The Sphere Packing Problem

Shobha Madan

August 24, 2022

'A Conceptual Breakthrough'

March 14, 2016: Maryna S. Viazovska. The Sphere Packing Problem in Dimension 8, 2016. arXiv:1603.04246.

> BREAKTHROUGH PRIZE SYMPOSIUM

MARYNA VIAZOVSKA

March 21, 2016: H. Cohn, A. Kumar, S.D. Miller, D. Radchenko, and M. Viazovska. The Sphere Packing Problem in Dimension 24, 2016. arXiv:1603.06518.

The Sphere Packing Problem

Consider a Packing of the Euclidean space \mathbb{R}^{n} by congruent balls with disjoint interiors.

What is the densest packing ?
The Density of Packing refers to the proportion of volume occupied by the spheres in a large box

Dimension $n=1$

In dimension 1, the interval $[-1,1]$ is a ball of radius 1 , centered at 0 . And $\mathbb{R}=\cup_{k \in \mathbb{Z}}[k-1, k+1]$ is the densest packing.

Sphere Packing in dimension 2

Dimension 2

1773: Lagrange proved that among lattice packings, the densest packing is hexagonal with packing density $\frac{\pi}{\sqrt{12}}$.

1890 Axel Thue published a proof that this same density is optimal among all packings, but his proof was considered to be incomplete.

1940: L.F. Toth gave the first complete proof for the general case involving all arrangements.

Dimension 3: Another ball game altogether!

The problem actually originated with Cannonballs!

Origin of the problem

Johannes Kepler (1571-1630), conjectured that the face-centered cubic and hexagonal close packing will be the tightest possible.
(Watch : The Best Way to Pack Spheres - Numberphile) This assertion is since called the Kepler Conjecture. It is a part of the 18th problem in Hilbert's list.

History

1831: Gauss proved that the Kepler conjecture is true if the spheres have to be arranged in a regular lattice.

1998-2014: Thomas C. Hales proved Kepler's Conjecture.

Density - Definition

Let \mathcal{P} be a union of congruent balls with disjoint interiors in \mathbb{R}^{n}. The upper density of \mathcal{P} is defined as

$$
\Delta_{\mathcal{P}}=\limsup _{R \rightarrow \infty} \frac{\operatorname{vol}\left(\mathbb{B}_{R}^{n}(0) \cap \mathcal{P}\right)}{\operatorname{vol}\left(\mathbb{B}_{R}^{n}(0)\right)}
$$

And the sphere packing density Δ_{n} is the supremum of upper densities of all sphere packings.

Known results

- $\Delta_{1}=1$.
- $\Delta_{2}=\pi / \sqrt{12}=0.9068$.
- $\Delta_{3}=\pi / \sqrt{18}=0.7404$.
and now,
$\Delta_{8}=\pi^{4} / 384=0.254$.
$\Delta_{24}=\pi^{12} / 12!=0.00193$.

Henry Cohn and Noam Elkies

Cohn-Elkies... density upper bounds; graph...dimension 8 and 24.

- Linear Programming Bounds.
- Fourier Analysis, Poisson Summation Formula.
- The Lattice \mathbb{E}_{8}.
- Analytic Number theory, Modular forms.

Fourier Transform

For $f \in L^{1}\left(\mathbb{R}^{n}\right)$, the Fourier Transform is defined as

$$
\hat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i x . \xi} d x
$$

A beautiful example: The Gaussian.

$$
\widehat{e^{-\pi x^{2}}}=e^{-\pi \xi^{2}}
$$

All functions will be 'nice'

In the following all functions will be assumed to belong to the Schwartz space, i.e. infinitely differentiable, and each function and all its derivatives have rapid decay, i.e. faster than any polynomial.

$$
\mathcal{S}_{\mathbb{R}^{n}}=\left\{f \in C^{\infty}\left(\mathbb{R}^{n}\right): \sup _{x \in \mathbb{R}^{n}}\left|x^{\alpha} D^{\beta} f(x)\right|<\infty \forall \text { multi-indices } \alpha, \beta\right\}
$$

Then the Fourier Transform

$$
\mathcal{F}: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

is an isomorphism.

Fourier Series

If f is a 1 -periodic function on \mathbb{R}, its Fourier coefficients are given by

$$
\hat{f}(k)=\int_{0}^{1} f(t) e^{-2 \pi i k t} d t
$$

Then f has a Fourier series expansion given by,

$$
f(t)=\sum_{k \in \mathbb{Z}} \hat{f}(k) e^{2 \pi i k t}
$$

Poisson Summation Formula

For every Schwartz class function f on \mathbb{R}, we have,

$$
\sum_{k \in \mathbb{Z}} f(k)=\sum_{j \in \mathbb{Z}} \hat{f}(j)
$$

Proof:
Consider the 1-periodic function

$$
f^{\#}(x)=\sum_{k \in \mathbb{Z}} f(x+k)
$$

Then $f \#$ has a Fourier series, with Fourier coefficients

$$
\widehat{f \#}(j)=\int_{0}^{1} \sum_{k \in \mathbb{Z}} f(x+k) e^{-2 \pi i x}=\int_{\mathbb{R}} f(x) e^{2 \pi j x} d x=\hat{f}(j)
$$

hence

$$
\sum_{k \in \mathbb{Z}} f(x+k)=\sum_{j \in \mathbb{Z}} \hat{f}(j) e^{2 \pi i x}
$$

Now evauate at $x=0$.
More generally, for any discrete Lattice \wedge in \mathbb{R}^{n}

$$
\sum_{k \in \Lambda} f(k)=\frac{1}{\operatorname{vol}\left(\mathbb{R}^{n} / \Lambda\right)} \sum_{j \in \Lambda^{*}} \hat{f}(j)
$$

Here \mathbb{R}^{n} / Λ is the fundamental cell of the lattice Λ.

Cohn-Elkies Theorem

Theorem

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a Schwartz class function satisfying:
(1) $f(0)=1=\hat{f}(0)$ and $f(x) \leq 0$ for all $\|x\| \geq r$ for some $r>0$.
(2) $\hat{f}(\xi) \geq 0$ for all $\xi \in \mathbb{R}^{n}$.

Then the sphere packing density satisfies

$$
\Delta_{n} \leq \operatorname{vol}\left(\mathbb{B}_{r / 2}^{n}\right)
$$

Proof

It is enough to prove the theorem for periodic packings. In the general case we can approximate the density Δ_{n} by the density of periodic packings.

Consider a periodic packing obtained by taking spheres of radius $r / 2$ centered at the translates of a lattice \wedge by vectors $t_{1}, t_{2}, . . t_{N}$, where r is the minimal distance. Then the density is given by

$$
\Delta=\frac{\operatorname{Nvol}\left(B_{r / 2}\right)}{\operatorname{vol}\left(\mathbb{R}^{n} / \Lambda\right)}
$$

We will prove that $\operatorname{vol}\left(\mathbb{R}^{n} / \Lambda\right) \geq N$. By Poisson summation formula,

$$
\sum_{j, k=1}^{N} \sum_{x \in \Lambda} f\left(t_{j}-t_{k}+x\right)=\frac{1}{v o l\left(\mathbb{R}^{n} / \Lambda\right)} \sum_{y \in \Lambda^{*}} \hat{f}(y)\left|\sum_{j=1}^{N} e^{2 \pi i<y, t\rangle>}\right|^{2}
$$

The left side is less than $N f(0)$ and the right side is greater than $\frac{N^{2}}{\operatorname{vol}\left(\mathbb{R}^{n} / \Lambda\right)} \hat{f}(0)$, which implies that $\operatorname{vol}\left(\mathbb{R}^{n} / \Lambda\right) \geq N$. Hence the density is at most $\operatorname{vol}\left(B_{r / 2}\right)$.

We can assume that the function f in this theorem is a radial function.
For a radial function $\hat{\hat{f}}=f$. Let $f^{+}=\frac{f+\hat{f}}{2}$ and $f^{-}=\frac{f-\hat{f}}{2}$; then f^{+}is an eigenfunction of the Fourier transform with eigenvalue +1 and f^{-}with eigenvalue -1

Dimension $n=8$

In \mathbb{R}^{8}, there is a lattice \mathbb{E}^{8} given as

$$
\mathbb{E}_{8}=\left\{\left(x_{j}\right) \in \mathbb{Z}^{8} \cup\left(\mathbb{Z}+\frac{1}{2}\right)^{8}: \sum_{j} x_{j} \equiv 0(\bmod 2)\right\}
$$

Facts:

- $\mathbb{E}^{8 *}=\mathbb{E}^{8}$
- $\operatorname{Vol}\left(\mathbb{R}^{8} / \mathbb{E}^{8}\right)=1$
- The minimal vector length in \mathbb{E}^{8} is $\sqrt{2}$. hence the \mathbb{E}^{8} sphere packing uses balls of radius $r=\frac{\sqrt{2}}{2}$. The \mathbb{E}^{8} sphere packing has density $\operatorname{Vol}\left(B_{1 / \sqrt{2})}^{8}\right)=\frac{\pi^{4}}{4!2^{4}}=\frac{\pi^{4}}{384}$
- the vector lengths of elements of \mathbb{E}^{8} are of the form $\sqrt{2 k}, k \in \mathbb{Z}$.

Search for a magic function

To prove that \mathbb{E}^{8} gives the densest packing in dimension 8 , we need to find a radial Schwartz class function f on \mathbb{R}^{8} satisfying the following:
(1) $f(0)=1=\hat{f}(0)$ and $f(x) \leq 0$ for all $\|x\| \geq \sqrt{2}$
(2) $\hat{f}(\xi) \geq 0$ for all $\xi \in \mathbb{R}^{8}$.
(3) $f(\sqrt{2 k})=\hat{f}(\sqrt{2 k})=0$ for all $k \in \mathbb{Z} \backslash\{0\}$, and for $k=2,3, \ldots$ these roots must have order 2 , so as to avoid any sign changes, and a root of order 1 at $\sqrt{2}$. (If f satisfies (1) and (2) above, we get by Poisson summation formula:

$$
1=f(0) \geq \sum_{x \in \mathbb{E}^{8}} f(x)=\sum_{x \in \mathbb{E}^{8}} \hat{f}(x) \geq \hat{f}(0)=1
$$

This is possible only of f and \hat{f} vanish on $\mathbb{E}^{8} \downharpoonleft\{0\}$)

Where do we look for such 'magic' functions?

Elkies had this to say:
"We gave many talks and even convened a conference or two to disseminate the problem in the hope that such a function was known or could easily be found if we only know in which mathematical field to look, but found nothing."
... and then Viazovska "pulled a Ramanujan!" using modular forms.

Viazovska

The function f we are looking for is radial, so that $\hat{\hat{f}}=f$. Then we can write $f=f^{+}+f^{-}$, where f^{+}and f^{-}are eigenfunctions of the Fourier transform with eigenvalues ± 1.

There are ways to generate eigenfunctions of the Fourier transform. Viazovska's idea is to use Laplace transforms. Recall that the Gaussian is an eigenfunction.

Let h be a 'nice' function, and define

$$
g(x)=\int_{0}^{\infty} e^{-t \pi|x|^{2}} h(t) d t
$$

Then

$$
\hat{g}(\xi)=\int_{0}^{\infty} e^{-t \pi|\xi|^{2}} t^{n / 2-2} h(1 / t) d t
$$

Now if h satisfies $h(1 / t)=\epsilon t^{2-n / 2} h(t)$, then $\hat{g}=\epsilon g$. Write $h(t)=\phi(i t)$, then the condition becomes

$$
\phi(-1 / z)=z^{k} \phi(z)
$$

with $k=2-n / 2$.
Modular forms ?!?

In dimension 8 Viazovska puts in an explicit factor to deal with the required zeros of f. The eigenfunctions have the from

$$
\sin ^{2}\left(\pi|x|^{2} / 2\right) \int_{0}^{\infty} h(t) e^{-t \pi|x|^{2} d t}
$$

for some function $h(t)$. What is problematic here is that the roots of the first factor are of order 2 for $|x|=\sqrt{2 k}, k=1,2, \ldots$ and fourth order at $x=0$, whereas we need no zero at $x=0$, and a zero order 1 at $|x|=\sqrt{2}$. The second factor would have to compensate for this. The search then is what choices of h will produce eigenfunctions. Viazovska finds an explicit function for this, which is constructed using modular forms.

Fourier Interpolation on \mathbb{R}

Using the integral transform technique, Radchenko and Viazovska constructed an interpolation formula for even Schwartz functions on \mathbb{R}

Theorem

There exist even Schwartz functions $a_{n}: \mathbb{R} \rightarrow \mathbb{R}$ such that for every even Schwartz function $f: \mathbb{R} \rightarrow \mathbb{R}$, we have

$$
f(x)=\sum_{0}^{\infty} a_{n}(x) f(\sqrt{n})+\sum_{0}^{\infty} \hat{a}_{n}(x) \hat{f}(\sqrt{n}), \forall x \in \mathbb{R}
$$

where the right-hand side converges absolutely.
The interpolation bases are constructed explicitly.

References.

- Henry Cohn. A Conceptual Breakthrough in Sphere Packing. 2016.
- Maryna Viazovska. The Sphere packing problem in dimension 8. 2016.

