Geometry of Complex Algebraic Varieties

Christopher Hacon

University of Utah

June, 2020

Christopher Hacon [Geometry of Complex Algebraic Varieties](#page-34-0)

 $4.171 \times$

 $\mathcal{A} \oplus \mathcal{P} \rightarrow \mathcal{A} \oplus \mathcal{P} \rightarrow \mathcal{A} \oplus \mathcal{P}$

目

 2990

Introduction

- An algebraic variety is a geometric object defined by polynomial equations.
- Typical examples are a parabola, circle, Fermat's equation

$$
y = x^2
$$
, $x^2 + y^2 = 1$, $x^n + y^n = z^n$.

- **One can look for different kinds of solutions.**
- For example, the rational/Q solutions of $x^2 + y^2 = 1$ corresponds to Pythagorean triples $a^2 + b^2 = c^2$ so that $x = a/c$, $y = b/c$.
- \bullet The real/ $\mathbb R$ solutions give a circle.
- \bullet The complex/ $\mathbb C$ solutions give a sphere (minus 2 points at infinity).

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

Christopher Hacon [Geometry of Complex Algebraic Varieties](#page-0-0)

- By a famous result of Wiles, for $n \geq 3$ there are no non-trivial integer (rational) solutions to $x^n + y^n = z^n$,
- However, there are plenty of complex solutions corresponding to a (cone over a) Riemann surface of genus $g = (n-1)(n-2)/2$.
- \bullet In this talk we will focus on complex/ $\mathbb C$ solutions.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ..

Projective varieties

- **Affine varieties** $X \subset \mathbb{C}^N$ are defined by polynomials $Q_1, \ldots, Q_r \in \mathbb{C}[x_1, \ldots, x_N].$
- A **projective variety** $X \subset \mathbb{P}^N_\mathbb{C}$ is defined by homogeneous polynomials $P_1, \ldots, P_r \in \mathbb{C}[x_0, \ldots, x_N]$.
- $\mathbb{P}^N_\mathbb{C} = (\mathbb{C}^{N+1}-\overline{0})/\mathbb{C}^*$ is a natural compactification of \mathbb{C}^N corresponding to lines in \mathbb{C}^{N+1} .
- $\mathbb{P}^{\textsf{N}}_{\mathbb{C}}=\mathbb{C}^{\textsf{N}}\cup\mathbb{P}^{\textsf{N}-1}_{\mathbb{C}}.$
- We think of $\mathbb{P}^{N-1}_{\mathbb{C}}$ as the hyperplane at infinity whose points correspond to all directions in **projective space** $\mathbb{P}^N_{\mathbb{C}}$.
- **•** Projective varieties are natural compactifications of affine varieties obtained by homogenization $P_i(x_0,...,x_N) = x_0^{d_i} Q_i(x_1/x_0,...,x_1/x_n).$
- This has many advantages

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

 $2QQ$

BEZOUTS THEOREM: Two distinct curves C, D, c, \mathbb{P}^2_4 of degrees d_ic intersect in exactly d.c pts (when counted with mult.)

Christopher Hacon [Geometry of Complex Algebraic Varieties](#page-0-0)

- \bullet A variety X is **irreducible** if it is not the union of two distinct varieties.
- We will focus on smooth irreducible varieties, i.e. complex manifolds.
- This is reasonable because:
	- Most varieties are smooth (if you perturb the coefficients of your equations you get a smooth variety).
	- Every variety is smooth outside a closed (measure 0) subset.
	- By Hironaka's theorem every variety is birational to a smooth one (i.e. can be smoothed by an appropriate "non-invertible change of variables").

≮ 伊 ≯ (ミ ≯ (ミ)

 \mathcal{A}

 2990

あきさわきさわ 三田

Birational varieties

- To study X we consider **meromorphic functions** $\mathbb{C}(X)$ on X (since X is a compact, global holomorphic functions are constant $H^0(\mathcal{O}_X) \cong \mathbb{C}$).
- Two varieties X, X' are **birational** if
	- **1** they have isomorphic fields of rational (meromorphic) functions $\mathbb{C}(X) \cong \mathbb{C}(X')$ or equivalently if
	- 2 they have isomorphic open subsets $U \cong U'$.
- We work in the Zariski topology, so that a closed set $Z = X \setminus U$ is defined by the vanishing of polynomial equations.
- If dim $X = \dim X' = 1$, then X and X' are birational iff they are isomorphic (outside finitely many points).
- In higher dimensions this is no longer true (so we need to understand birational equivalence in more detail).

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ .

- Typical examples of birational maps are given by **blowing up**.
- If $Z \subset X$ is a smooth subvariety of a smooth variety, then the **blow up of** X along Z is a "surgery" that replaces Z by $\mathbb{P}(N_{Z/X})$.
- So every point of Z is replaced by its normal directions in X .
- Two varieties are birational if and only if they are related by a sequence of blow ups and blow downs (inverse of blowing up).

A + + = + + = +

 2990

オペモネ 三田

 \longrightarrow

Line bundles

- Since global holomorphic functions are constant $(H^0(\mathcal{O}_X)=\mathbb{C})$, to study X we consider **global sections** $\mathsf{s}\in H^0(X,\mathcal{L})$ of a line bundle $\mathcal{L}.$
- Locally, $X=\cup U_\alpha$, $\mathcal{L}|_{U_\alpha}\cong \mathbb{C}\times U_\alpha$, \mathcal{L} is defined by $g_{\alpha,\beta}\in{\mathcal{O}}_{U_{\alpha}\cap U_{\beta}}^{*}$ and $s|_{U_{\alpha}}=s_{\alpha}\in{\mathcal{O}}_{U_{\alpha}}$ such that $s_{\alpha}=g_{\alpha,\beta}s_{\beta}.$
- $H^{0}(X,\mathcal{L})$ is a finite dimensional $\mathbb {C}$ vector space (which can be identified to a subspace of $\mathbb{C}(X)$).
- Eg. $\mathcal{O}_{\mathbb{P}^n}(k)$ is the line bundle whose sections $H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(k))$ are homogeneous polynomials of degree k in $\mathbb{C}[x_0, \ldots, x_n]$.
- The difficulty is to choose an appropriate line bundle. There is essentially only one possible choice: the **canonical line** bundle.

K ロ ▶ K 御 ▶ K ミ ▶ K ミ ▶ ...

The canonical line bundle

- If X is smooth and dim $X = d$, then let $\omega_X = \wedge^d T_X^{\vee}$ be the canonical line bundle.
- For any $m>0$ consider **pluricanonical forms** $s \in H^0(\omega_X^{\otimes m})$ $_{X}^{\otimes m}$).
- Locally $s|_U = f \cdot (dz_1 \wedge \ldots \wedge dz_d)^{\otimes m}$.
- If s_0,\ldots,s_N is a basis of $H^0(\omega_X^{\otimes m})$ $\binom{m}{X}$, then define the *m*-th pluricanonical map

$$
\phi_m: X \dashrightarrow \mathbb{P}^N, \qquad x \to [s_0(x): \ldots : s_N(x)].
$$

- \bullet ϕ_m is not defined at common zeroes of s_0, \ldots, s_N .
- If X, X' are smooth birational varieties, then

$$
H^0(\omega_X^{\otimes m}) \cong H^0(\omega_{X'}^{\otimes m}).
$$

 $4\Box$ \rightarrow \overline{AB} \rightarrow \rightarrow \overline{B} \rightarrow \rightarrow \overline{B} \rightarrow \rightarrow

The canonical ring

- $R(\omega_X)=\oplus_{m\geq 0}H^0(\omega_X^{\otimes m})$ $\binom{\otimes m}{X}$ is the **canonical ring**.
- $\kappa(X) = tr.deg._{\mathbb{C}}R(\omega_X) 1 \in \{-1,0,1,\ldots,\dim X\}$ is the Kodaira dimension.
- We have $\kappa(X) = \max\{\dim \phi_m(X)\}.$
- \bullet X is of general type if
	- \bigcirc $\kappa(X) = \dim X$, or equivalently
	- \bullet ϕ_m is birational for all $m \gg 0$ (i.e. $\phi_m|_U : U \rightarrow \phi_m(U)$ is an isomorphism for some non-empty open subset $U \subset X$), or equivalently

Q dim
$$
H^0(\omega_X^{\otimes m}) = \frac{v \cdot m^d}{d!} + L.O.T
$$
. where $v := \text{vol}(\omega_X)$.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

The canonical ring of a curve

- When $d = \dim X = 1$, we say that X is a curve.
- \bullet A curve X is topologically a Riemann surface of genus g and there are 3 main cases:
- $\kappa(X) = -1$: Then $X \cong \mathbb{P}^1_\mathbb{C}$ is a **rational curve**. Note that $\omega_{\mathbb{P}^1}\cong\mathcal{O}_{\mathbb{P}^1}(-2)$ and so $\vec{H^0}(\omega_{\mathbb{P}^1}^{\otimes m})=0$ for all $m>0$ i.e. $R(\omega_X) \cong \mathbb{C}$.
- $\kappa(X)=0$: Then $\omega_X\cong\mathcal{O}_X$ and so $H^0(\omega_X^{\otimes m})$ $_{X}^{\otimes m}$) ≅ $\mathbb C$ for all $m > 0$ i.e. $R(\omega_X) \cong \mathbb{C}[t]$.
- \bullet In this case X is an elliptic curve. There is a one parameter family of these $x^2 = y(y-1)(y-\lambda)$.

 $4\Box$ \rightarrow \overline{AB} \rightarrow \rightarrow \overline{B} \rightarrow \rightarrow \overline{B} \rightarrow \rightarrow

 2990

あきさわきさわ ここ

Curves of general type

- If $\kappa(X) = 1$, then we say that X is a curve of general type. These are Riemann surfaces of genus $g > 2$.
- For any $g > 2$ there is a 3g 3 irreducible algebraic family of these curves.
- We have $\deg(\omega_X) = 2g 2 > 0$.
- By Riemann Roch, it is easy to see that $\omega_X^{\otimes m}$ $_{X}^{\otimes m}$ is very ample for $m > 3$. This means that if s_0, \ldots, s_N are a basis of $H^0(\omega_X^{\otimes m})$ $_{X}^{\otimes m}$), then

$$
\phi_m:X\to\mathbb{P}^N,\qquad x\to[s_0(x):s_1(x):\ldots:s_N(x)]
$$

is an embedding.

Thus $\omega_X^{\otimes m}$ $\frac{\otimes m}{X} \cong \phi_m^* \mathcal{O}_{\mathbb{P}^N}(1)$, hence $\mathbb{C}[x_0,\ldots,x_N] \to R(\omega_X^{\otimes m})$ $\binom{\otimes m}{X}$ is surjective (in high degree) and so $R(\omega_X)$ is finitely generated.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

- It follows from Riemann Roch that $X\subset \mathbb{P}^{5g-6}=\mathbb{P} H^0(\omega_X^{\otimes 3})$ $_{X}^{\otimes 3})$ has degree $6g - 6 = 3vol(\omega_X)$.
- \bullet Thus X depends on finitely many parameters (coefficients of the corresponding polynomials).
- We would like to generalize this picture to any dimension.

 4 and 3 and 2 and 3 and 3 and 3 and 3

${\sf Theorem}$ (Birkar-Cascini-Hacon-M $^{\rm c}$ Kernan, Siu 2010)

Let X be a smooth complex projective variety, then the canonical ring $R(K_X)$ is finitely generated.

- **If** X is of general type $(\kappa(X) = \dim X)$ then the **canonical model** $X_{\text{can}} := \text{Proj}(R(\omega_X))$ is a distinguished "canonical" (unique) representative of the birational equivalence class of X which is defined by the generators and relations in the finitely generated ring $R(\omega_X)$.
- \bullet $X_{\rm can}$ may be singular, but its singularities are mild (canonical). In particular they are cohomologically insignificant (rational sings) so that e.g. $H^i(\mathcal{O}_X) \cong H^i(\mathcal{O}_{X_{\operatorname{can}}}).$
- **•** The "canonical line bundle" is now a **Q-line bundle** which means that $\omega_{X}^{\otimes n}$ $\sum_{X_{\rm can}}^{\otimes n}$ is a line bundle for some $n > 0$.

 $\omega_{X_{\operatorname{can}}}$ is ample so that $\omega_{X_{\operatorname{can}}}^{\otimes m}$ $\frac{\otimes m}{\mathsf{X}_\mathrm{can}} = \phi_m^* \mathcal{O}_{\mathbb{P}^N}(1)$ for some $m > 0.1$

Surfaces of general type

- In dimension 2, the canonical model of a surface is obtained by first contracting all -1 curves $(E \cong \mathbb{P}^1$, $c_1(\omega_X) \cdot E = -1)$ to get $X \to X_{\min}$.
- Then, we contract all 0-curves $(E \cong \mathbb{P}^1, \ c_1(\omega_X) \cdot E = 0)$ to get $X_{\min} \to X_{\text{can}}$.
- Bombieri's Theorem says that ϕ_5 embeds $X_{\rm can}$ in $\mathbb{P}^{\textsf{N}}=\mathbb{P} H^0(\omega_{X}^{\otimes 5})$ $_{X}^{\otimes 5})$ as a variety of degree 25 $c_{1}(\omega\chi_{_{\mathrm{can}}})^{2}.$
- So for any fixed integer $\mathsf{v}=\mathsf{c}_1(\omega_{\mathsf{X}_{\operatorname{can}}})^2$, canonical surfaces depend on finitely many algebraic parameters.
- **•** The number

$$
v = c_1(\omega_{X_{\text{can}}})^2 = \lim \frac{\dim H^0(\omega_X^{\otimes m})}{m^2/2},
$$

is the canonical volume.

 $4\Box$ \rightarrow \overline{AB} \rightarrow \rightarrow \overline{B} \rightarrow \rightarrow \overline{B} \rightarrow \rightarrow

Christopher Hacon [Geometry of Complex Algebraic Varieties](#page-0-0)

- If $\kappa(X) = 1$, then there is a morphism to a curve, $X_{\min} \rightarrow C = \text{Proj} R(\omega_X)$ whose fibers are elliptic curves $(genus 1)$.
- The typical example is $E \times C$ where $g(E) = 1$ and $g(C) \ge 2$.
- These can be classified by studying families of elliptic curves.

A + + = + + = +

If $\kappa(X) = 0$, then X_{\min} belongs to one of 4 well understood cases:

- Abelian surfaces \mathbb{C}^2/Λ ,
- K3 surfaces (eg. degree 4 surface in \mathbb{P}^3),
- **bi-elliptic surfaces** (the quotien of an abelian surface by a finite group) and
- Enriques surface, (the quotien of a $K3$ by $\mathbb{Z}/2\mathbb{Z}$).

• In any case
$$
\omega_X^{\otimes 12} \cong \mathcal{O}_X
$$
.

4 桐 ト 4 三 ト 4 三 トー

- If $\kappa(X) = -1$, then there is a morphism to a curve, $X_{\min} \to C$ whose fibers are rational curves (genus 0).
- The typical example is \mathbb{P}^2 and $\mathbb{P}^1\times \mathcal{C}$ where $g(\mathcal{C}) = \dim H^0(\Omega^1_X).$
- In any case we have $\omega_{X_{\rm min}}|_{\digamma}\cong\mathcal{O}_{\mathbb{P}^1}(-2)$ so that $H^{0}(\omega_{X}^{\otimes m})$ $\binom{\otimes m}{X} = 0$ for any $m > 0$, i.e. $R(\omega_X) \cong \mathbb{C}$.

 4 and 3 and 2 and 3 and 3 and 3 and 3

Varieties of general type

• In higher dimensions, if X is of general type $d = \dim X = \kappa(X)$, then we define the canonical volume

$$
\mathrm{vol}(X)=c_1(\omega_{X_{\mathrm{can}}})^d=\lim \frac{\dim H^0(\omega_X^{\otimes m})}{m^d/d!}.
$$

• When
$$
d = 1
$$
, we have $vol(X) = 2g - 2$.

Theorem (Hacon-McKernan, Takayama, Tsuji)

Let V_d be the set of canonical volumes of smooth projective d-dimensional varieties. Then V_d is discrete. In particular $v_d := \min V_d > 0.$

Thus $vol(X)$ is the natural higher dimensional analog of the genus of a Rieman surface.

マーティ ミトマ ミト

Theorem (Hacon-McKernan, Takayama, Tsuji)

Fix $d \in \mathbb{N}$ and $v \in V_d$, then the set $\mathcal{C}_{d,v}$ of d-dimensional canonical models X_{can} such that vol $(X_{\text{can}}) = v$ is bounded (depends algebraically on finitely many parameters, and in particular has finitely many topological types).

Caution: For any fixed d and v , it is extremely hard/interesting to study the corresponding moduli space $C_{d,v}$. Typically we don't even know if a given $C_{d,v}$ is non-empty.

Conjecture

 $\mathcal{C}_{3,v} = \emptyset$ for all $v < \frac{1}{420}$.

Caution: There is no integer $R(d) > 0$ such that $\omega_X^{\otimes R}$ $_{X}^{\otimes K}$ is very ample for any d-dimensional canonical model. Such an integer must depend on both d and v .

 $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup A$

nar

Building on the above result one can show that in fact by work of Fujino, Hacon, Kollár, Kovács, McKernan, Patakfalvi, Xu and others, that

Theorem

The moduli space $C_{d,v}$ can be compactified in a geometrically meaningful way by considering SLC-models, to a projective moduli space $\overline{C}_{d,v}$.

 $AB + AB + AB +$

One of the main steps is to show the boundedness of the moduli functor.

Theorem (Hacon-McKernan-Xu)

Fix $d \in \mathbb{N}$, then the set of volumes of SLC models

 $V_d = \{ \text{vol}(X) | \text{dim } X = d, X \text{ is a SLC model} \}$

is well ordered, and for fixed d and $v \in V_d$, the set of d-dimensional SLC-models X such that $vol(X) = v$ is bounded.

N.B. well ordered sets have no accumulation points from above but may have acumulation points from below e.g. $\{1-\frac{1}{n}\}$ $\frac{1}{n}|n \in \mathbb{N}$.

マーティ ミトマ ミト

Varieties of negative Kodaira dimension

At the opposite end of the spectrum we find varieties such that $\kappa(X) = -1$.

Theorem (Birkar-Cascini-Hacon-McKernan)

Assume that ω_X is not PSEF (conjecturally $\kappa(X) = -1$). Then there exists a birational map $X \dashrightarrow X'$ (given by a finite sequence of flips and divisorial contractions) and a Mori fiber space $\mathcal{X}'\rightarrow\mathcal{Z}$ such that the fibers $\mathsf F$ are positive dimensional, $\omega_{\mathsf F}^{-1}$ \bar{f}^{\perp} is ample.

- When $d=2$, then $F=\mathbb{P}^2$ or \mathbb{P}^1 .
- Since $\omega_X|_F = \omega_F$ is negative, it follows easily that $H^{0}(\omega_{X}^{\otimes m})$ $\binom{\otimes m}{X}=0$ for all $m>0$ and hence $R(\omega_X)=\mathbb{C}$ (which gives a geometric reason why $\kappa(X) = -1$).

K ロ ▶ K 御 ▶ K ミ ▶ K ミ ▶

Fano varieties

- **•** The fibers of these Mori fiber spaces are **Fano varieties**, i.e. varieties F such that ω_F^{\vee} is ample.
- In order to understand Mori fiber spaces, we must hence study Fano varieties and their families.
- Note that we must allow F to have mild (terminal) singularities.
- The most important result in this direction is Birkar's celebrated solution of the BAB conjecture.

Theorem (Birkar)

The set of all terminal Fano varieties of dimension d is bounded.

Therefore, there exists a family $\mathcal{F} \rightarrow \mathcal{T}$ such that for any d-dimensional Fano variety F with terminal singularities, then $F \cong \mathcal{F}_t$ for some $t \in \mathcal{T}$.

 \leftarrow \Box \rightarrow \leftarrow $\overline{\Box}$ \rightarrow \leftarrow $\overline{\Box}$ \rightarrow \leftarrow $\overline{\Box}$ \rightarrow

Intermediate Kodaira dimension

- If $0 \le \kappa(X) <$ dim X, then the litaka fibration $X \dashrightarrow Z = \text{Proj} R(\omega_X)$ is a nontrivial fibration.
- The general fiber F has Kodaira dimension $\kappa(F) = 0$ and terminal singularities (if dim $F = 1$, then $g(F) = 1$).
- It is thus important to study families of Calabi-Yau's.
- These varieties (Calabi-Yau's) are extremely interesting but very hard to study.
- It is known that they are not bounded (in dimension $d \ge 2$), never the less we have the following important conjecture:

Conjecture (Yau, ∼ late '70s)

The set of Calabi-Yau 3-folds ($\omega_X \sim \mathcal{O}_X$) has finitely many topological types.

 $4\Box$ \rightarrow \overline{AB} \rightarrow \rightarrow \overline{B} \rightarrow \rightarrow \overline{B} \rightarrow