Stability Conditions and Applications

Cristian Martinez Universidad del Norte Barranquilla, Colombia

June 4th, 2020

4.0.3

George C

メロメ メ都 メメ きょくきょ

Classification problems.

4 日下

∢母 \rightarrow \rightarrow \equiv \rightarrow

舌

 \mathcal{A}

- Classification problems.
- Want a space (algebraic variety, scheme, algebraic space, stack) that parametrizes equivalence classes of objects.

4 0 8

- Classification problems.
- Want a space (algebraic variety, scheme, algebraic space, stack) that parametrizes equivalence classes of objects.
- Want to be able to deform objects (taking limits): a compact moduli space.

 2990

イロト イ部 トイヨ トイヨト

Let A be an abelian category (for instance, mod $_Z$).

4 日下

(天皇 80年) \equiv

 \rightarrow

Let A be an abelian category (for instance, mod_{$\mathbb Z$}). Want to classify isomorphism classes of objects in A :

4 日下

4. B. K. 4. ≔ QQ

Let A be an abelian category (for instance, mod_{$\mathbb Z$}). Want to classify isomorphism classes of objects in \mathcal{A} :

• If $G \in \text{mod}_{\mathbb{Z}}$ and $|G| = n$, then the classification problem has finitely many solutions.

 QQ

医单位 医单位

4 0 8

Let A be an abelian category (for instance, mod_{$\mathbb Z$}). Want to classify isomorphism classes of objects in \mathcal{A} :

• If $G \in \text{mod}_{\mathbb{Z}}$ and $|G| = n$, then the classification problem has finitely many solutions. The order n is a discrete invariant of the isomorphism classes.

 Ω

化重新润滑脂

4 0 8

Let A be an abelian category (for instance, mod_{$\mathbb Z$}). Want to classify isomorphism classes of objects in \mathcal{A} :

• If $G \in \text{mod}_{\mathbb{Z}}$ and $|G| = n$, then the classification problem has finitely many solutions. The order n is a discrete invariant of the isomorphism classes. The level of difficulty of solving this problem varies with our choice of n.

4 D F

Let A be an abelian category (for instance, mod_{$\mathbb Z$}). Want to classify isomorphism classes of objects in \mathcal{A} :

- If $G \in \text{mod}_{\mathbb{Z}}$ and $|G| = n$, then the classification problem has finitely many solutions. The order n is a discrete invariant of the isomorphism classes. The level of difficulty of solving this problem varies with our choice of n.
- If $G \in \mathsf{mod}_\mathbb{Z}$ is finitely generated, then $G \cong \mathbb{Z}^{\oplus r} \oplus G'$ where G' is finite.

4 D F

Let A be an abelian category (for instance, mod_{$\mathbb Z$}). Want to classify isomorphism classes of objects in \mathcal{A} :

- If $G \in \text{mod}_{\mathbb{Z}}$ and $|G| = n$, then the classification problem has finitely many solutions. The order n is a discrete invariant of the isomorphism classes. The level of difficulty of solving this problem varies with our choice of n.
- If $G \in \mathsf{mod}_\mathbb{Z}$ is finitely generated, then $G \cong \mathbb{Z}^{\oplus r} \oplus G'$ where G' is finite. In this case the isomorphism class of G has two discrete invariants:

4 D F

Let A be an abelian category (for instance, mod_{$\mathbb Z$}). Want to classify isomorphism classes of objects in \mathcal{A} :

- If $G \in \text{mod}_{\mathbb{Z}}$ and $|G| = n$, then the classification problem has finitely many solutions. The order n is a discrete invariant of the isomorphism classes. The level of difficulty of solving this problem varies with our choice of n.
- If $G \in \mathsf{mod}_\mathbb{Z}$ is finitely generated, then $G \cong \mathbb{Z}^{\oplus r} \oplus G'$ where G' is finite. In this case the isomorphism class of G has two discrete invariants:

$$
r = \text{rank of } G
$$
, and $|G'| = \text{order of torsion of } G$.

4 D F

Let A be an abelian category (for instance, mod_{$\mathbb Z$}). Want to classify isomorphism classes of objects in \mathcal{A} :

- If $G \in \text{mod}_{\mathbb{Z}}$ and $|G| = n$, then the classification problem has finitely many solutions. The order n is a discrete invariant of the isomorphism classes. The level of difficulty of solving this problem varies with our choice of n.
- If $G \in \mathsf{mod}_\mathbb{Z}$ is finitely generated, then $G \cong \mathbb{Z}^{\oplus r} \oplus G'$ where G' is finite. In this case the isomorphism class of G has two discrete invariants:

$$
r = \text{rank of } G
$$
, and $|G'| = \text{order of torsion of } G$.

Once again, if we fix the discrete invariants then the classification problem has finitely many solutions.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 299

イロト イ部 トメ ヨ トメ ヨト

 \bullet The projective space \mathbb{CP}^n parametrizes 1-dimensional vector subspaces of \mathbb{C}^{n+1} .

 QQ

医电影 化重新

4 日下

 \bullet The projective space \mathbb{CP}^n parametrizes 1-dimensional vector subspaces of $\mathbb{C}^{n+1}.$ This parameter space admits a construction as a quotient

 Ω

不重 医牙

4 0 8

 \bullet The projective space \mathbb{CP}^n parametrizes 1-dimensional vector subspaces of $\mathbb{C}^{n+1}.$ This parameter space admits a construction as a quotient

$$
\mathbb{CP}^n=(\mathbb{C}^{n+1}\setminus\{0\})/\mathbb{C}^*.
$$

 Ω

不重 医牙

4 0 8

 \bullet The projective space \mathbb{CP}^n parametrizes 1-dimensional vector subspaces of $\mathbb{C}^{n+1}.$ This parameter space admits a construction as a quotient

$$
\mathbb{CP}^n=(\mathbb{C}^{n+1}\setminus\{0\})/\mathbb{C}^*.
$$

The Zariski topology on \mathbb{CP}^n is the topology whose closed subsets are the zero sets of complex homogeneous polynomials in $n + 1$ variables.

 \bullet The projective space \mathbb{CP}^n parametrizes 1-dimensional vector subspaces of $\mathbb{C}^{n+1}.$ This parameter space admits a construction as a quotient

$$
\mathbb{CP}^n=(\mathbb{C}^{n+1}\setminus\{0\})/\mathbb{C}^*.
$$

The Zariski topology on \mathbb{CP}^n is the topology whose closed subsets are the zero sets of complex homogeneous polynomials in $n + 1$ variables. Each of those closed subsets is called a **projective variety**.

• A conic is the zero set of a complex homogeneous polynomial of degree 2 in tree variables:

4 日下

 QQ

不是 医牙 ÷.

• A conic is the zero set of a complex homogeneous polynomial of degree 2 in tree variables:

$$
a_0X_0^2 + a_1X_1^2 + a_2X_2^2 + a_3X_0X_1 + a_4X_0X_2 + a_5X_1X_2 = 0
$$

4 日下

 QQ

不是 医牙 ÷. • A conic is the zero set of a complex homogeneous polynomial of degree 2 in tree variables:

$$
a_0X_0^2 + a_1X_1^2 + a_2X_2^2 + a_3X_0X_1 + a_4X_0X_2 + a_5X_1X_2 = 0
$$

The coefficients of the polynomial determine the conic, and scaling the coefficients at the same time does not change the conic.

• A conic is the zero set of a complex homogeneous polynomial of degree 2 in tree variables:

$$
a_0X_0^2 + a_1X_1^2 + a_2X_2^2 + a_3X_0X_1 + a_4X_0X_2 + a_5X_1X_2 = 0
$$

The coefficients of the polynomial determine the conic, and scaling the coefficients at the same time does not change the conic. Then a parameter space for all conics is

$$
\mathbb{CP}^5 = \{ [a_0, a_1, a_3, a_4, a_5] \}
$$

Each conic $C \subset \mathbb{CP}^2$ can be seen as a family of lines in \mathbb{C}^3 passing through the origin, i.e., a family of 1-dimensional vector subspaces of \mathbb{C}^3 :

Each conic $C \subset \mathbb{CP}^2$ can be seen as a family of lines in \mathbb{C}^3 passing through the origin, i.e., a family of 1-dimensional vector subspaces of \mathbb{C}^3 :

つひひ

There are nicer families of vector spaces that can be parametrized by projective varieties, these are called **vector bundles**.

4 0 8

There are nicer families of vector spaces that can be parametrized by projective varieties, these are called vector bundles.

4 0 8

Э×.

Our geometric objects

 2990

イロト イ部 トメ ヨ トメ ヨト

Our geometric objects

• Vector bundles.

メロメ メ都 メメ きょくきょ

Our geometric objects

- Vector bundles.
- Resulting moduli space is "too big"

4 日下

 $A \equiv 3$ \equiv

 \rightarrow

4.0.3

 \bullet Fix the base, i.e., vector bundles over a fixed variety X.

 \leftarrow

- \bullet Fix the base, i.e., vector bundles over a fixed variety X.
- Choose X to be as nice as you can:

- \bullet Fix the base, i.e., vector bundles over a fixed variety X.
- Choose X to be as nice as you can: smooth complex projective variety of dimension n.
- \bullet Fix the base, i.e., vector bundles over a fixed variety X.
- Choose X to be as nice as you can: smooth complex projective variety of dimension n.
- To control the size of the moduli space, fix also some discrete invariants:

- \bullet Fix the base, i.e., vector bundles over a fixed variety X.
- Choose X to be as nice as you can: smooth complex projective variety of dimension n.
- To control the size of the moduli space, fix also some discrete invariants: Chern classes $ch = (ch_0, ch_1, \ldots, ch_n)$.

- \bullet Fix the base, i.e., vector bundles over a fixed variety X.
- Choose X to be as nice as you can: smooth complex projective variety of dimension n.
- To control the size of the moduli space, fix also some discrete invariants: Chern classes $ch = (ch_0, ch_1, \ldots, ch_n)$.
- To get a proper moduli space allow at least coherent sheaves, i.e., work in the category $Coh(X)$.

- \bullet Fix the base, i.e., vector bundles over a fixed variety X.
- Choose X to be as nice as you can: smooth complex projective variety of dimension n.
- To control the size of the moduli space, fix also some discrete invariants: Chern classes $ch = (ch_0, ch_1, \ldots, ch_n)$.
- To get a proper moduli space allow at least coherent sheaves, i.e., work in the category $Coh(X)$.
- Still not good enough! We need to add an extra condition: a "stability condition"

 2990

イロト イ部 トイヨ トイヨト

For an ample class $\omega \in \mathsf{N}^1(\mathsf{X})_\mathbb{Q}$

 2990

イロト イ部 トメ ヨ トメ ヨト

For an ample class $\omega \in N^1(X)_\mathbb{Q}$, the Mumford slope of $E \in Coh(X)$ with respect to ω is

4 日下

For an ample class $\omega \in N^1(X)_\mathbb{Q}$, the Mumford slope of $E \in Coh(X)$ with respect to ω is

$$
\mu_{\omega}(E) := \frac{ch_1(E) \cdot \omega^{n-1}}{ch_0(E)\omega^n}
$$

4 日下

For an ample class $\omega \in N^1(X)_\mathbb{Q}$, the Mumford slope of $E \in Coh(X)$ with respect to ω is

$$
\mu_{\omega}(E) := \frac{ch_1(E) \cdot \omega^{n-1}}{ch_0(E)\omega^n} = \frac{\det(E) \cdot \omega^{n-1}}{\operatorname{rk}(E)\omega^n}.
$$

4 日下

 \equiv

For an ample class $\omega \in N^1(X)_\mathbb{Q}$, the Mumford slope of $E \in Coh(X)$ with respect to ω is

$$
\mu_{\omega}(E):=\frac{ch_1(E)\cdot \omega^{n-1}}{ch_0(E)\omega^n}=\frac{\det(E)\cdot \omega^{n-1}}{\mathsf{rk}(E)\omega^n}.
$$

Note: μ_{ω} can be defined for all coherent sheaves by declaring $\mu_{\omega}(E) = +\infty$ if $ch_0(E) = 0$.

 Ω

⊀ 御 ⊁ (≮ 唐 ≯ (≮ 唐 ≯

4 0 8

Definition

Let $E \in \text{Coh}(X)$ be a torsion-free sheaf. We say that E is **Mumford** semistable if for all subsheaves $A \hookrightarrow E$ we have

 $\mu_{\omega}(A) \leq \mu_{\omega}(E)$;

 \leftarrow

 QQ

Definition

Let $E \in \text{Coh}(X)$ be a torsion-free sheaf. We say that E is **Mumford** semistable if for all subsheaves $A \hookrightarrow F$ we have

 $\mu_{\omega}(A) \leq \mu_{\omega}(E);$

it is called Gieseker semistable if moreover

 $p_{\omega}(A)(t) \leq p_{\omega}(E)(t),$

where $p_{\omega}(\cdot)(t)$ is the reduced Hilbert polynomial with respect to ω .

Definition

Let $E \in \text{Coh}(X)$ be a torsion-free sheaf. We say that E is **Mumford** semistable if for all subsheaves $A \hookrightarrow F$ we have

 $\mu_{\omega}(A) \leq \mu_{\omega}(E);$

it is called Gieseker semistable if moreover

 $p_{\omega}(A)(t) \leq p_{\omega}(E)(t),$

where $p_{\omega}(\cdot)(t)$ is the reduced Hilbert polynomial with respect to ω . In the case that $n = 2$ the Gieseker condition becomes

$$
\left(\frac{\chi(A)}{ch_0(A)\omega^2}-\frac{\chi(E)}{ch_0(E)\omega^2}\right)\omega^2+t(\mu_\omega(A)-\mu_\omega(E))\leq 0\quad\text{ for }\ t\gg 0.
$$

Definition

Let $E \in \text{Coh}(X)$ be a torsion-free sheaf. We say that E is **Mumford** semistable if for all subsheaves $A \hookrightarrow F$ we have

 $\mu_{\omega}(A) \leq \mu_{\omega}(E);$

it is called Gieseker semistable if moreover

 $p_{\omega}(A)(t) \leq p_{\omega}(E)(t),$

where $p_{\omega}(\cdot)(t)$ is the reduced Hilbert polynomial with respect to ω . In the case that $n = 2$ the Gieseker condition becomes

$$
\left(\frac{\chi(A)}{ch_0(A)\omega^2}-\frac{\chi(E)}{ch_0(E)\omega^2}\right)\omega^2+t(\mu_\omega(A)-\mu_\omega(E))\leq 0\quad\text{ for }\ t\gg 0.
$$

Note: These semistabilities depend on the amp[le](#page-48-0) c[lass](#page-0-0) ω [.](#page-0-0)

Two important properties

 2990

イロト イ部 トメ ヨ トメ ヨト

Two important properties

 \bullet (Harder-Narasimhan) Every nonzero $E \in \text{Coh}(X)$ has a unique filtration

$$
0\subset E_0\subset E_1\subset\cdots\subset E_n=E
$$

such that E_0 is the torsion subsheaf of E, and the factors $F_i = E_i/E_{i-1}$ are Mumford semistable of decreasing slopes.

4 0 8

 \rightarrow \rightarrow \rightarrow

 QQ

 \bullet (Harder-Narasimhan) Every nonzero $E \in \text{Coh}(X)$ has a unique filtration

$$
0\subset E_0\subset E_1\subset\cdots\subset E_n=E
$$

such that E_0 is the torsion subsheaf of E, and the factors $F_i = E_i/E_{i-1}$ are Mumford semistable of decreasing slopes.

 \bullet For fixed Chern character v, there is a projective coarse moduli space $M_{\omega}(v)$ parametrizing S-equivalence classes of Gieseker semistable sheaves of type v.

Study the geometry of $M_{\omega}(v)$:

 2990

→ イ団 メ イ ヨ メ イ ヨ メ

4 0 8

Study the geometry of $M_{\omega}(v)$:

• Is this space irreducible or smooth? Can we understand its singular locus? What is its dimension?

4 0 8

化医头头

 QQ

Study the geometry of $M_{\omega}(v)$:

- Is this space irreducible or smooth? Can we understand its singular locus? What is its dimension?
- How can we produce varieties that are birational to $M_{\omega}(v)$?

4 0 8

化医头头

 QQ

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Suppose for the moment that $n = 2$ and let

$$
\Delta(v)=ch_1^2-2ch_0ch_2.
$$

 -990

イロト イ部 トメ ヨ トメ ヨト

Suppose for the moment that $n = 2$ and let

$$
\Delta(v)=ch_1^2-2ch_0ch_2.
$$

• (Bogomolov inequality): If E is Mumford semistable then $\Delta(E) \geq 0$.

4 日下

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

 η an

Suppose for the moment that $n = 2$ and let

$$
\Delta(v)=ch_1^2-2ch_0ch_2.
$$

- (Bogomolov inequality): If E is Mumford semistable then $\Delta(E) \geq 0$.
- If $\Delta(v) \gg 0$ then $M_{\omega}(v)$ is normal and irreducible of dimension $\Delta(v) - (ch_0^2 - 1)\chi(\mathcal{O}_X).$

 Ω

- 4 重 8 - 4 重 8

Suppose for the moment that $n = 2$ and let

$$
\Delta(v)=ch_1^2-2ch_0ch_2.
$$

- \bullet (Bogomolov inequality): If E is Mumford semistable then $\Delta(E) \geq 0$.
- If $\Delta(v) \gg 0$ then $M_{\omega}(v)$ is normal and irreducible of dimension $\Delta(v) - (ch_0^2 - 1)\chi(\mathcal{O}_X).$
- If $\Delta(v) \gg 0$ and $\omega, \ \omega'$ are ample then the moduli spaces $M_\omega(v)$ and $M_{\omega}(\nu)$ are birational.

Suppose for the moment that $n = 2$ and let

$$
\Delta(v)=ch_1^2-2ch_0ch_2.
$$

- \bullet (Bogomolov inequality): If E is Mumford semistable then $\Delta(E) \geq 0$.
- If $\Delta(v) \gg 0$ then $M_{\omega}(v)$ is normal and irreducible of dimension $\Delta(v) - (ch_0^2 - 1)\chi(\mathcal{O}_X).$
- If $\Delta(v) \gg 0$ and $\omega, \ \omega'$ are ample then the moduli spaces $M_\omega(v)$ and $M_{\omega}(\nu)$ are birational.

Note: For most surfaces $\mathsf{N}^1(X)\cong \mathbb{Z}$ and so $M_\omega(\mathsf{v})$ and $M_{\omega'}(\mathsf{v})$ are actually isomorphic.

 Ω

医毛囊 医牙骨下的

Suppose for the moment that $n = 2$ and let

$$
\Delta(v)=ch_1^2-2ch_0ch_2.
$$

- \bullet (Bogomolov inequality): If E is Mumford semistable then $\Delta(E) \geq 0$.
- If $\Delta(v) \gg 0$ then $M_{\omega}(v)$ is normal and irreducible of dimension $\Delta(v) - (ch_0^2 - 1)\chi(\mathcal{O}_X).$
- If $\Delta(v) \gg 0$ and $\omega, \ \omega'$ are ample then the moduli spaces $M_\omega(v)$ and $M_{\omega}(\nu)$ are birational.

Note: For most surfaces $\mathsf{N}^1(X)\cong \mathbb{Z}$ and so $M_\omega(\mathsf{v})$ and $M_{\omega'}(\mathsf{v})$ are actually isomorphic. Is there a way to produce interesting birational models in this case?

 Ω

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

Bridgeland's idea

 2990

イロト イ部 トイヨ トイヨト

Bridgeland's idea

Stability is not only a numerical condition: $Coh(X)$ is part of the stability data:

4 日下

 $\left\{ \left\vert \left\langle \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \left\langle \mathbf{q} \right\rangle \right\vert$

 \equiv

Bridgeland's idea

Stability is not only a numerical condition: $Coh(X)$ is part of the stability data:

 2990

イロト イ部 トメ ヨ トメ ヨト

A stability condition is a pair $\sigma = (Z, A)$ satisfying the conditions of the table above.

4 0 8

→ 何 ▶ → ヨ ▶ → ヨ

 OQ

- A stability condition is a pair $\sigma = (Z, A)$ satisfying the conditions of the table above.
- We say that $\sigma = (Z, A)$ is numerical if Z factors through the Chern character map. We say that σ is **geometric** if it is numerical and all skyscraper sheaves \mathbb{C}_{x} are σ -stable.

 QQ

- 4 重 8 - 4 重 8

- A stability condition is a pair $\sigma = (Z, A)$ satisfying the conditions of the table above.
- We say that $\sigma = (Z, A)$ is **numerical** if Z factors through the Chern character map. We say that σ is **geometric** if it is numerical and all skyscraper sheaves \mathbb{C}_{x} are σ -stable.

Theorem (Bridgeland, 2002)

There is a complex manifold $Stab(X)$ parametrizing numerical stability conditions on X . Moreover, for a fixed Chern character v , $Stab(X)$ admits a locally finite wall and chamber decomposition such that σ and σ' are in the same chamber if and only if the sets of σ -semistable and σ' -semistable objects of type v are the same.

 200

 \blacktriangleleft \oplus \blacktriangleright \dashv \exists \blacktriangleright \dashv

Why do we care about geometric stability conditions?

4.0.3

 \sim 一不 医小头

Why do we care about geometric stability conditions?

• (Bridgeland; Macri) If X is a curve then Bridgeland stability is essentially Mumford stability:

4 0 8

化医头头

 QQ
\bullet (Bridgeland; Macri) If X is a curve then Bridgeland stability is essentially Mumford stability:

 $A = Coh(C)$

 QQ

 $-4.25 + 4.$

• (Bridgeland; Macri) If X is a curve then Bridgeland stability is essentially Mumford stability:

$$
\mathcal{A} = \mathit{Coh}(C), \ \ Z(E) = -\deg(E) + \sqrt{-1} \mathrm{rk}(E)
$$

4 0 8

化医头头

 QQ

• (Bridgeland; Macri) If X is a curve then Bridgeland stability is essentially Mumford stability:

$$
\mathcal{A} = \mathit{Coh}(C), \ \ Z(E) = -\deg(E) + \sqrt{-1} \mathrm{rk}(E) \implies \mu_Z(E) = \frac{\deg(E)}{\mathrm{rk}(E)}
$$

4 **D** F

 QQ

• (Bridgeland; Macri) If X is a curve then Bridgeland stability is essentially Mumford stability:

$$
\mathcal{A}=\mathit{Coh}(\mathit{C}),\;\;Z(E)=-\mathsf{deg}(E)+\sqrt{-1}\mathsf{rk}(E)\;\;\Longrightarrow\;\mu_Z(E)=\frac{\mathsf{deg}(E)}{\mathsf{rk}(E)}
$$

• (Bridgeland) If X is a surface then for every Chern character v there is a distinguished chamber in the wall and chamber decomposition of $Stab(X)$ such that

E is σ -semistable \iff E is ω -Gieseker semistable

 200

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

4.0.3

 \sim 一不 医小头

• (Bertram) If X is a surface then for every fixed Chern character v there is a family of geometric stability conditions $\sigma_t = (Z_t, \mathcal{A}_t)$ with

$$
\frac{\mathfrak{Re}(Z_t(A))}{ch_0(A)} = -\left(\frac{\chi(A)}{ch_0(A)\omega^2} - \frac{\chi(v)}{ch_0(v)\omega^2}\right)\omega^2 - t(\mu_\omega(A) - \mu_\omega(v)).
$$

 \bullet (Bertram) If X is a surface then for every fixed Chern character v there is a family of geometric stability conditions $\sigma_t = (Z_t, \mathcal{A}_t)$ with

$$
\frac{\mathfrak{Re}(Z_t(A))}{ch_0(A)} = -\left(\frac{\chi(A)}{ch_0(A)\omega^2} - \frac{\chi(v)}{ch_0(v)\omega^2}\right)\omega^2 - t(\mu_\omega(A) - \mu_\omega(v)).
$$

• (Bertram, M.) Moreover, the path $\{\sigma_t\}_{t>0} \subset Stab(X)$ enters the ω -Gieseker chamber for $t \gg 0$ and never leaves.

4.0.3

 \sim 一不 医小头

4 日下

 \sim \rightarrow \rightarrow \rightarrow

目

4.0.3

 \sim - イ ヨ ト

Theorem (Bertram, M., Wang)

If $X=\mathbb{P}^2$ then as we decrease the parameter t the moduli spaces $M_{\sigma_t}(v)$ are precisely all the birational models appearing in the MMP for $M_{\omega}(v)$.

Theorem (Bertram, M., Wang)

If $X=\mathbb{P}^2$ then as we decrease the parameter t the moduli spaces $M_{\sigma_t}(v)$ are precisely all the birational models appearing in the MMP for $M_{\omega}(v)$.

Theorem (Bertram, M.)

Let X be an arbitrary smooth surface. Given two ample classes ω and ω' and a Chern character v there is a sequence of GIT flips

where M_i and N_i are projective moduli spaces of Bridgeland semistable sheaves of type v .

In general, how does the central charge Z_{σ} of a stability condition look like?

4 0 8

4 B K 4

 QQ

In general, how does the central charge Z_{σ} of a stability condition look like?

• (Bridgeland; Arcara, Bertram) If X is a surface and σ is geometric with $Z_{\sigma}(\mathbb{C}_{\mathsf{x}})=-1$ then there are classes $B, \omega \in \mathsf{N}^1(\mathsf{X})_\mathbb{Q}$ with ω ample such that

$$
Z_{\sigma}(E)=-\int e^{-B-i\omega}ch(E).
$$

 2990

イロト イ部 トイヨ トイヨト

Let $ch^B := e^{-B}ch$,

イロト イ押ト イヨト イヨト

 ORO

Let $ch^B := e^{-B}ch$, then

$$
\mu_{\sigma} = \frac{\left(ch_2^B - \frac{\omega^2}{2} ch_0^B \right) \cdot \omega^{n-2}}{ch_1^B \cdot \omega^{n-1}}.
$$

イロト イ押ト イヨト イヨト

 \equiv 990

Let
$$
ch^B := e^{-B}ch
$$
, then

$$
\mu_{\sigma} = \frac{\left(ch_2^B - \frac{\omega^2}{2} ch_0^B \right) \cdot \omega^{n-2}}{ch_1^B \cdot \omega^{n-1}}.
$$

From now on we denote this tilted slope by $\nu_{B,\omega}$ and refer to it as the tilt.

イロト イ押 トイヨト イヨ

4 日下

K 何 ▶ 【 三 ▶ 【

в

4 日下

目

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

4 日下

目

 $-4.25 + 4.$ 重

 \rightarrow

4 D F

 \sim \rightarrow \equiv \rightarrow \sim

目

舌

 2990

イロト イ部 トメ ヨ トメ ヨト

 \bullet \mathcal{A}_{σ} is obtained using the tilting process. Its objects are quasi-isomorphic to two-term complexes.

不重 医牙

4 0 8

 QQ

- \bullet \mathcal{A}_{σ} is obtained using the tilting process. Its objects are quasi-isomorphic to two-term complexes.
- \bullet \mathcal{A}_{σ} is generated by

 QQ

不重 医牙

- \bullet \mathcal{A}_{σ} is obtained using the tilting process. Its objects are quasi-isomorphic to two-term complexes.
- \bullet \mathcal{A}_{σ} is generated by
	- torsion sheaves,

 QQ

不重 医牙

- \bullet \mathcal{A}_{σ} is obtained using the tilting process. Its objects are quasi-isomorphic to two-term complexes.
- \bullet \mathcal{A}_{σ} is generated by
	- torsion sheaves, (\mathcal{T})

 Ω

不重 医牙

- \bullet \mathcal{A}_{σ} is obtained using the tilting process. Its objects are quasi-isomorphic to two-term complexes.
- \bullet \mathcal{A}_{σ} is generated by
	- torsion sheaves, (\mathcal{T})
	- μ_{ω} -semistable sheaves with $\mu_{\omega} > B\omega$,

4 **D** F

- \bullet \mathcal{A}_{σ} is obtained using the tilting process. Its objects are quasi-isomorphic to two-term complexes.
- \bullet \mathcal{A}_{σ} is generated by
	- torsion sheaves, (\mathcal{T})
	- μ_{ω} -semistable sheaves with $\mu_{\omega} > B\omega$, (\mathcal{T})

4 **D** F

- \bullet \mathcal{A}_{σ} is obtained using the tilting process. Its objects are quasi-isomorphic to two-term complexes.
- \bullet \mathcal{A}_{σ} is generated by
	- torsion sheaves, (\mathcal{T})
	- μ_{ω} -semistable sheaves with $\mu_{\omega} > B\omega$, (\mathcal{T})
	- [1] shifts of μ_ω -semistable sheaves with $\mu_\omega \leq B\omega$

 QQ

 $-4.25 + 4.$

4 **D** F

- \bullet \mathcal{A}_{σ} is obtained using the tilting process. Its objects are quasi-isomorphic to two-term complexes.
- \bullet \mathcal{A}_{σ} is generated by
	- torsion sheaves, (\mathcal{T})
	- μ_{ω} -semistable sheaves with $\mu_{\omega} > B\omega$, (\mathcal{T})
	- [1] shifts of μ_{ω} -semistable sheaves with $\mu_{\omega} \leq B\omega$, (F[1])

- \bullet \mathcal{A}_{σ} is obtained using the tilting process. Its objects are quasi-isomorphic to two-term complexes.
- \bullet \mathcal{A}_{σ} is generated by
	- torsion sheaves, (\mathcal{T})
	- μ_{ω} -semistable sheaves with $\mu_{\omega} > B\omega$, (T)
	- [1] shifts of μ_{ω} -semistable sheaves with $\mu_{\omega} \leq B\omega$, $(\mathcal{F}[1])$
- Since A_{σ} is obtained as a tilt of $Coh(X)$, from now on we will denote it by $Coh^{B,\omega}(X)$.

$$
Z_{\sigma}(E) = -\int e^{-B-i\omega} \sqrt{\text{td}(X)} ch(E) + \text{ corrections}.
$$

4 日下

 $\left\{ \left\vert \left\langle \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \left\langle \mathbf{q} \right\rangle \right\vert$

重

 \equiv

$$
Z_{\sigma}(E) = -\int e^{-B-i\omega} \sqrt{\text{td}(X)} ch(E) + \text{ corrections}.
$$

• On surfaces there is no need for corrections.

4.0.3

目

化医头头

 QQ

$$
Z_{\sigma}(E) = -\int e^{-B-i\omega} \sqrt{\text{td}(X)} ch(E) + \text{ corrections}.
$$

- On surfaces there is no need for corrections.
- The positivity property is a consequence of the Hodge Index Theorem and the Bogomolov inequality for slope semistable sheaves

$$
Z_{\sigma}(E) = -\int e^{-B-i\omega} \sqrt{\text{td}(X)} ch(E) + \text{ corrections}.
$$

- On surfaces there is no need for corrections.
- The positivity property is a consequence of the Hodge Index Theorem and the Bogomolov inequality for slope semistable sheaves

$$
\Delta(E)\geq 0.
$$
How about threefolds?

 2990

イロト イ部 トイヨ トイヨト

Conjecture (Bayer, Bertram, Macri, Toda; 2011)

On a threefold X the linear map

$$
Z_{B,\omega}(E)=-\int e^{-B-i\omega}ch(E)
$$

defines a stability condition on the tilt $A_{B,\omega}$ of $Coh^{B,\omega}(X)$ with respect to the tilted slope

$$
\nu_{B,\omega}=\frac{(ch_2^B-\frac{\omega^2}{2}ch_0^B)\cdot\omega}{ch_1^B\cdot\omega^2}.
$$

Conjecture (Bayer, Bertram, Macri, Toda; 2011)

On a threefold X the linear map

$$
Z_{B,\omega}(E)=-\int e^{-B-i\omega}ch(E)
$$

defines a stability condition on the tilt $A_{B,\omega}$ of $\mathsf{Coh}^{B,\omega}(X)$ with respect to the tilted slope

$$
\nu_{B,\omega}=\frac{(ch_2^B-\frac{\omega^2}{2}ch_0^B)\cdot\omega}{ch_1^B\cdot\omega^2}.
$$

*No corrections required!

Theorem (Bayer, Macri, Toda)

The pair $(Z_{B,\omega}, A_{B,\omega})$ defines a geometric stability condition on X if and only if every $\nu_{B,\omega}$ -semistable object $E \in Coh^{B,\omega}(X)$ with $\nu_{B,\omega}(E) = 0$ also satisfies

$$
ch_3^B(E)-\frac{\omega^2}{6}ch_1^B(E)\leq 0.
$$

4 D F

Generalized Bogomolov-Gieseker inequality

Theorem (Bayer, Macri, Toda)

The pair $(Z_{B,\omega}, A_{B,\omega})$ defines a geometric stability condition on X if and only if every $\nu_{B_{\nu}}$ -semistable object $E \in \text{Coh}^{B,\omega}(X)$ with $\nu_{B_{\nu}}(E) = 0$ also satisfies

$$
ch_3^B(E)-\frac{\omega^2}{6}ch_1^B(E)\leq 0.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 90 Q ^

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

\mathbb{P}^3 . (Bayer, Macrì, Toda; Macrì)

 -990

イロト イ部 トメ ヨ トメ ヨト

- \mathbb{P}^3 . (Bayer, Macrì, Toda; Macrì)
- Quadric $Q \subset \mathbb{P}^4$.

 Ω

メタトメ ミトメ ミト

4 0 8

- \mathbb{P}^3 . (Bayer, Macrì, Toda; Macrì)
- Quadric $Q \subset \mathbb{P}^4$. (Schmidt)

4 日下

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

 OQ

- \mathbb{P}^3 . (Bayer, Macrì, Toda; Macrì)
- Quadric $Q \subset \mathbb{P}^4$. (Schmidt)
- Abelian threefolds.

4 日下

. p

- 4 国家 34 国

 \rightarrow

 OQ

- \mathbb{P}^3 . (Bayer, Macrì, Toda; Macrì)
- Quadric $Q \subset \mathbb{P}^4$. (Schmidt)
- Abelian threefolds. (Piyaratne, Maciocia; Bayer, Macrì, Stellari)

4 0 8

 \rightarrow \rightarrow \rightarrow

 Ω

- \mathbb{P}^3 . (Bayer, Macrì, Toda; Macrì)
- Quadric $Q \subset \mathbb{P}^4$. (Schmidt)
- Abelian threefolds. (Piyaratne, Maciocia; Bayer, Macrì, Stellari)
- Fano threefolds of Picard number 1.

 QQQ

不重 医牙

- \mathbb{P}^3 . (Bayer, Macrì, Toda; Macrì)
- Quadric $Q \subset \mathbb{P}^4$. (Schmidt)
- Abelian threefolds. (Piyaratne, Maciocia; Bayer, Macrì, Stellari)
- Fano threefolds of Picard number 1. (Li)

 QQQ

不重 医牙

- \mathbb{P}^3 . (Bayer, Macrì, Toda; Macrì)
- Quadric $Q \subset \mathbb{P}^4$. (Schmidt)
- Abelian threefolds. (Piyaratne, Maciocia; Bayer, Macrì, Stellari)
- Fano threefolds of Picard number 1. (Li)
- Some product threefolds.

 QQQ

不重 医牙

- \mathbb{P}^3 . (Bayer, Macrì, Toda; Macrì)
- Quadric $Q \subset \mathbb{P}^4$. (Schmidt)
- Abelian threefolds. (Piyaratne, Maciocia; Bayer, Macri, Stellari)
- Fano threefolds of Picard number 1. (Li)
- Some product threefolds. (Koseki)

 Ω

不重 医牙

- \mathbb{P}^3 . (Bayer, Macrì, Toda; Macrì)
- Quadric $Q \subset \mathbb{P}^4$. (Schmidt)
- Abelian threefolds. (Piyaratne, Maciocia; Bayer, Macri, Stellari)
- Fano threefolds of Picard number 1. (Li)
- Some product threefolds. (Koseki)
- The quintic threefold.

4 D F

 Ω

- \mathbb{P}^3 . (Bayer, Macrì, Toda; Macrì)
- Quadric $Q \subset \mathbb{P}^4$. (Schmidt)
- Abelian threefolds. (Piyaratne, Maciocia; Bayer, Macri, Stellari)
- Fano threefolds of Picard number 1. (Li)
- Some product threefolds. (Koseki)
- The quintic threefold. (Li)

4 D F

 Ω

Oops

K ロ > K 御 > K 星 > K 星 > 「星」 の Q Q <

Conjecture fails on $\mathit{Bl}_p\mathbb{P}^3$.

 \equiv 990

メロト メ都 トメ 君 トメ 君 ト

Conjecture fails on $\mathit{Bl}_p\mathbb{P}^3$. Schmidt proves the existence of classes β, ω and a line bundle so that the GBG inequality fails.

4 日下

 QQ

医毛菌 医心脏 \equiv

Oops

- Conjecture fails on $\mathit{Bl}_p\mathbb{P}^3$. Schmidt proves the existence of classes β, ω and a line bundle so that the GBG inequality fails.
- Does this mean that there should be corrections to the central charge?

4 0 8

4 日下

 \blacktriangleleft \Box \Box \blacktriangleright \blacktriangleleft \Box \blacktriangleright \blacktriangleleft

重

Classical Bogomolov inequality on a surface also fails for some Gieseker semistable sheaves.

4 0 8

E K K

Classical Bogomolov inequality on a surface also fails for some Gieseker semistable sheaves. Indeed, suppose that $C \subset X$ is a curve of negative self intersection.

Classical Bogomolov inequality on a surface also fails for some Gieseker semistable sheaves. Indeed, suppose that $C \subset X$ is a curve of negative self intersection. Then

 $\Delta(\mathcal{O}_C)$

Classical Bogomolov inequality on a surface also fails for some Gieseker semistable sheaves. Indeed, suppose that $C \subset X$ is a curve of negative self intersection. Then

$$
\Delta(\mathcal{O}_C)=ch_1(\mathcal{O}_C)^2-2ch_0(\mathcal{O}_C)ch_2(\mathcal{O}_C)
$$

Classical Bogomolov inequality on a surface also fails for some Gieseker semistable sheaves. Indeed, suppose that $C \subset X$ is a curve of negative self intersection. Then

$$
\Delta(\mathcal{O}_C) = ch_1(\mathcal{O}_C)^2 - 2ch_0(\mathcal{O}_C)ch_2(\mathcal{O}_C) = C^2
$$

Classical Bogomolov inequality on a surface also fails for some Gieseker semistable sheaves. Indeed, suppose that $C \subset X$ is a curve of negative self intersection. Then

$$
\Delta(\mathcal{O}_C)=ch_1(\mathcal{O}_C)^2-2ch_0(\mathcal{O}_C)ch_2(\mathcal{O}_C)=C^2<0.
$$

Classical Bogomolov inequality on a surface also fails for some Gieseker semistable sheaves. Indeed, suppose that $C \subset X$ is a curve of negative self intersection. Then

$$
\Delta(\mathcal{O}_C)=ch_1(\mathcal{O}_C)^2-2ch_0(\mathcal{O}_C)ch_2(\mathcal{O}_C)=C^2<0.
$$

• Can we find divisors D on a threefold X with special intersection properties so that \mathcal{O}_D violates the GBG inequality?

Using Bertram's estimates for walls...

Theorem (M., Schmidt)

Let X be a smooth projective threefold. Suppose that there is an effective divisor D and an ample divisor H such that

$$
D^3 > \frac{(D \cdot H^2)^3}{4(H^3)^2} + \frac{3}{4} \frac{(D^2 \cdot H)^2}{D \cdot H^2}.
$$

Then there exists a pair of numbers $\alpha_0 > 0$, β_0 such that \mathcal{O}_D violates the GBG inequality for $\omega = \alpha_0 H$ and $B = \beta_0 H$.

Using Bertram's estimates for walls...

Theorem (M., Schmidt)

Let X be a smooth projective threefold. Suppose that there is an effective divisor D and an ample divisor H such that

$$
D^3 > \frac{(D \cdot H^2)^3}{4(H^3)^2} + \frac{3}{4} \frac{(D^2 \cdot H)^2}{D \cdot H^2}.
$$

Then there exists a pair of numbers $\alpha_0 > 0$, β_0 such that \mathcal{O}_D violates the GBG inequality for $\omega = \alpha_0 H$ and $B = \beta_0 H$.

*We require $\rho(X) > 1$.

Suppose that there is a projective morphism $\pi: X \to X_0$ with exceptional locus a divisor D that gets contracted to a point by π . Then the GBG inequality fails on X with

4 日下

 \rightarrow \rightarrow \rightarrow

Suppose that there is a projective morphism $\pi: X \to X_0$ with exceptional locus a divisor D that gets contracted to a point by π . Then the GBG inequality fails on X with

 $H = m\pi^* A - D$, where A is ample on X_0 and $m \gg 0$.

 QQ

 $-4.25 + 4.$

4 0 8

Suppose that there is a projective morphism $\pi: X \to X_0$ with exceptional locus a divisor D that gets contracted to a point by π . Then the GBG inequality fails on X with

 $H = m\pi^* A - D$, where A is ample on X_0 and $m \gg 0$.

In particular, the GBG inequality fails on any blow-up of a point on a smooth threefold.

 QQ

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

4 0 8

Let $p: Y \rightarrow B$ be a smooth elliptic Calabi-Yau threefold over a del Pezzo surface B with a section $\sigma: B \to Y$. Then the GBG inequality fails on Y with:

4 日下

 QQ

医毛囊 医牙关膜
\bullet $D = \Theta \subset Y$ the image of σ .

4 0 8

∢ ∃ ⊁ ∢

 QQ

- \bullet $D = \Theta \subset Y$ the image of σ .
- $H = t\Theta (1+t)p^*K_B$ and $t > 2^{1/3} 1$.

 QQ

 $-4.29 + 4.$

- \bullet $D = \Theta \subset Y$ the image of σ .
- $H = t\Theta (1+t)p^*K_B$ and $t > 2^{1/3} 1$.

 QQ

 $-4.29 + 4.$

- \bullet $D = \Theta \subset Y$ the image of σ .
- $H = t\Theta (1+t)p^*K_B$ and $t > 2^{1/3} 1$.

Note: ALL known counterexamples to the GBG inequality are constructed this way.

 QQ

 $-4.25 + 4.$

4 0 8

 QQ

• Let $f : \tilde{X} \to X$ be the blow-up of X at P and denote by E the exceptional divisor.

 QQ

- Let $f : \tilde{X} \to X$ be the blow-up of X at P and denote by E the exceptional divisor.
- Let H be ample on X and assume that $(Z_{\alpha H, B_0+\beta H}, A_{\alpha H, B_0+\beta H})$ is a stability condition on X .

- Let $f : \tilde{X} \to X$ be the blow-up of X at P and denote by E the exceptional divisor.
- Let H be ample on X and assume that $(Z_{\alpha H, B_0 + \beta H}, \mathcal{A}_{\alpha H, B_0 + \beta H})$ is a stability condition on X .
- Can we use $(Z_{\alpha H,B_0+\beta H}, A_{\alpha H,B_0+\beta H})$ to construct a stability condition on \tilde{X} ?

- Let $f : \tilde{X} \to X$ be the blow-up of X at P and denote by E the exceptional divisor.
- Let H be ample on X and assume that $(Z_{\alpha H, B_0 + \beta H}, \mathcal{A}_{\alpha H, B_0 + \beta H})$ is a stability condition on X .
- Can we use $(Z_{\alpha H,B_0+\beta H}, A_{\alpha H,B_0+\beta H})$ to construct a stability condition on \tilde{X} ?

 OQ

$$
\bullet \ \tilde{H}=f^*H,
$$

 OQ

\n- $$
\tilde{H} = f^*H
$$
\n- $\tilde{B}_0 = f^*B_0 - 2E$
\n

 OQ

- $\tilde{H} = f^*H$, $\tilde{B}_0 = f^* B_0 - 2E,$
- $\tilde{B}=\tilde{B_0}+\beta\tilde{H}$,

4 日下

 $-4.25 + 4.$ ÷. . p

 \rightarrow

- $\tilde{H} = f^*H$, $\tilde{B}_0 = f^* B_0 - 2E,$
- $\tilde{B}=\tilde{B_0}+\beta\tilde{H}$,

4 日下

 $-4.25 + 4.$ ÷. . p

 \rightarrow

Theorem (M., Schmidt)

There is a heart of a t-structure \tilde{A} on $D^b(\tilde{X})$ such that the linear map

$$
\mathcal{Z}_{\alpha,\beta,s}=-\left(ch_3^{\tilde{\beta}}-s\alpha^2\tilde{H}^2ch_1^{\tilde{\beta}}-\frac{E^2}{6}ch_1^{\tilde{\beta}}\right)+i\left(\tilde{H}ch_2^{\tilde{\beta}}-\frac{\alpha^3}{2}\tilde{H}^3ch_0^{\tilde{\beta}}\right)
$$

is the central charge of a stability condition on $\tilde{\mathcal{A}}$ for every $s > 1/6$ if and only if

$$
Z_{\alpha H,B_0+\beta H}=-\left(ch_3^B-s\alpha^2H^2ch_1^B\right)+i\left(Hch_2^B-\frac{\alpha^3}{2}H^3ch_0^B\right)
$$

is the charge of a stability condition on $A_{\alpha H, B_0+\beta H}$, i.e., if and only if the GBG inequality holds on X for the classes $B_0 + \beta H$ and αH .

4 日下

K @ ▶ K 경 ▶ K 경

J.

Can we run an MMP for moduli spaces of sheaves on other surfaces using variation of stability conditions? For instance, on a Hirzebruch surface?

4 D F

 QQ

- Can we run an MMP for moduli spaces of sheaves on other surfaces using variation of stability conditions? For instance, on a Hirzebruch surface?
	- With Talon Stark (UCLA). To relate the birational models of the Gieseker moduli appearing in an MMP to moduli spaces of Bridgeland semistable objects, for a fixed Chern character we would like to find families of stability conditions with projective moduli. We work with exceptional collections on Hirzebruch surfaces to produce such families.

- Can we run an MMP for moduli spaces of sheaves on other surfaces using variation of stability conditions? For instance, on a Hirzebruch surface?
	- With Talon Stark (UCLA). To relate the birational models of the Gieseker moduli appearing in an MMP to moduli spaces of Bridgeland semistable objects, for a fixed Chern character we would like to find families of stability conditions with projective moduli. We work with exceptional collections on Hirzebruch surfaces to produce such families.

4 日下

K @ ▶ K 경 ▶ K 경

J.

Can we study the Bridgeland wall-crossing for moduli spaces of sheaves on \mathbb{P}^3 ? In particular, can we prove projectivity? Can we describe the birational transformations geometrically?

 QQ

- Can we study the Bridgeland wall-crossing for moduli spaces of sheaves on \mathbb{P}^3 ? In particular, can we prove projectivity? Can we describe the birational transformations geometrically?
	- With Benjamin Schmidt (Leibniz Universität Hannover). If we fix the Chern character of a 1-dimensional space sheaf or an instanton sheaf then there is a 2-dimensional family of stability conditions with a finite wall and chamber decomposition that recovers the Gieseker moduli in the outermost chamber. Can we develop algorithms to effectively compute all the wall-crossings?

- Can we study the Bridgeland wall-crossing for moduli spaces of sheaves on \mathbb{P}^3 ? In particular, can we prove projectivity? Can we describe the birational transformations geometrically?
	- With Benjamin Schmidt (Leibniz Universität Hannover). If we fix the Chern character of a 1-dimensional space sheaf or an instanton sheaf then there is a 2-dimensional family of stability conditions with a finite wall and chamber decomposition that recovers the Gieseker moduli in the outermost chamber. Can we develop algorithms to effectively compute all the wall-crossings?

4 日下

K @ ▶ K 경 ▶ K 경

J.

We have proven that it is possible to construct stability conditions on a blow up of a smooth threefold at a point by pulling back stability conditions on the threefold. However, the induced stability conditions depend on a nef class rather than on an ample class. For what type of nef classes would it be possible to construct tilts of $Coh(X)$?

 Ω

- We have proven that it is possible to construct stability conditions on a blow up of a smooth threefold at a point by pulling back stability conditions on the threefold. However, the induced stability conditions depend on a nef class rather than on an ample class. For what type of nef classes would it be possible to construct tilts of $Coh(X)$?
	- With Jason Lo (California State University, Northridge). Can we produce a correction term for the GBG inequality on an elliptic Calabi-Yau threefold with a section over a del Pezzo surface?

- We have proven that it is possible to construct stability conditions on a blow up of a smooth threefold at a point by pulling back stability conditions on the threefold. However, the induced stability conditions depend on a nef class rather than on an ample class. For what type of nef classes would it be possible to construct tilts of $Coh(X)$?
	- With Jason Lo (California State University, Northridge). Can we produce a correction term for the GBG inequality on an elliptic Calabi-Yau threefold with a section over a del Pezzo surface?

 OQ

On elliptic fibrations we have an extra tool, the relative Fourier-Mukai transform. In joint work with Wanmin Liu and Jason Lo we proved that for the case of elliptic surfaces with a section, the relative FM transform preserves Bridgeland stability for stability conditions on certain paths in $Stab(X)$. Moreover, the FM transform sends $Coh(X)$ to a tilt of $Coh(X)$. Can we do the same for elliptic Calabi-Yau threefolds with a section?

 Ω

- On elliptic fibrations we have an extra tool, the relative Fourier-Mukai transform. In joint work with Wanmin Liu and Jason Lo we proved that for the case of elliptic surfaces with a section, the relative FM transform preserves Bridgeland stability for stability conditions on certain paths in $Stab(X)$. Moreover, the FM transform sends $Coh(X)$ to a tilt of $Coh(X)$. Can we do the same for elliptic Calabi-Yau threefolds with a section?
- If we know that the relative FM transform send a tilt of $Coh(X)$ to a double tilt of $Coh(X)$, then we can study the image of the Bogomolov form by the FM transform.

 Ω

- On elliptic fibrations we have an extra tool, the relative Fourier-Mukai transform. In joint work with Wanmin Liu and Jason Lo we proved that for the case of elliptic surfaces with a section, the relative FM transform preserves Bridgeland stability for stability conditions on certain paths in $Stab(X)$. Moreover, the FM transform sends $Coh(X)$ to a tilt of $Coh(X)$. Can we do the same for elliptic Calabi-Yau threefolds with a section?
- If we know that the relative FM transform send a tilt of $Coh(X)$ to a double tilt of $Coh(X)$, then we can study the image of the Bogomolov form by the FM transform. In the case that X is elliptically fibered over a del Pezzo surface and $\omega = \Theta - 2p^*(K_B)$ then the image of the discriminant by the FM transform is

$$
\left(3ch_0(\Phi E)K_B^2-ch_2(\Phi E)\cdot p^*K_B\right)^2+7K_B^2ch_1(\Phi E)\cdot f\left(\left(1+\frac{1}{24}\right)K_B^2ch_1(\Phi E)\cdot f-ch_1(\Phi E)\cdot\Theta^2-ch_3(\Phi E)\right)\geq 0.
$$

 QQ

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

Thank you!

 2990

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶