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Chance and chaos: how to predict the unpredictable

• The butterfly effect

• Chance and randomness: an experiment

• Kneeding dough – a model for chaos?

• How to win the lottery. . .
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The butterfly effect

A butterfly’s wing flap in Brazil . . . . . . . . . . . . . . . sets off a tornado in Texas

Image credit: ”Butterfly in Pilpintuwasi” by tacowitte and ”Texas Tornado” by fireboat895 licensed under CC BY 2.0
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I

Edward Lorenz (1917-2008)
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Climate modelling and extreme weather prediction

New supercomputer in Bristol, starting service end 2023:
one of world’s most energy efficient and low carbon supercomputers
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The deterministic universe, chance and chaos

It is a fundamental hypothesis of science that, if we know the state of a system,
we can use the laws of physics to predict its future evolution.

A deterministic universe does not explain, however, the many unpredictable, ran-
domly occuring events we experience in our day to day lives.*

In the rest of this lecture we will explore this subject and in particular resolve the
apparent paradox of the existence of randomness and chaos in a deterministic
universe.

Finally we will learn that chaos can be a useful tool!

*It also cannot explain free will and the existence of evil: but this is for another lecture.
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Unpredictability

There are three features that can make a system unpredictable:

• Absence of an accurate mathematical model

• Lack of sufficiently detailed information on the current state of the system

• Extremely sensitive dependence on initial conditions (“chaos”)
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Example: The fair coin toss

A coin toss is one of the most popular ways of generating a random outcome:
heads or tails.

According to Newton’s laws of motion, the knowledge of the initial position, veloc-
ity and spin of a coin precisely determines the outcome of a coin toss—head or
tail. So where does randomness enter?
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The perfect coin tosser

from: P. Diaconis et al., Dynamical Bias in the Coin Toss, SIAM Review ‘07

For more on this google Diaconis + numberphile + coin toss
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Let’s do an experiment with dice!*

Imagine you are a butterfly in Brazil. Roll the dice and see what you do next

1 Butterfly rests
2 Butterfly eats
3 Butterfly sleeps
4 Butterfly thinks
5 Butterfly reads a book
6 Butterfly flaps its wings

*with assistance from Rashmita Hore and Sundara Narasimham
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The law of large numbers

The law of large numbers tells us that with probability tending to one, the out-
comes 1, 2, 3, 4, 5 or 6 appear with the same frequency 1/6 if we have a large
number of independent dice.

So, up to a tiny error, we can predict that there will be 1/6 of all butterflies flap-
ping their wings – even though it is impossible to predict the behaviour of each
individual butterfly.
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Kneading dough: a simple model for generating randomness
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Step 1: Place test raisins in the dough.
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Step 2: Press the dough until . . .
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. . . it has half the height. Note that the distance between the raisins has doubled.
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Step 3: Fold half of the stretched dough over to obtain original shape.
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Step 4: Continue repeating Steps 2 and 3.

17



Exponential sensitivity, and the amplification of randomness

Due to the doubling of the distance after each iteration, even two very close raisins
will move apart rapidly, since

2× 2× 2× · · · × 2 = 2n

grows exponentially fast in the number of iterations n.

We have thus constructed a system with exponentially sensitive dependence on
initial data. But how “random” is it? To see how it compares with a fair coin toss,
let us say that we have heads if our test raisin is in the top half of the bread loaf,
and tails when it is in the bottom half.

The following mathematical theorem tells us that, given any ever-so-small inac-
curacy in the initial position of the raisin, after a sufficiently large number of itera-
tions, our system produces a fair coin toss.
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A mathematical theorem

Assume a test raisin is placed in the center of the bread dough with an accuracy
of 1%, relative to the size of the dough sample. Then, after kneading the dough
n times,

the probability of heads is
1

2
±

100

2n
.

n 9 10 11 12

1

2n
0.001953125 0.0009765625 0.00048828125 0.000244140625

100

2n
0.1953125 0.09765625 0.048828125 0.0244140625

That is, kneading dough genrates (up to an exponentially small error) the same
random events as an unbiased coin toss.
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. . . in summary:

In chaotic systems, a tiny amount of uncertainty in the initial data produces almost
perfect randomness after a very short time.

That is, we have exponential amplification of randomness.

How can we turn this observation into a useful tool?
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The grand challenge

Explain the equations of fluid dynamics such as the
Navier-Stokes equations from fundamental principles
e.g. Newton’s laws of motion, or quantum mechanics

We do not know (yet) how to do this!
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Helpful chaos: Boltzmann’s statistical mechanics

Boltzmann proposed to explain the motion of a
gas cloud by using the dynamics of microscopic
particles—atoms and molecules, whose exis-
tence was highly disputed during Boltzmann’s
lifetime.

In his 1872 paper, Boltzmann postulated the fa-
mous Boltzmann equation, assuming that the dy-
namics of the colliding gas molecules is chaotic.

Ludwig Boltzmann (1844-1906)
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The Boltzmann gas: The initial angle between trajectories doubles after each
collision between two spheres. We have exponentially sensitive dependence on
initial conditions!
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Helpful chaos: Boltzmann’s statistical mechanics

The first rigorous justification of the Boltzmann
equation was given by Oscar Lanford in 1975 for
the dynamics over very short time intervals. The
problem for the more realistic macroscopic time
scales is still wide open.

One of the new stars in the field is Laure Saint-
Raymond. She and collaborators analysed the
dynamics of the Boltzmann gas near equilibrium
and also found a derivation of the Navier-Stokes
equation from Boltzmann’s equation. Laure Saint-Raymond (1975*)
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The Lorentz gas

In an attempt to describe the evolution of a di-
lute electron gas in a metal, Lorentz proposed
in 1905 a model, where the heavier atoms are
assumed to be fixed, whereas the electrons are
interacting with the atoms but not with each
other. For simplicity, Lorentz assumed (like
Boltzmann) that the atoms can be modeled by
elastic spheres.

The Lorentz gas is still one of the iconic models
for chaotic transport properties. Hendrik Lorentz (1853-1928)

Nobel Prize in Physics 1902
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The Lorentz gas in a crystal
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The Lorentz gas and Brownian motion

Yakov Sinai (Princeton University) is one of the
pioneers in understanding the chaotic properties
of the Lorentz gas. He proved in 1980, jointly
with Leonid Bunimovich, that in the limit of long
times the dynamics appears as random as
Brownian motion.

Yakov Sinai (1935*)

Abel Prize 2014
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A typical Brownian path in three dimensional space.
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Visibility in a forest

A basic problem in understanding the Lorentz
gas is concerned with the distribution of the free
path length, which is the distance an electron
travels between consecutive collisions.

This leads to natural problems in probability the-
ory and number theory, respectively, which, in
the two-dimensional case were paraphrased by
Pólya as the problem of visibility in a forest.

George Pólya (1887-1985)
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The distribution of free path lengths

In the case of the Lorentz gas with
a random configuration of atoms,
the probability density for finding a
free path of length x is exp(−x) as
shown in the black curve.

The red curve represents the distri-
bution of free paths for the Lorentz
gas in a crystal.*

*Dahlquist, Nonlinearity 1997; Boca & Zaharescu, Comm. Math. Phys. 2007; Marklof &
Strömbergsson, Annals Math. 2010
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The underpinning mathematics:
Ergodic theory and dynamical systems on Lie groups

S.G. Dani, G.A. Margulis (Fields Medal 1978), M.E. Ratner, M.S. Raghunathan
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The underpinning mathematics:
Ergodic theory and dynamical systems on Lie groups

International Colloquium on Lie Groups and Ergodic Theory at TIFR Mumbai 1996

S.G. Dani, Marina Ratner, Virendra Singh, R. Chidambaram, Hillel Fürstenberg,

Anatole Katok, M.S. Raghunathan

Image credit: TIFR Archives

33



Conclusions

• Can the flap of a butterfly’s wings in Brazil set of a tornado in Texas? No.
Although the atmosphere is a chaotic system with sensitive dependence on
initial conditions, a tornado is a macroscopic effect with many independent
underlying factors. The butterfly’s wings are only one of many. The law of
large numbers applies.

• Can one predict the unpredictable? In some sense, yes. In chaotic sys-
tems it is virtually impossible to predict the state of a system even after a
short time. But we can predict accurately the probability that it will be in a
given state after a relatively short time (exponentially fast decay of correla-
tions). The more chaotic the system is, the more accurate the prediction of
probabilities.

• Can one predict the numbers in the next lottery draw? It is almost as
unlikely as a butterfly causing a tornado. So the answer is No. But I can
predict who wins in the lottery: Those how run it. Here the win is guaranteed!
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Conclusions

• Can the flap of a butterfly’s wings in Brazil set of a tornado in Texas? No.
Although the atmosphere is a chaotic system with sensitive dependence on
initial conditions, a tornado is a macroscopic effect with many independent
underlying factors. The butterfly’s wings are only one of many. The law of
large numbers applies.

• Can one predict the unpredictable? In some sense, yes. In chaotic sys-
tems it is virtually impossible to predict the state of a system even after a
short time. But we can predict accurately the probability that it will be in a
given state after a relatively short time (exponentially fast decay of correla-
tions). The more chaotic the system is, the more accurate the prediction of
probabilities.

• Can one predict the numbers in the next lottery draw? No - the lottery
balls form a dynamical system that is extremely sensitive to initial conditions,
just as the Lorentz gas. So the answer is No. But I can predict who wins in
the lottery: those how run it. Here the win is guaranteed!
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Recommendations for further reading

Chance and Chaos
by David Ruelle

(Penguin Books 1993)

Ludwig Boltzmann—The Man Who Trusted
Atoms by Carlo Cercignani

(Oxford University Press 1998)
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