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I Let X be a projective algebraic variety defined over C.

I A line bundle L on X is said to be very ample if ∃ a map

i : X → Pn,

(for some n ∈ Z) such that i∗O(1) = L. Here O(1) is the
Serre line bundle on Pn.

I A line bundle L on X is said to be ample if L⊗m is very ample
for some m ∈ Z.

I A line bundle L on X is said to be nef if L · C ≥ 0 for every
curve C ⊂ X .



I Let X be a projective algebraic variety defined over C.

I A line bundle L on X is said to be very ample if ∃ a map

i : X → Pn,

(for some n ∈ Z) such that i∗O(1) = L. Here O(1) is the
Serre line bundle on Pn.

I A line bundle L on X is said to be ample if L⊗m is very ample
for some m ∈ Z.

I A line bundle L on X is said to be nef if L · C ≥ 0 for every
curve C ⊂ X .



I Let X be a projective algebraic variety defined over C.

I A line bundle L on X is said to be very ample if ∃ a map

i : X → Pn,

(for some n ∈ Z) such that i∗O(1) = L. Here O(1) is the
Serre line bundle on Pn.

I A line bundle L on X is said to be ample if L⊗m is very ample
for some m ∈ Z.

I A line bundle L on X is said to be nef if L · C ≥ 0 for every
curve C ⊂ X .



I Let X be a projective algebraic variety defined over C.

I A line bundle L on X is said to be very ample if ∃ a map

i : X → Pn,

(for some n ∈ Z) such that i∗O(1) = L. Here O(1) is the
Serre line bundle on Pn.

I A line bundle L on X is said to be ample if L⊗m is very ample
for some m ∈ Z.

I A line bundle L on X is said to be nef if L · C ≥ 0 for every
curve C ⊂ X .



I Two divisors D1 and D2 on X are numerically equivalent if
D1 · C = D2 · C for every curve C ⊂ X .

I Num(X ) = Div(X )
∼ denotes the group of divisors modulo

numerical equivalence.

I Seshadri criterion for ampleness of a line bundle.

Theorem (Seshadri criterion)

Let X be a projective variety and L be a line bundle on X . Then L
is ample if and only if ∃ ε > 0 such that

L · C ≥ ε ·multxC ,

for every x ∈ X and every irreducible curve C ⊂ X passing through
x .
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I Motivated by the above criteria, Demailly defined the Seshadri
constants of an ample line bundle to quantify the positivity of
ample line bundle.

Definition (Seshadri constant at a point, Demailly, 1987)

Let X be a projective variety and L be an ample (nef) line bundle
on X , then the Seshadri constant of L at a point x ∈ X is defined
as

ε(X ;L, x) := inf
x∈C⊂X

{
L · C
multxC

}
.



I Alternate realisation of Seshadri constant of a line bundle at a
point.

I Let X be a projective variety and L a nef line bundle on X .
Let x ∈ X be a point and consider the blow up of X at x

π : BlxX → X

such that E is the exceptional divisor. Then,

ε(X ; L, x) = max{λ : π∗L− λ · E is nef }.

I Note that π∗L− λ · E is nef gives

(π∗L− λ)n ≥ 0,
⇒ Ln ≥ λn,
⇒ n
√
Ln ≥ λ.
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I ε(X ; L) := inf
x∈X

ε(X ; L, x)

I ε(X ; L, r) := sup
x1,x2,...,xr∈X

ε(X ; L, x1, x2, ..., xr )

I ε(X ; L, x1, x2, ..., xr ) := inf
C∩{x1,x2,...,xr}6=φ

L·C
i=r∑
i=1

multxiC

I It is easy to see that the following set of inequalities holds

0 < ε(X ; L) ≤ ε(X ; L, x) ≤ ε(X ; L, 1) ≤ n
√
Ln.

Here n is the dimension of X .
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Example

Let X = Pn and L = O(1) be a an ample line bundle on X . Then

ε(X ; L, x) = 1,

for every x ∈ X .

Proof.
Fix x ∈ X . Let l ⊂ X denote the line passing through x .
Therefore we get ε(X , L, x) ≤ (L · l )/1 = 1. Now, let C ⊂ X be a
curve of degree d passing through x with multiplicity m, then
Bézout’s theorem says that d ≥ m. Therefore d/m ≥ 1. Hence
ε(X , L, x) = 1.



Example

Let p1, p2, p3 ∈ P2 are three points and l ⊂ P2 denotes a line.
Then the multi-point Seshadri constant

ε(P2; l , p1, p2, p3) =

{
1
3 , if the points are collinear
1
2 , else.

Sketch of the proof:
Collinear: Let l ⊂ P2 be the line containing those points. Then
ε(P2; l , p1, p2, p3) ≤ (l · l)/3 = 1/3. If C ⊂ P2 be any curve
containing these points with multiplicities m1,m2,m3 then
Bézout’s theorem gives

deg(C ) = C · l ≥ m1 + m2 + m3,

⇒ deg(C )

m1 + m2 + m3
≥ 1 >

1

3
.



Non-collinear: Let l ⊂ P2 denote the line passing through any two
of the points. Then we get ε(P2; l , p1, p2, p3) ≤ (l · l)/2 = 1/2. As
in the previous case take C be any curve of degree d passing with
pi with multiplicity mi . Then using bezouts theorem

d = C · l3 ≥ m1 + m2,
d = C · l2 ≥ m1 + m3,
d = C · l1 ≥ m2 + m3,

⇒ 3d ≥ 2(m1 + m2 + m3),
⇒ d/(m1 + m2 + m3) ≥ 2/3 > 1/2.



Seshadri constant was introduced by Demailly to understand the
following conjecture.

Conjecture (Fujita, 1987)

Let X be a smooth projective algebraic variety of dimension n over
an algebraically closed field of characteristic zero. Let KX be the
canonical line bundle on X and A be an ample Cartier divisor on
X . Then the adjoint line bundle

1. OX (KX + mA) is globally generated for all m ≥ n + 1,

2. OX (KX + mA) is very ample for all m ≥ n + 2.



The following theorem relates the Fujita’s conjecture with the
Seshadri constants.

Theorem (Ein, Lazarsfeld)
Let X be a smooth projective variety of dimension n. Let KX be
the canonical line bundle on X and L be a big and nef line bundle
on X . Then,

1. ε(L, x) > n for all x ∈ X =⇒ KX + L is globally generated.
2. ε(L, x) > n + 1 for all x ∈ X =⇒ KX + L is very ample.

I Note that

ε(L, x) > 1, ∀ x ∈ X ⇒ ε(mL, x) > n, ∀ m ≥ n + 1.

Since,

ε(L, x) > 1 > n/m⇒ ε(mL, x) > n.
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I By the previous theorem of Ein and Lazarsfeld we get

1. ε(mL, x) > n for all x ∈ X ⇒ KX + mL is globally generated
for m ≥ n + 1,

2. ε(mL, x) > n + 1 for all x ∈ X ⇒ KX + mL is very ample for
m ≥ n + 2.

I Therefore we see that ε(L, x) > 1 for all x ∈ X implies the
Fujita’s conjecture.

I But it is too optimistic to prove that ε(L, x) > 1 for all x ∈ X ,
as the following example of Miranda suggests.
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Example (Miranda)

For any given δ > 0 there exists a smooth projective surface X, a
point x ∈ X and an ample line bundle L on X such that

ε(X ; L, x) < δ.

Sketch of the proof : Consider a curve Γ ⊂ P2 of degree d having
an m-fold point p ∈ Γ, with δ > 1/m. Choose a second curve
Γ′ ⊂ P2 of degree d that meets Γ transversely. We can choose
d >> 0 and Γ′ sufficiently general so that the linear system L
generated by Γ and Γ′ are irreducible. We then consider the surface
obtained after the blow up of base points of this system.

µ : X := BlΓ∩Γ′(P2) −→ P2



The linear system L defines a mapping

π : X −→ P1

Let C and C ′ are curves in X isomorphic to Γ and Γ′ appearing as
fibres of π.

P1



Let L = aC + E for a ≥ 2, then it can be verified that L is ample
and

ε(X ; L, x) ≤ L · C
multxC

=
1

m
< δ.



So the natural questions arises are as follows

I Can we compute
ε(X ; L, x), ε(X ; L), ε(X ; L, r), ε(X ; L, x1, x2, ..., xr ) ?

I Or at least can we bound them ?

I Is ε(X ; L) ∈ Q ?

I Open questions

1. Is there a pair (X , L) such that ε(X ; L) = 0 ?
2. Is there a triple (X , L, x) such that ε(X ; L, x) /∈ Q ?
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Some of the known results in this direction on surfaces

I ε(X ; L) ∈ Q for

I X = P2, and Bl{p1,p2,...,pr}P2 (r ≤ 8)

I Some geometrically ruled surfaces

I Enrique surface

I K3 surfaces of degree 6 and 8

I Most hyperelliptic surfaces

I Some surfaces of general type
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In the direction of irrational Seshadri constant

Following is known in the direction of finding an irrational Seshadri
constant.

Theorem (Dumnicki, Küronya, Maclean, Szemberg)

Let π : X → P2 denotes the blow up of P2 at s (≥ 9) very general
points for which the SHGH Conjecture holds true. Then

1. either there exists an ample line bundle L on X and a point
p ∈ X such that

ε(X ; L, p) is irrational,

2. or the SHGH conjecture fails for s + 1 points.



I Let X denotes the blow up of P2 at s (≥ 0) very general
points

I Let π : Y → X denotes the blow up of X at a very general
point x ∈ X and E an exceptional divisor.

I SHGH conjecture on Y implies the following fact.

? Any prime divisor C on Y with C 2 < 0 is an exceptional curve.

Theorem (Hanumanthu, Harbourne)

Assumption of ? on Y implies the existence of an ample line
bundle L on X with ε(X ; L, x) being irrational if and only if s ≥ 9.
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Let X be smooth complex projective variety and L be a line bundle
on X . Consider the linear system |mL| for m ∈ N. The global
sections of mL defines a rational map

φmL : X 99K P(H0(X ,mL)).

Clearly, the dim(φmL(X )) ≤ dim(X ).

Definition
κ(X , L) := max{dim(φmL(X )) : m ∈ N}.

Definition
Given a smooth complex projective variety X with canonical divisor
KX , the Kodaira dimension of X is defined as κ(X ,KX ).



Introduction of Hyperelliptic surfacces

Definition
A hyperelliptic surface X is a minimal smooth surface with Kodaira
dimension κ(X ) = 0 satisfying h1(X ,OX ) = 1 and h2(X ,OX ) = 0.

Alternate characterization
A smooth surface X is hyperelliptic if and only if X ∼= (A× B)/G ,
where A and B are elliptic curves and G is a finite group of
translation of A acting on B in such a way that B/G ∼= P1. We
have the following diagram:

X ∼= (A× B)/G

Ψ
��

Φ // A/G

B/G ∼= P1



I Fibres of φ are smooth and isomorphic to P1.

I Fibres of ψ are all multiples of smooth elliptic curves and all
but finitely many of them are smooth and isomorphic to A

I Further the singular fibres of ψ are all multiples of smooth
elliptic curves.

I

I Let m1,m2, ...ms denote the multiplicities of the singular
fibres and s denotes the number of them.
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I Let µ = lcm(m1,m2, ...ms) and γ = |G |, then Num(X ) is
generated by A/µ and (µ/γ)B.

I A line bundle L on X is represented by L ≡ aA
µ + b(µγ )B.

I Intersection product on X is governed by

A2 = B2 = 0,

A · B = |G |

I L is ample if and only if a, b > 0.

I There are seven types of hyperelliptic surfaces depending on
G .
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Theorem
Let X ∼= (A× B)/G be a hyperelliptic surface. A basis for the
group Num(X ) of divisors modulo numerical equivalence and the
multiplicities of the singular fibres of Ψ : X → B/G in each type
are given in the following table.

Type of X G m1,m2, . . . ,ms Basis of Num(X )

1 Z2 2, 2, 2, 2 A/2, B
2 Z2 × Z2 2, 2, 2, 2 A/2, B/2
3 Z4 2, 4, 4 A/4, B
4 Z4 × Z2 2, 4, 4 A/4,B/2
5 Z3 3, 3, 3 A/3,B
6 Z3 × Z3 3, 3, 3 A/3,B/3
7 Z6 2, 3, 6 A/6,B



Theorem (Hanumanthu, Roy)

Let X be a hyperelliptic surface of type different from 6 and let L
be an ample line bundle on X . Then ε(L) ∈ Q.

Proof
Let X be of type 1 hyperelliptic surface. Let L ≡ (a, b) be an ample
line bundle. We can also write L as a · A2 + b · B where A/2 and B
are the generators of Num(X ). Notice that, through any point
x ∈ X there are copies of A and B passing through it. Therefore,

ε(X , L) ≤ L · B
multxB

= a,

ε(X , L) ≤ L · A
multxA

=
2b

2
= b.



Therefore we see that ε(X , L) ≤ min(a, b). Now, we will show that
ε(X , L) ≥ min(a, b). To this end, let C ≡ s · A/2 + t · B ( 6= A, B)
be a reduced and irreducible curve in X passing through x with
multiplicity m. Then by Bézout’s theorem we get

s = C · B ≥ m · 1⇒ bs ≥ bm,
2t = C · A ≥ m · 2⇒ at ≥ am.

Thus we have

L · C
m

=
at + bs

m
≥ a + b ≥ min(a, b),

and therefore ε(X , L) = min(a, b).



In fact it is true that ε(X ; L) = min(a, b) for all ample line bundle
on every hyperelliptic surfaces of odd type. For even type, except
of type 6, we show that ε(X ; L, x) <

√
L2 =

√
2ab for some x ∈ X .

Then the proof follows from the following theorem

Theorem (Bauer, Szemberg)

Let X be a smooth projective surface and L be an ample line
bundle on X . If there exists a point x ∈ X such that
ε(X , L, x) <

√
L2, then ε(X , L) ∈ Q.



Theorem (Hanumanthu, Roy)

Let X be a hyperelliptic surface and let L be an ample line bundle
on X . If ε(L, 1) < (0.93)

√
L2, then ε(L, 1) = min(L · A, L · B).

Definition (Surface of General type)

A smooth complex algebraic surface X is said to be of general type
if the Kodaira dimension κ(X ) = 2.



Example

Let S = C × D where C and D are two curves of genus ≥ 2 then
S is a surface of general type. Now let p and q denotes the two
projection then KS = p∗(KC )⊗ q∗(KD) and the rational map
φnKS

: S 99K PN factorises as

φnKS
: C × D

(φnKC ,φnKD )
99K PN1 × PN2

s
↪→ PN

where s is the Segre embedding (defined by (xi ), (yj) 7→ (xiyj)).
Since κ(C ) = κ(D) = 1 we see that κ(S) = 2 and hence S is a
surface of general type. In fact if S is any surface fibred over a
curve of genus at least 2, whose generic fibre is of genus at least
two, is a surface of general type.



Multi-point Seshadri constant

Theorem
Let X be a surface of general type and KX be the canonical line
bundle on X . If KX is big and nef and x1, x2, ..., xr ∈ X are r ≥ 2
points, then we have the following.

1. ε(X ;KX , x1, x2, ..., xr ) = 0⇔ at least one of xi lies on one of
the finitely many (-2)-curves on X .

2. If 0 < ε(X ;KX , x1, x2, ..., xr ) < 1
r , then the Seshadri curve C

satisfies KX · C ≤ 2 and

ε(X ;KX , x1, x2, ..., xr ) =


1
3 or 1

4 or 2
5 if r = 2,

1
r+1 or 1

r+2 if 3 ≤ r < 9,
1

r+1 or 1
r+2 or 1

r+3 if r ≥ 9.



Theorem
Let X = C ×C , where C is a general member of moduli of smooth
curves of genus g ≥ 2. Let L ≡num a1F1 + a2F2 + a3δ be an ample
line bundle satisfying any of the following conditions on a1, a2 and
a3.

1. a3 = 0,

2. a3 > 0, a1 ≤ a2 and a2
1 + a2

3 < 2a1a2,

3. a3 < 0 and a2 ≥
(

2gk2+2k+1
2(k+1)

)
· a1, where k = d |a3|/a1

1−|a3|/a1
e.

Then ε(X ; L) ∈ Q.



Thank You!
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