) (homogeneous) polynomials
[Gurvits, 2010, see also Anari, Gharan, and Vinzant, 2018]

A homogeneous polynomial with non-negative coefficients is called SLC if the logarithms of the
polynomial and of all its successive partial derivatives are concave in the positive orthant

These notions have been shown to be equivalent
[Brändén and Huh, 2020]



Back to matroids

Theorem [Brändén and Huh, 2020, see also Anari, Gharan, and Vinzant, 2018]

A homogeneous multilinear polynomial with all positive coefficients equal to 1 is Lorentzian if
and only if it is the bases generating polynomial of a matroid

“Not-too-positive” correlation for matroids [Brändén and Huh, 2020, see also Huh, Schröter, and Wang, 2021]

Let e and f be fixed distinct elements of the ground set of a matroid M , and B an uniformly
randomly chosen base of M . Then,

P [e, f ∈ M ] ≤
(
2− 1

|B|

)
· P [e ∈ M ] · P [f ∈ M ]

For polynomials that are not multilinear, a generalization of matroids to multisets (known as
“M-convexity”) is needed
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A toy proof



What do matroids have to do with the Lorentzian signature?

Let us prove the following “base case” of one side of the Lorentzian-matroid equivalence

Theorem [Brändén and Huh, 2020, see also Anari, Gharan, and Vinzant, 2018]

The basis generating polynomial of a matroid of rank 2 (i.e., when all bases have size 2) is Lorentzian (i.e.,
its Hessian has at most one positive eigenvalue)

Let Ω be the ground set and B the set of bases (size 2) of the matroid.

First note that

gM (x) ··=
∑

{e,f}∈B

xexf =
1

2
xTAx,

where A is a Ω× Ω symmetric matrix such that

Ae,f =

1 if {e, f} is a base
0 otherwise

Note that
Hessian(gM )(x) =

1

2
A,

so we just have to find the eigenvalues of A
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The A matrix

Ae,f =

{
1 if {e, f} is a base
0 otherwise

Note that if Aa,b = 1 and Ac,e = 1 (where a, b, c, e are distinct)
then at least one of Aa,c and Ac,b must be 1!

[because of the base exchange property]

Thus, if b belongs to some base, and if Aa,b = 0 and Ab,c = 0, then we must have Aa,c = 0!

Thus Ω partitions into sets S0, S1, S2, . . . , St such that

Ae,f =

{
0 if e ∈ S0 or f ∈ S0 or e, f ∈ Si with i ≥ 1

1 if e ∈ Si and f ∈ Sj for i ̸= j and i, j ≥ 1
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The A matrix has at most one positive eigenvalue

Ae,f =

{
1 if {e, f} is a base
0 otherwise

Thus Ω partitions into sets S0, S1, S2, . . . , St such that

Ae,f =

{
0 if e ∈ S0 or f ∈ S0 or e, f ∈ Si with i ≥ 1

1 if e ∈ Si and f ∈ Sj for i ̸= j and i, j ≥ 1

So

A = 1Ω\S0
1T
Ω\S0

−
t∑

i=1

1Si
1T
Si
,

and this decomposition as a sum of a rank-one positive definite matrix with a negative definite
matrix shows that at most one eigenvalue of A can be positive.
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The matrix A: a picture
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Back to “reporter mode”



Other successes of the theory: Volume polynomial

Volume polynomial [Steiner, Minkowski]

If K1,K2, . . . ,Kn are convex bodies in Rd , and let w1, w2, . . . , wn be non-negative coefficients. Then the
volume of the Minkowski sum body wiKi is given by a polynomial

vol
(∑

wiKi

)
=

∑
α

d!

α!
V (K1, . . . ,K1︸ ︷︷ ︸

α1 times

,K2, . . . ,K2︸ ︷︷ ︸
α2 times

, . . . ,Kn, . . . ,Kn︸ ︷︷ ︸
αn times

)
∏

wαi
i ,

where α ranges over n-tuples of non-negative integers that sum up to d, and the function V is the
so-called mixed volume (which is symmetric and “linear” in its arguments)

• Volume polynomials are SLC (and hence Lorentzian)
already observed to be a consequence of the Alexandrov–Fenchel inequality by Gurvits in [Gurvits, 2010]



Alexandrov-Fenchel for Lorentzian polynomials

Alexandrov-Fenchel inequality
If K1,K2, . . . ,Kd are convex bodies in Rd, and V is the mixed volume functions appearing in
the volume polynomial, then

V (K1,K2,K3, . . . ,Kd)
2 ≥ V (K1,K1,K3, . . . ,Kd)V (K2,K2,K3, . . . ,Kd)

• Volume polynomials are Lorentzian
• . . . but not all Lorentzian polynomials are volume polynomials! [Brändén and Huh, 2020]

However, the direct analogue of the Alexandrov-Fenchel inequality holds (with the mixed volumes
replaced by the corresponding polynomials) for all Lorentzian polynomials [Brändén and Huh, 2020]
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Other inequalities: Mason’s conjecture(s)

Let M be any matroid, and I the set of its independent sets

I(k) ··= |{I ∈ I | |I| = k}|

Log concavity: a strong form of unimodality
Conjecture: I(k)2 ≥ I(k − 1)I(k + 1) for all k

Ultra log concavity: a strong form of log-concavity

Conjecture: I(k)2

(nk)
2 ≥ I(k−1)

( n
k−1)

I(k+1)

( n
k+1)

for all k

If ai ··= P [i heads in n independent coin tosses]
then the sequence (ai) is ultra log-concave.

[Probably goes back at least to Newton]
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Other inequalities: Mason’s conjecture(s)

Let M be any matroid, and I the set of its independent sets

I(k) ··= |{I ∈ I | |I| = k}|

Log concavity: a strong form of unimodality
Conjecture: I(k)2 ≥ I(k − 1)I(k + 1) for all k

[Proved by Adiprasito, Huh, and Katz, 2018]

Ultra log concavity: a strong form of log-concavity

Conjecture: I(k)2

(nk)
2 ≥ I(k−1)

( n
k−1)

I(k+1)

( n
k+1)

for all k
[Proved by Anari, Liu, Gharan, and Vinzant, 2018; Brändén and Huh, 2018]

[A proof in the language of Lorentzian polynomials by Brändén and Huh, 2020]



Other successes of the theory: Closure properties

Question
What operations on Lorentzian polynomials preserve their “Lorentzian”ness?

In part building upon the corresponding theory of Borcea and Brändén (2009) for stable
polynomials, Brändén and Huh (2020) give a rich class of such operations

Closure under product [Brändén and Huh, 2020]

If f and g are Lorentzian, so is fg

[conjectured by Gurvits (2010)]

Example: Multi-affine part (“MAP”) [Brändén and Huh, 2020]

If f is Lorentzian, so is the polynomial obtained by deleting the non-multiaffine terms of f

• Closure under “MAP” of stable polynomials gives a very quick proof of the Heilmann-Lieb
theorem that the matching polynomial is real rooted
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Other successes of the theory: Algorithms

Mihail-Vazirani conjecture
Let M be a matroid, and let B be the set of its bases. Consider the following random walk on B:

• If the current state is B ∈ B, then uniformly at random pick an element e from B, and set
B′ = B \ {e}.

• Then pick an element f uniformly at random from the set of all elements which can be added to B′ to
create a base, and set next state to B′ ∪ {f}

This random walk is rapidly mixing
(The actual conjecture is even stronger and makes further demands on the geometry of the graph of the random walk)

Parallel to the work of Brändén and Huh (2020), Anari, Liu, Oveis-Gharan and Vinzant
developed many of the same idea towards a goal of proving this conjecture. This series of work
also built upon “high-dimensional expansion” ideas from the work of Dinur, Kaufman, Mass and
Oppenheim, and led to a full resolution of this conjecture
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Aspects that I couldn’t cover

We mostly talked about the beautiful (and elementary!1) theory of Lorentzian/SLC polynomials,
but this ignores many other aspects of June Huh’s work. To take a couple of examples:

• Many of the advances described above were inspired by the paper of Adiprasito, Huh, and
Katz (2018), which considered a different algebraic view of matroids

• Adiprasito, Huh, and Katz (2018) itself improved a breakthrough result of Huh (2012), which
had affirmatively answered a large part of a conjecture due to Reed, Rota, Heron and
Welsh, on the log concavity of the coefficients of the chromatic polynomial (and of its
generalizations to other matroids)

Thank you!

1in the sense of “elementary proof of the prime number theorem”
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Matroids and “geometry”: rank and flats

Let M be a matroid with ground set Ω and I be the set of its independent sets.

Rank
For any subset S of Ω, rank(S) ··= size of the largest independent set I which is a subset of S .

What is rank in a linear matroid? graphic matroid?

Flat
S ⊂ Ω is a flat if for any v /∈ S , rank(S ∪ {v}) > rank(S)

What are the flats in a linear matroid? graphic matroid?
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