Geometry of Complex Algebraic Varieties

Christopher Hacon

University of Utah

June, 2020

Christopher Hacon Geometry of Complex Algebraic Varieties

イロン スロン イヨン イヨン

臣

Introduction

- An **algebraic variety** is a geometric object defined by polynomial equations.
- Typical examples are a parabola, circle, Fermat's equation

$$y = x^2$$
, $x^2 + y^2 = 1$, $x^n + y^n = z^n$.

- One can look for different kinds of solutions.
- For example, the rational/Q solutions of x² + y² = 1 corresponds to Pythagorean triples a² + b² = c² so that x = a/c, y = b/c.
- The real/ \mathbb{R} solutions give a circle.
- The complex/C solutions give a sphere (minus 2 points at infinity).

Christopher Hacon Geometry of Complex Algebraic Varieties

- By a famous result of Wiles, for n ≥ 3 there are no non-trivial integer (rational) solutions to xⁿ + yⁿ = zⁿ,
- However, there are plenty of complex solutions corresponding to a (cone over a) Riemann surface of genus g = (n-1)(n-2)/2.
- \bullet In this talk we will focus on complex/ ${\mathbb C}$ solutions.

Projective varieties

- Affine varieties X ⊂ C^N are defined by polynomials Q₁,..., Q_r ∈ C[x₁,..., x_N].
- A projective variety X ⊂ P^N_C is defined by homogeneous polynomials P₁,..., P_r ∈ C[x₀,..., x_N].
- P^N_ℂ = (ℂ^{N+1} − 0̄)/ℂ^{*} is a natural compactification of ℂ^N
 corresponding to lines in ℂ^{N+1}.
- $\mathbb{P}^{N}_{\mathbb{C}} = \mathbb{C}^{N} \cup \mathbb{P}^{N-1}_{\mathbb{C}}$.
- We think of P^{N-1}_C as the hyperplane at infinity whose points correspond to all directions in projective space P^N_C.
- Projective varieties are natural compactifications of affine varieties obtained by homogenization
 P_i(x₀,...,x_N) = x₀^{d_i}Q_i(x₁/x₀,...,x₁/x_n).
- This has many advantages

(日) (四) (三) (三) (三) (三)

BEZOUT'S THEOREM: Two distinct curves C, D c P2 of degrees d, c intersect in exactly d.c pts (when counted with mult.)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- A variety X is **irreducible** if it is not the union of two distinct varieties.
- We will focus on smooth irreducible varieties, i.e. complex manifolds.
- This is reasonable because:
 - Most varieties are smooth (if you perturb the coefficients of your equations you get a smooth variety).
 - Every variety is smooth outside a closed (measure 0) subset.
 - By Hironaka's theorem every variety is birational to a smooth one (i.e. can be smoothed by an appropriate "non-invertible change of variables").

IDPRIERIER E DQC

Birational varieties

- To study X we consider meromorphic functions C(X) on X (since X is a compact, global holomorphic functions are constant H⁰(O_X) ≅ C).
- Two varieties X, X' are **birational** if
 - they have isomorphic fields of rational (meromorphic) functions C(X) ≅ C(X') or equivalently if
 - 2 they have isomorphic open subsets $U \cong U'$.
- We work in the **Zariski topology**, so that a closed set $Z = X \setminus U$ is defined by the vanishing of polynomial equations.
- If dim X = dim X' = 1, then X and X' are birational iff they are isomorphic (outside finitely many points).
- In higher dimensions this is no longer true (so we need to understand birational equivalence in more detail).

イロト イヨト イヨト イヨト

- Typical examples of birational maps are given by blowing up.
- If Z ⊂ X is a smooth subvariety of a smooth variety, then the blow up of X along Z is a "surgery" that replaces Z by P(N_{Z/X}).
- So every point of Z is replaced by its normal directions in X.
- Two varieties are birational if and only if they are related by a sequence of blow ups and blow downs (inverse of blowing up).

Line bundles

- Since global holomorphic functions are constant $(H^0(\mathcal{O}_X) = \mathbb{C})$, to study X we consider global sections $s \in H^0(X, \mathcal{L})$ of a line bundle \mathcal{L} .
- Locally, $X = \bigcup U_{\alpha}$, $\mathcal{L}|_{U_{\alpha}} \cong \mathbb{C} \times U_{\alpha}$, \mathcal{L} is defined by $g_{\alpha,\beta} \in \mathcal{O}^*_{U_{\alpha} \cap U_{\beta}}$ and $s|_{U_{\alpha}} = s_{\alpha} \in \mathcal{O}_{U_{\alpha}}$ such that $s_{\alpha} = g_{\alpha,\beta}s_{\beta}$.
- H⁰(X, L) is a finite dimensional C vector space (which can be identified to a subspace of C(X)).
- Eg. O_{Pⁿ}(k) is the line bundle whose sections H⁰(Pⁿ, O_{Pⁿ}(k)) are homogeneous polynomials of degree k in C[x₀,...,x_n].
- The difficulty is to choose an appropriate line bundle. There is essentially only one possible choice: the **canonical line bundle**.

・ロット 小田 マイ 日マー

The canonical line bundle

- If X is smooth and dim X = d, then let $\omega_X = \wedge^d T_X^{\vee}$ be the canonical line bundle.
- For any m > 0 consider pluricanonical forms $s \in H^0(\omega_X^{\otimes m})$.

• Locally
$$s|_U = f \cdot (dz_1 \wedge \ldots \wedge dz_d)^{\otimes m}$$
.

• If s_0, \ldots, s_N is a basis of $H^0(\omega_X^{\otimes m})$, then define the *m*-th pluricanonical map

$$\phi_m: X \dashrightarrow \mathbb{P}^N, \qquad x \to [s_0(x): \ldots: s_N(x)].$$

- ϕ_m is not defined at common zeroes of s_0, \ldots, s_N .
- If X, X' are smooth birational varieties, then

$$H^0(\omega_X^{\otimes m}) \cong H^0(\omega_{X'}^{\otimes m}).$$

イロト イヨト イヨト イヨト

The canonical ring

- $R(\omega_X) = \oplus_{m \ge 0} H^0(\omega_X^{\otimes m})$ is the canonical ring.
- $\kappa(X) = tr.deg._{\mathbb{C}}R(\omega_X) 1 \in \{-1, 0, 1, \dots, \dim X\}$ is the Kodaira dimension.
- We have $\kappa(X) = \max\{\dim \phi_m(X)\}.$
- X is of general type if
 - $\kappa(X) = \dim X$, or equivalently
 - Q φ_m is birational for all m ≫ 0 (i.e. φ_m|_U : U → φ_m(U) is an isomorphism for some non-empty open subset U ⊂ X), or equivalently

3 dim
$$H^0(\omega_X^{\otimes m}) = \frac{v \cdot m^d}{d!} + L.O.T.$$
 where $v := \operatorname{vol}(\omega_X).$

The canonical ring of a curve

- When $d = \dim X = 1$, we say that X is a **curve**.
- A curve X is topologically a Riemann surface of genus g and there are 3 main cases:
- $\kappa(X) = -1$: Then $X \cong \mathbb{P}^1_{\mathbb{C}}$ is a **rational curve**. Note that $\omega_{\mathbb{P}^1} \cong \mathcal{O}_{\mathbb{P}^1}(-2)$ and so $H^0(\omega_{\mathbb{P}^1}^{\otimes m}) = 0$ for all m > 0 i.e. $R(\omega_X) \cong \mathbb{C}$.
- $\kappa(X) = 0$: Then $\omega_X \cong \mathcal{O}_X$ and so $H^0(\omega_X^{\otimes m}) \cong \mathbb{C}$ for all m > 0 i.e. $R(\omega_X) \cong \mathbb{C}[t]$.
- In this case X is an **elliptic curve**. There is a one parameter family of these $x^2 = y(y-1)(y-\lambda)$.

Christopher Hacon Geometry of Complex Algebraic Varieties

IPPPEPTEPTE DQC

Curves of general type

- If κ(X) = 1, then we say that X is a curve of general type. These are Riemann surfaces of genus g ≥ 2.
- For any g ≥ 2 there is a 3g − 3 irreducible algebraic family of these curves.
- We have $deg(\omega_X) = 2g 2 > 0$.
- By Riemann Roch, it is easy to see that ω_X^{⊗m} is very ample for m ≥ 3. This means that if s₀,..., s_N are a basis of H⁰(ω_X^{⊗m}), then

$$\phi_m: X \to \mathbb{P}^N, \qquad x \to [s_0(x): s_1(x): \ldots: s_N(x)]$$

is an embedding.

• Thus $\omega_X^{\otimes m} \cong \phi_m^* \mathcal{O}_{\mathbb{P}^N}(1)$, hence $\mathbb{C}[x_0, \ldots, x_N] \to R(\omega_X^{\otimes m})$ is surjective (in high degree) and so $R(\omega_X)$ is finitely generated.

(日) (四) (三) (三) (三) (三)

- It follows from Riemann Roch that $X \subset \mathbb{P}^{5g-6} = \mathbb{P}H^0(\omega_X^{\otimes 3})$ has degree $6g - 6 = 3\mathrm{vol}(\omega_X)$.
- Thus X depends on finitely many parameters (coefficients of the corresponding polynomials).
- We would like to generalize this picture to any dimension.

Christopher Hacon Geometry of Complex Algebraic Varieties

Theorem (Birkar-Cascini-Hacon-M^cKernan, Siu 2010)

Let X be a smooth complex projective variety, then the canonical ring $R(K_X)$ is finitely generated.

- If X is of general type (κ(X) = dim X) then the canonical model X_{can} := Proj(R(ω_X)) is a distinguished "canonical" (unique) representative of the birational equivalence class of X which is defined by the generators and relations in the finitely generated ring R(ω_X).
- X_{can} may be singular, but its singularities are mild (canonical). In particular they are cohomologically insignificant (rational sings) so that e.g. $H^i(\mathcal{O}_X) \cong H^i(\mathcal{O}_{X_{\text{can}}})$.
- The "canonical line bundle" is now a Q-line bundle which means that ω^{⊗n}<sub>X_{can} is a line bundle for some n > 0.
 </sub>

• $\omega_{X_{\text{can}}}$ is ample so that $\omega_{X_{\text{can}}}^{\otimes m} = \phi_m^* \mathcal{O}_{\mathbb{P}^N}(1)$ for some m > 0.

Surfaces of general type

- In dimension 2, the canonical model of a surface is obtained by first contracting all −1 curves (E ≅ P¹, c₁(ω_X) · E = −1) to get X → X_{min},
- Then, we contract all 0-curves (E ≅ P¹, c₁(ω_X) · E = 0) to get X_{min} → X_{can}.
- Bombieri's Theorem says that ϕ_5 embeds X_{can} in $\mathbb{P}^N = \mathbb{P}H^0(\omega_X^{\otimes 5})$ as a variety of degree $25c_1(\omega_{X_{\text{can}}})^2$.
- So for any fixed integer $v = c_1 (\omega_{X_{can}})^2$, canonical surfaces depend on finitely many algebraic parameters.
- The number

$$v = c_1(\omega_{X_{\mathrm{can}}})^2 = \lim rac{\dim H^0(\omega_X^{\otimes m})}{m^2/2},$$

is the canonical volume.

- If $\kappa(X) = 1$, then there is a morphism to a curve, $X_{\min} \rightarrow C = \operatorname{Proj} R(\omega_X)$ whose fibers are elliptic curves (genus 1).
- The typical example is $E \times C$ where g(E) = 1 and $g(C) \ge 2$.
- These can be classified by studying families of elliptic curves.

(4回) (1日) (日)

If $\kappa(X) = 0$, then X_{\min} belongs to one of 4 well understood cases:

- Abelian surfaces $\mathbb{C}^2/\Lambda,$
- K3 surfaces (eg. degree 4 surface in ℙ³),
- **bi-elliptic surfaces** (the quotien of an abelian surface by a finite group) and
- Enriques surface, (the quotien of a K3 by $\mathbb{Z}/2\mathbb{Z}$).

• In any case
$$\omega_X^{\otimes 12} \cong \mathcal{O}_X$$
.

- If κ(X) = −1, then there is a morphism to a curve, X_{min} → C whose fibers are rational curves (genus 0).
- The typical example is \mathbb{P}^2 and $\mathbb{P}^1 \times C$ where $g(C) = \dim H^0(\Omega^1_X)$.
- In any case we have $\omega_{X_{\min}}|_F \cong \mathcal{O}_{\mathbb{P}^1}(-2)$ so that $H^0(\omega_X^{\otimes m}) = 0$ for any m > 0, i.e. $R(\omega_X) \cong \mathbb{C}$.

Varieties of general type

In higher dimensions, if X is of general type
 d = dim X = κ(X), then we define the canonical volume

$$\operatorname{vol}(X) = c_1(\omega_{X_{\operatorname{can}}})^d = \lim \frac{\dim H^0(\omega_X^{\otimes m})}{m^d/d!}.$$

• When
$$d = 1$$
, we have $vol(X) = 2g - 2$.

Theorem (Hacon-McKernan, Takayama, Tsuji)

Let V_d be the set of canonical volumes of smooth projective d-dimensional varieties. Then V_d is discrete. In particular $v_d := \min V_d > 0$.

Thus vol(X) is the natural higher dimensional analog of the genus of a Rieman surface.

Theorem (Hacon-McKernan, Takayama, Tsuji)

Fix $d \in \mathbb{N}$ and $v \in V_d$, then the set $\mathcal{C}_{d,v}$ of d-dimensional canonical models X_{can} such that $vol(X_{can}) = v$ is bounded (depends algebraically on finitely many parameters, and in particular has finitely many topological types).

Caution: For any fixed d and v, it is extremely hard/interesting to study the corresponding moduli space $C_{d,v}$. Typically we don't even know if a given $C_{d,v}$ is non-empty.

Conjecture

 $\mathcal{C}_{3,v} = \emptyset$ for all $v < \frac{1}{420}$.

Caution: There is no integer R(d) > 0 such that $\omega_X^{\otimes R}$ is very ample for any *d*-dimensional canonical model. Such an integer must depend on both *d* and *v*.

Building on the above result one can show that in fact by work of Fujino, Hacon, Kollár, Kovács, McKernan, Patakfalvi, Xu and others, that

Theorem

The moduli space $C_{d,v}$ can be compactified in a geometrically meaningful way by considering SLC-models, to a projective moduli space $\overline{C}_{d,v}$.

One of the main steps is to show the boundedness of the moduli functor.

Theorem (Hacon-McKernan-Xu)

Fix $d \in \mathbb{N}$, then the set of volumes of SLC models

 $\mathcal{V}_d = \{ \operatorname{vol}(X) | \dim X = d, X \text{ is a SLC model} \}$

is well ordered, and for fixed d and $v \in V_d$, the set of d-dimensional SLC-models X such that vol(X) = v is bounded.

N.B. well ordered sets have no accumulation points from above but may have acumulation points from below e.g. $\{1 - \frac{1}{n} | n \in \mathbb{N}\}$.

Varieties of negative Kodaira dimension

 At the opposite end of the spectrum we find varieties such that κ(X) = −1.

Theorem (Birkar-Cascini-Hacon-McKernan)

Assume that ω_X is not PSEF (conjecturally $\kappa(X) = -1$). Then there exists a birational map $X \dashrightarrow X'$ (given by a finite sequence of flips and divisorial contractions) and a Mori fiber space $X' \to Z$ such that the fibers F are positive dimensional, ω_F^{-1} is ample.

- When d = 2, then $F = \mathbb{P}^2$ or \mathbb{P}^1 .
- Since $\omega_X|_F = \omega_F$ is negative, it follows easily that $H^0(\omega_X^{\otimes m}) = 0$ for all m > 0 and hence $R(\omega_X) = \mathbb{C}$ (which gives a geometric reason why $\kappa(X) = -1$).

- The fibers of these Mori fiber spaces are Fano varieties, i.e. varieties F such that ω[∨]_F is ample.
- In order to understand Mori fiber spaces, we must hence study Fano varieties and their families.
- Note that we must allow *F* to have mild (terminal) singularities.
- The most important result in this direction is Birkar's celebrated solution of the BAB conjecture.

Theorem (Birkar)

The set of all terminal Fano varieties of dimension d is bounded.

Therefore, there exists a family $\mathcal{F} \to T$ such that for any *d*-dimensional Fano variety *F* with terminal singularities, then $F \cong \mathcal{F}_t$ for some $t \in T$.

イロト イヨト イヨト イヨト

Intermediate Kodaira dimension

- If $0 \le \kappa(X) < \dim X$, then the litaka fibration $X \dashrightarrow Z = \operatorname{Proj} R(\omega_X)$ is a nontrivial fibration.
- The general fiber F has Kodaira dimension κ(F) = 0 and terminal singularities (if dim F = 1, then g(F) = 1).
- It is thus important to study families of Calabi-Yau's.
- These varieties (Calabi-Yau's) are extremely interesting but very hard to study.
- It is known that they are not bounded (in dimension d ≥ 2), never the less we have the following important conjecture:

Conjecture (Yau, \sim late '70s)

The set of Calabi-Yau 3-folds ($\omega_X \sim \mathcal{O}_X$) has finitely many topological types.

イロン イヨン イヨン イヨン