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Introduction

An algebraic variety is a geometric object defined by
polynomial equations.

Typical examples are a parabola, circle, Fermat’s equation

y = x2, x2 + y2 = 1, xn + yn = zn.

One can look for different kinds of solutions.

For example, the rational/Q solutions of x2 + y2 = 1
corresponds to Pythagorean triples a2 + b2 = c2 so that
x = a/c, y = b/c .

The real/R solutions give a circle.

The complex/C solutions give a sphere (minus 2 points at
infinity).
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Introduction

By a famous result of Wiles, for n ≥ 3 there are no non-trivial
integer (rational) solutions to xn + yn = zn,

However, there are plenty of complex solutions corresponding
to a (cone over a) Riemann surface of genus
g = (n − 1)(n − 2)/2.

In this talk we will focus on complex/C solutions.
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Projective varieties

Affine varieties X ⊂ CN are defined by polynomials
Q1, . . . ,Qr ∈ C[x1, . . . , xN ].

A projective variety X ⊂ PN
C is defined by homogeneous

polynomials P1, . . . ,Pr ∈ C[x0, . . . , xN ].

PN
C = (CN+1 − 0)/C∗ is a natural compactification of CN

corresponding to lines in CN+1.

PN
C = CN ∪ PN−1

C .

We think of PN−1
C as the hyperplane at infinity whose points

correspond to all directions in projective space PN
C .

Projective varieties are natural compactifications of affine
varieties obtained by homogenization
Pi (x0, . . . , xN) = xdi0 Qi (x1/x0, . . . , x1/xn).

This has many advantages
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Introduction

A variety X is irreducible if it is not the union of two distinct
varieties.

We will focus on smooth irreducible varieties, i.e. complex
manifolds.

This is reasonable because:

Most varieties are smooth (if you perturb the coefficients of
your equations you get a smooth variety).
Every variety is smooth outside a closed (measure 0) subset.
By Hironaka’s theorem every variety is birational to a smooth
one (i.e. can be smoothed by an appropriate “non-invertible
change of variables”).

Christopher Hacon Geometry of Complex Algebraic Varieties



Christopher Hacon Geometry of Complex Algebraic Varieties



Birational varieties

To study X we consider meromorphic functions C(X ) on X
(since X is a compact, global holomorphic functions are
constant H0(OX ) ∼= C).

Two varieties X ,X ′ are birational if
1 they have isomorphic fields of rational (meromorphic)

functions C(X ) ∼= C(X ′) or equivalently if
2 they have isomorphic open subsets U ∼= U ′.

We work in the Zariski topology, so that a closed set
Z = X \U is defined by the vanishing of polynomial equations.

If dimX = dimX ′ = 1, then X and X ′ are birational iff they
are isomorphic (outside finitely many points).

In higher dimensions this is no longer true (so we need to
understand birational equivalence in more detail).
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Birational maps

Typical examples of birational maps are given by blowing up.

If Z ⊂ X is a smooth subvariety of a smooth variety, then the
blow up of X along Z is a “surgery” that replaces Z by
P(NZ/X ).

So every point of Z is replaced by its normal directions in X .

Two varieties are birational if and only if they are related by a
sequence of blow ups and blow downs (inverse of blowing up).
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Line bundles

Since global holomorphic functions are constant
(H0(OX ) = C), to study X we consider global sections
s ∈ H0(X ,L) of a line bundle L.

Locally, X = ∪Uα, L|Uα
∼= C× Uα, L is defined by

gα,β ∈ O∗Uα∩Uβ
and s|Uα = sα ∈ OUα such that sα = gα,βsβ.

H0(X ,L) is a finite dimensional C vector space (which can be
identified to a subspace of C(X )).

Eg. OPn(k) is the line bundle whose sections H0(Pn,OPn(k))
are homogeneous polynomials of degree k in C[x0, . . . , xn].

The difficulty is to choose an appropriate line bundle. There is
essentially only one possible choice: the canonical line
bundle.
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The canonical line bundle

If X is smooth and dimX = d , then let ωX = ∧dT∨X be the
canonical line bundle.

For any m > 0 consider pluricanonical forms s ∈ H0(ω⊗mX ).

Locally s|U = f · (dz1 ∧ . . . ∧ dzd)⊗m.

If s0, . . . , sN is a basis of H0(ω⊗mX ), then define the m-th
pluricanonical map

φm : X 99K PN , x → [s0(x) : . . . : sN(x)].

φm is not defined at common zeroes of s0, . . . , sN .

If X ,X ′ are smooth birational varieties, then

H0(ω⊗mX ) ∼= H0(ω⊗mX ′ ).
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The canonical ring

R(ωX ) = ⊕m≥0H
0(ω⊗mX ) is the canonical ring.

κ(X ) = tr .deg .CR(ωX )− 1 ∈ {−1, 0, 1, . . . , dimX} is the
Kodaira dimension.

We have κ(X ) = max{dimφm(X )}.
X is of general type if

1 κ(X ) = dimX , or equivalently
2 φm is birational for all m� 0 (i.e. φm|U : U → φm(U) is an

isomorphism for some non-empty open subset U ⊂ X ), or
equivalently

3 dimH0(ω⊗mX ) = v ·md

d! + L.O.T . where v := vol(ωX ).
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The canonical ring of a curve

When d = dimX = 1, we say that X is a curve.

A curve X is topologically a Riemann surface of genus g and
there are 3 main cases:

κ(X ) = −1: Then X ∼= P1
C is a rational curve. Note that

ωP1
∼= OP1(−2) and so H0(ω⊗mP1 ) = 0 for all m > 0 i.e.

R(ωX ) ∼= C.

κ(X ) = 0: Then ωX
∼= OX and so H0(ω⊗mX ) ∼= C for all

m > 0 i.e. R(ωX ) ∼= C[t].

In this case X is an elliptic curve. There is a one parameter
family of these x2 = y(y − 1)(y − λ).
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Curves of general type

If κ(X ) = 1, then we say that X is a curve of general type.
These are Riemann surfaces of genus g ≥ 2.

For any g ≥ 2 there is a 3g − 3 irreducible algebraic family of
these curves.

We have deg(ωX ) = 2g − 2 > 0.

By Riemann Roch, it is easy to see that ω⊗mX is very ample
for m ≥ 3. This means that if s0, . . . , sN are a basis of
H0(ω⊗mX ), then

φm : X → PN , x → [s0(x) : s1(x) : . . . : sN(x)]

is an embedding.

Thus ω⊗mX
∼= φ∗mOPN (1), hence C[x0, . . . , xN ]→ R(ω⊗mX ) is

surjective (in high degree) and so R(ωX ) is finitely generated.
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Curves of general type

It follows from Riemann Roch that X ⊂ P5g−6 = PH0(ω⊗3X )
has degree 6g − 6 = 3vol(ωX ).

Thus X depends on finitely many parameters (coefficients of
the corresponding polynomials).

We would like to generalize this picture to any dimension.
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Finite generation

Theorem (Birkar-Cascini-Hacon-McKernan, Siu 2010)

Let X be a smooth complex projective variety, then the canonical
ring R(KX ) is finitely generated.

If X is of general type (κ(X ) = dimX ) then the canonical
model Xcan := Proj(R(ωX )) is a distinguished ”canonical”
(unique) representative of the birational equivalence class of
X which is defined by the generators and relations in the
finitely generated ring R(ωX ).

Xcan may be singular, but its singularities are mild (canonical).
In particular they are cohomologically insignificant (rational
sings) so that e.g. H i (OX ) ∼= H i (OXcan).

The ”canonical line bundle” is now a Q-line bundle which
means that ω⊗nXcan

is a line bundle for some n > 0.

ωXcan is ample so that ω⊗mXcan
= φ∗mOPN (1) for some m > 0.
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Surfaces of general type

In dimension 2, the canonical model of a surface is obtained
by first contracting all −1 curves (E ∼= P1, c1(ωX ) · E = −1)
to get X → Xmin,

Then, we contract all 0-curves (E ∼= P1, c1(ωX ) · E = 0) to
get Xmin → Xcan.

Bombieri’s Theorem says that φ5 embeds Xcan in
PN = PH0(ω⊗5X ) as a variety of degree 25c1(ωXcan)2.

So for any fixed integer v = c1(ωXcan)2, canonical surfaces
depend on finitely many algebraic parameters.

The number

v = c1(ωXcan)2 = lim
dimH0(ω⊗mX )

m2/2
,

is the canonical volume.
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Surfaces of Kodaira dimension 1

If κ(X ) = 1, then there is a morphism to a curve,
Xmin → C = ProjR(ωX ) whose fibers are elliptic curves
(genus 1).

The typical example is E × C where g(E ) = 1 and g(C ) ≥ 2.

These can be classified by studying families of elliptic curves.
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Surfaces of Kodaira dimension 0

If κ(X ) = 0, then Xmin belongs to one of 4 well understood cases:

Abelian surfaces C2/Λ,

K3 surfaces (eg. degree 4 surface in P3),

bi-elliptic surfaces (the quotien of an abelian surface by a
finite group) and

Enriques surface, (the quotien of a K3 by Z/2Z).

In any case ω⊗12X
∼= OX .
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Surfaces of negative Kodaira dimension

If κ(X ) = −1, then there is a morphism to a curve, Xmin → C
whose fibers are rational curves (genus 0).

The typical example is P2 and P1 × C where
g(C ) = dimH0(Ω1

X ).

In any case we have ωXmin
|F ∼= OP1(−2) so that

H0(ω⊗mX ) = 0 for any m > 0, i.e. R(ωX ) ∼= C.
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Varieties of general type

In higher dimensions, if X is of general type
d = dimX = κ(X ), then we define the canonical volume

vol(X ) = c1(ωXcan)d = lim
dimH0(ω⊗mX )

md/d!
.

When d = 1, we have vol(X ) = 2g − 2.

Theorem (Hacon-McKernan, Takayama, Tsuji)

Let Vd be the set of canonical volumes of smooth projective
d-dimensional varieties. Then Vd is discrete. In particular
vd := minVd > 0.

Thus vol(X ) is the natural higher dimensional analog of the genus
of a Rieman surface.
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Theorem (Hacon-McKernan, Takayama, Tsuji)

Fix d ∈ N and v ∈ Vd , then the set Cd ,v of d-dimensional
canonical models Xcan such that vol(Xcan) = v is bounded
(depends algebraically on finitely many parameters, and in
particular has finitely many topological types).

Caution: For any fixed d and v , it is extremely hard/interesting to
study the corresponding moduli space Cd ,v . Typically we don’t
even know if a given Cd ,v is non-empty.

Conjecture

C3,v = ∅ for all v < 1
420 .

Caution: There is no integer R(d) > 0 such that ω⊗RX is very
ample for any d-dimensional canonical model. Such an integer
must depend on both d and v .
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Building on the above result one can show that in fact by work of
Fujino, Hacon, Kollár, Kovács, McKernan, Patakfalvi, Xu and
others, that

Theorem

The moduli space Cd ,v can be compactified in a geometrically
meaningful way by considering SLC-models, to a projective moduli
space Cd ,v .
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One of the main steps is to show the boundedness of the moduli
functor.

Theorem (Hacon-McKernan-Xu)

Fix d ∈ N, then the set of volumes of SLC models

Vd = {vol(X )| dimX = d , X is a SLC model}

is well ordered, and for fixed d and v ∈ Vd , the set of
d-dimensional SLC-models X such that vol(X ) = v is bounded.

N.B. well ordered sets have no accumulation points from above
but may have acumulation points from below e.g. {1− 1

n |n ∈ N}.
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Varieties of negative Kodaira dimension

At the opposite end of the spectrum we find varieties such
that κ(X ) = −1.

Theorem (Birkar-Cascini-Hacon-McKernan)

Assume that ωX is not PSEF (conjecturally κ(X ) = −1).
Then there exists a birational map X 99K X ′ (given by a finite
sequence of flips and divisorial contractions) and a Mori fiber space
X ′ → Z such that the fibers F are positive dimensional, ω−1F is
ample.

When d = 2, then F = P2 or P1.

Since ωX |F = ωF is negative, it follows easily that
H0(ω⊗mX ) = 0 for all m > 0 and hence R(ωX ) = C (which
gives a geometric reason why κ(X ) = −1).
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Fano varieties

The fibers of these Mori fiber spaces are Fano varieties, i.e.
varieties F such that ω∨F is ample.

In order to understand Mori fiber spaces, we must hence study
Fano varieties and their families.

Note that we must allow F to have mild (terminal)
singularities.

The most important result in this direction is Birkar’s
celebrated solution of the BAB conjecture.

Theorem (Birkar)

The set of all terminal Fano varieties of dimension d is bounded.

Therefore, there exists a family F → T such that for any
d-dimensional Fano variety F with terminal singularities, then
F ∼= Ft for some t ∈ T .
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Intermediate Kodaira dimension

If 0 ≤ κ(X ) < dimX , then the Iitaka fibration
X 99K Z = ProjR(ωX ) is a nontrivial fibration.

The general fiber F has Kodaira dimension κ(F ) = 0 and
terminal singularities (if dimF = 1, then g(F ) = 1).

It is thus important to study families of Calabi-Yau’s.

These varieties (Calabi-Yau’s) are extremely interesting but
very hard to study.

It is known that they are not bounded (in dimension d ≥ 2),
never the less we have the following important conjecture:

Conjecture (Yau, ∼ late ‘70s)

The set of Calabi-Yau 3-folds (ωX ∼ OX ) has finitely many
topological types.
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