Seshadri constants on algebraic surfaces

Praveen Kumar Roy

TIFR

May 20, 2020

(ロ)、(型)、(E)、(E)、 E) の(()

• Let X be a projective algebraic variety defined over \mathbb{C} .

- Let X be a projective algebraic variety defined over \mathbb{C} .
- ▶ A line bundle \mathcal{L} on X is said to be very ample if \exists a map

$$i: X \to \mathbb{P}^n$$
,

(for some $n \in \mathbb{Z}$) such that $i^*\mathcal{O}(1) = \mathcal{L}$. Here $\mathcal{O}(1)$ is the Serre line bundle on \mathbb{P}^n .

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- ▶ Let *X* be a projective algebraic variety defined over ℂ.
- ▶ A line bundle \mathcal{L} on X is said to be very ample if \exists a map

$$i: X \to \mathbb{P}^n$$
,

(for some $n \in \mathbb{Z}$) such that $i^*\mathcal{O}(1) = \mathcal{L}$. Here $\mathcal{O}(1)$ is the Serre line bundle on \mathbb{P}^n .

A line bundle L on X is said to be ample if L^{⊗m} is very ample for some m ∈ Z.

- ▶ Let *X* be a projective algebraic variety defined over ℂ.
- ▶ A line bundle \mathcal{L} on X is said to be very ample if \exists a map

$$i: X \to \mathbb{P}^n$$
,

(for some $n \in \mathbb{Z}$) such that $i^*\mathcal{O}(1) = \mathcal{L}$. Here $\mathcal{O}(1)$ is the Serre line bundle on \mathbb{P}^n .

- A line bundle L on X is said to be ample if L^{⊗m} is very ample for some m ∈ Z.
- A line bundle \mathcal{L} on X is said to be *nef if* $\mathcal{L} \cdot C \ge 0$ *for every curve* $C \subset X$.

▶ Two divisors D_1 and D_2 on X are numerically equivalent if $D_1 \cdot C = D_2 \cdot C$ for every curve $C \subset X$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Two divisors D₁ and D₂ on X are numerically equivalent if D₁ · C = D₂ · C for every curve C ⊂ X.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Num(X) = → Num(X) = → → → → denotes the group of divisors modulo numerical equivalence.

- Two divisors D₁ and D₂ on X are numerically equivalent if D₁ · C = D₂ · C for every curve C ⊂ X.
- Num(X) = → Num(X) = → → → → denotes the group of divisors modulo numerical equivalence.
- Seshadri criterion for ampleness of a line bundle.

Theorem (Seshadri criterion)

Let X be a projective variety and \mathcal{L} be a line bundle on X. Then \mathcal{L} is ample if and only if $\exists \epsilon > 0$ such that

$$\mathcal{L} \cdot \mathcal{C} \geq \varepsilon \cdot \textit{mult}_{x}\mathcal{C},$$

for every $x \in X$ and every irreducible curve $C \subset X$ passing through x.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivated by the above criteria, Demailly defined the Seshadri constants of an ample line bundle to quantify the positivity of ample line bundle.

Definition (Seshadri constant at a point, Demailly, 1987)

Let X be a projective variety and \mathcal{L} be an ample (nef) line bundle on X, then the Seshadri constant of \mathcal{L} at a point $x \in X$ is defined as

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\varepsilon(X;\mathcal{L},x):=\inf_{x\in C\subset X}\left\{\frac{\mathcal{L}\cdot C}{mult_xC}\right\}.$$

Alternate realisation of Seshadri constant of a line bundle at a point.

(ロ)、(型)、(E)、(E)、 E) の(()

- Alternate realisation of Seshadri constant of a line bundle at a point.
- Let X be a projective variety and L a nef line bundle on X. Let x ∈ X be a point and consider the blow up of X at x

$$\pi: Bl_{x}X \to X$$

such that E is the exceptional divisor. Then,

$$\varepsilon(X; L, x) = \max\{\lambda : \pi^*L - \lambda \cdot E \text{ is nef}\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Alternate realisation of Seshadri constant of a line bundle at a point.
- Let X be a projective variety and L a nef line bundle on X. Let x ∈ X be a point and consider the blow up of X at x

$$\pi: Bl_X X \to X$$

such that E is the exceptional divisor. Then,

$$\varepsilon(X; L, x) = \max\{\lambda : \pi^*L - \lambda \cdot E \text{ is nef}\}.$$

▶ Note that $\pi^* L - \lambda \cdot E$ is nef gives

$$egin{array}{rcl} (\pi^*L-\lambda)^n &\geq & 0, \ \Rightarrow & L^n &\geq & \lambda^n, \ \Rightarrow & \sqrt[\eta]{L^n} &\geq & \lambda. \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\varepsilon(X;L) := \inf_{x \in X} \varepsilon(X;L,x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

$$\varepsilon(X; L) := \inf_{x \in X} \varepsilon(X; L, x)$$

$$\varepsilon(X; L, r) := \sup_{x_1, x_2, \dots, x_r \in X} \varepsilon(X; L, x_1, x_2, \dots, x_r)$$

$$\varepsilon(X; L) := \inf_{x \in X} \varepsilon(X; L, x)$$

$$\varepsilon(X; L, r) := \sup_{x_1, x_2, \dots, x_r \in X} \varepsilon(X; L, x_1, x_2, \dots, x_r)$$

$$\triangleright \ \varepsilon(X;L,x_1,x_2,...,x_r) := \inf_{C \cap \{x_1,x_2,...,x_r\} \neq \phi} \frac{L \cdot C}{\sum\limits_{i=1}^{i=r} mult_{x_i} C}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

$$\varepsilon(X; L) := \inf_{x \in X} \varepsilon(X; L, x)$$

$$\varepsilon(X; L, r) := \sup_{x_1, x_2, \dots, x_r \in X} \varepsilon(X; L, x_1, x_2, \dots, x_r)$$

$$\varepsilon(X; L, x_1, x_2, \dots, x_r) := \inf_{x_1, x_2, \dots, x_r} \frac{L \cdot C}{C}$$

$$\blacktriangleright \ \varepsilon(X; L, x_1, x_2, \dots, x_r) := \inf_{\substack{C \cap \{x_1, x_2, \dots, x_r\} \neq \phi \ \sum_{i=1}^{i=r} mult_{x_i} C}} \prod_{i=1}^{L \cdot C} mult_{x_i} C$$

It is easy to see that the following set of inequalities holds

$$0 < \varepsilon(X; L) \le \varepsilon(X; L, x) \le \varepsilon(X; L, 1) \le \sqrt[n]{L^n}.$$

Here n is the dimension of X.

Example

Let $X = \mathbb{P}^n$ and $L = \mathcal{O}(1)$ be a an ample line bundle on X. Then

$$\varepsilon(X;L,x)=1,$$

for every $x \in X$.

Proof.

Fix $x \in X$. Let $\ell \subset X$ denote the line passing through x. Therefore we get $\varepsilon(X, L, x) \leq (L \cdot \ell)/1 = 1$. Now, let $C \subset X$ be a curve of degree d passing through x with multiplicity m, then Bézout's theorem says that $d \geq m$. Therefore $d/m \geq 1$. Hence $\varepsilon(X, L, x) = 1$.

Example

Let $p_1, p_2, p_3 \in \mathbb{P}^2$ are three points and $\ell \subset \mathbb{P}^2$ denotes a line. Then the multi-point Seshadri constant

$$arepsilon(\mathbb{P}^2; l, p_1, p_2, p_3) = egin{cases} rac{1}{3}, \ ext{if the points are collinear} \ rac{1}{2}, \ ext{else.} \end{cases}$$

Sketch of the proof:

Collinear: Let $l \subset \mathbb{P}^2$ be the line containing those points. Then $\varepsilon(\mathbb{P}^2; l, p_1, p_2, p_3) \leq (l \cdot l)/3 = 1/3$. If $C \subset \mathbb{P}^2$ be any curve containing these points with multiplicities m_1, m_2, m_3 then Bézout's theorem gives

$$egin{array}{rcl} \deg(\mathcal{C}) = \mathcal{C} \cdot \mathcal{I} &\geq m_1+m_2+m_3, \ \Rightarrow \displaystylerac{\deg(\mathcal{C})}{m_1+m_2+m_3} &\geq 1>\displaystylerac{1}{3}. \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Non-collinear: Let $l \subset \mathbb{P}^2$ denote the line passing through any two of the points. Then we get $\varepsilon(\mathbb{P}^2; l, p_1, p_2, p_3) \leq (l \cdot l)/2 = 1/2$. As in the previous case take *C* be any curve of degree *d* passing with p_i with multiplicity m_i . Then using bezouts theorem

$$egin{aligned} d &= C \cdot l_3 \geq m_1 + m_2, \ d &= C \cdot l_2 \geq m_1 + m_3, \ d &= C \cdot l_1 \geq m_2 + m_3, \ &\Rightarrow 3d \geq 2(m_1 + m_2 + m_3), \ &\Rightarrow d/(m_1 + m_2 + m_3) \geq 2/3 > 1/2. \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Seshadri constant was introduced by Demailly to understand the following conjecture.

Conjecture (Fujita, 1987)

Let X be a smooth projective algebraic variety of dimension n over an algebraically closed field of characteristic zero. Let K_X be the canonical line bundle on X and A be an ample Cartier divisor on X. Then the adjoint line bundle

- 1. $\mathcal{O}_X(K_X + mA)$ is globally generated for all $m \ge n + 1$,
- 2. $\mathcal{O}_X(K_X + mA)$ is very ample for all $m \ge n + 2$.

The following theorem relates the Fujita's conjecture with the Seshadri constants.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem (Ein, Lazarsfeld)

Let X be a smooth projective variety of dimension n. Let K_X be the canonical line bundle on X and L be a big and nef line bundle on X. Then,

1. $\varepsilon(L, x) > n$ for all $x \in X \implies K_X + L$ is globally generated.

2. $\varepsilon(L, x) > n + 1$ for all $x \in X \implies K_X + L$ is very ample.

The following theorem relates the Fujita's conjecture with the Seshadri constants.

Theorem (Ein, Lazarsfeld)

Let X be a smooth projective variety of dimension n. Let K_X be the canonical line bundle on X and L be a big and nef line bundle on X. Then,

- 1. $\varepsilon(L, x) > n$ for all $x \in X \implies K_X + L$ is globally generated.
- 2. $\varepsilon(L, x) > n + 1$ for all $x \in X \implies K_X + L$ is very ample.

Note that

$$\varepsilon(L,x) > 1, \ \forall \ x \in X \ \Rightarrow \ \varepsilon(mL,x) > n, \ \forall \ m \ge n+1.$$

Since,

$$\varepsilon(L,x) > 1 > n/m \Rightarrow \varepsilon(mL,x) > n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

By the previous theorem of Ein and Lazarsfeld we get

- 1. $\varepsilon(mL, x) > n$ for all $x \in X \Rightarrow K_X + mL$ is globally generated for $m \ge n + 1$,
- 2. $\varepsilon(mL, x) > n+1$ for all $x \in X \Rightarrow K_X + mL$ is very ample for $m \ge n+2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

By the previous theorem of Ein and Lazarsfeld we get

- 1. $\varepsilon(mL, x) > n$ for all $x \in X \Rightarrow K_X + mL$ is globally generated for $m \ge n + 1$,
- 2. $\varepsilon(mL, x) > n+1$ for all $x \in X \Rightarrow K_X + mL$ is very ample for $m \ge n+2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Therefore we see that ε(L, x) > 1 for all x ∈ X implies the Fujita's conjecture.

By the previous theorem of Ein and Lazarsfeld we get

- 1. $\varepsilon(mL, x) > n$ for all $x \in X \Rightarrow K_X + mL$ is globally generated for $m \ge n + 1$,
- 2. $\varepsilon(mL, x) > n+1$ for all $x \in X \Rightarrow K_X + mL$ is very ample for $m \ge n+2$.
- ► Therefore we see that ε(L, x) > 1 for all x ∈ X implies the Fujita's conjecture.
- But it is too optimistic to prove that ε(L, x) > 1 for all x ∈ X, as the following example of Miranda suggests.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Example (Miranda)

For any given $\delta > 0$ there exists a smooth projective surface X, a point $x \in X$ and an ample line bundle L on X such that

$$\varepsilon(X;L,x) < \delta.$$

Sketch of the proof : Consider a curve $\Gamma \subset \mathbb{P}^2$ of degree *d* having an *m*-fold point $p \in \Gamma$, with $\delta > 1/m$. Choose a second curve $\Gamma' \subset \mathbb{P}^2$ of degree *d* that meets Γ transversely. We can choose d >> 0 and Γ' sufficiently general so that the linear system \mathcal{L} generated by Γ and Γ' are irreducible. We then consider the surface obtained after the blow up of base points of this system.

$$\mu: X := Bl_{\Gamma \cap \Gamma'}(\mathbb{P}^2) \longrightarrow \mathbb{P}^2$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The linear system \mathcal{L} defines a mapping

$$\pi: X \longrightarrow \mathbb{P}^1$$

Let C and C' are curves in X isomorphic to Γ and Γ' appearing as fibres of π .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let L = aC + E for $a \ge 2$, then it can be verified that L is ample and

$$\varepsilon(X; L, x) \leq \frac{L \cdot C}{mult_x C} = \frac{1}{m} < \delta.$$

Can we compute $\varepsilon(X; L, x), \ \varepsilon(X; L), \ \varepsilon(X; L, r), \ \varepsilon(X; L, x_1, x_2, ..., x_r)$?

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Can we compute $\varepsilon(X; L, x), \ \varepsilon(X; L), \ \varepsilon(X; L, r), \ \varepsilon(X; L, x_1, x_2, ..., x_r)$?

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Or at least can we bound them ?

Can we compute $\varepsilon(X; L, x), \ \varepsilon(X; L), \ \varepsilon(X; L, r), \ \varepsilon(X; L, x_1, x_2, ..., x_r)$?

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Or at least can we bound them ?

▶ Is $\varepsilon(X; L) \in \mathbb{Q}$?

Can we compute $\varepsilon(X; L, x), \ \varepsilon(X; L), \ \varepsilon(X; L, r), \ \varepsilon(X; L, x_1, x_2, ..., x_r)$?

Or at least can we bound them ?

▶ Is
$$\varepsilon(X; L) \in \mathbb{Q}$$
 ?

Open questions

- 1. Is there a pair (X, L) such that $\varepsilon(X; L) = 0$?
- 2. Is there a triple (X, L, x) such that $\varepsilon(X; L, x) \notin \mathbb{Q}$?

・ロト・西ト・ヨト・ヨー つへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

•
$$\varepsilon(X; L) \in \mathbb{Q}$$
 for

•
$$X = \mathbb{P}^2$$
, and $Bl_{\{p_1, p_2, \dots, p_r\}} \mathbb{P}^2$ $(r \leq 8)$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

•
$$\varepsilon(X; L) \in \mathbb{Q}$$
 for

•
$$X = \mathbb{P}^2$$
, and $Bl_{\{p_1, p_2, \dots, p_r\}} \mathbb{P}^2$ $(r \leq 8)$

Some geometrically ruled surfaces

Enrique surface

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• $\varepsilon(X; L) \in \mathbb{Q}$ for

$$\blacktriangleright X = \mathbb{P}^2, \text{ and } Bl_{\{p_1, p_2, \dots, p_r\}} \mathbb{P}^2 \ (r \leq 8)$$

- Enrique surface
- K3 surfaces of degree 6 and 8

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• $\varepsilon(X; L) \in \mathbb{Q}$ for

$$\blacktriangleright X = \mathbb{P}^2, \text{ and } Bl_{\{p_1, p_2, \dots, p_r\}} \mathbb{P}^2 \ (r \leq 8)$$

- Enrique surface
- K3 surfaces of degree 6 and 8
- Most hyperelliptic surfaces

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• $\varepsilon(X; L) \in \mathbb{Q}$ for

•
$$X = \mathbb{P}^2$$
, and $Bl_{\{p_1, p_2, \dots, p_r\}} \mathbb{P}^2$ $(r \leq 8)$

- Enrique surface
- K3 surfaces of degree 6 and 8
- Most hyperelliptic surfaces
- Some surfaces of general type

In the direction of irrational Seshadri constant

Following is known in the direction of finding an irrational Seshadri constant.

- Theorem (Dumnicki, Küronya, Maclean, Szemberg) Let $\pi : X \to \mathbb{P}^2$ denotes the blow up of \mathbb{P}^2 at s (≥ 9) very general points for which the SHGH Conjecture holds true. Then
 - 1. either there exists an ample line bundle L on X and a point $p \in X$ such that

 $\varepsilon(X; L, p)$ is irrational,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2. or the SHGH conjecture fails for s + 1 points.

Let X denotes the blow up of P² at s (≥ 0) very general points

(ロ)、(型)、(E)、(E)、 E) の(()

- Let X denotes the blow up of P² at s (≥ 0) very general points
- Let π : Y → X denotes the blow up of X at a very general point x ∈ X and E an exceptional divisor.

- Let X denotes the blow up of P² at s (≥ 0) very general points
- Let π : Y → X denotes the blow up of X at a very general point x ∈ X and E an exceptional divisor.

► SHGH conjecture on Y implies the following fact.

- Let X denotes the blow up of P² at s (≥ 0) very general points
- Let π : Y → X denotes the blow up of X at a very general point x ∈ X and E an exceptional divisor.
- ► SHGH conjecture on *Y* implies the following fact.
- * Any prime divisor C on Y with $C^2 < 0$ is an exceptional curve.

- Let X denotes the blow up of P² at s (≥ 0) very general points
- Let π : Y → X denotes the blow up of X at a very general point x ∈ X and E an exceptional divisor.
- ► SHGH conjecture on Y implies the following fact.
- * Any prime divisor C on Y with $C^2 < 0$ is an exceptional curve.

Theorem (Hanumanthu, Harbourne)

Assumption of \star on Y implies the existence of an ample line bundle L on X with $\varepsilon(X; L, x)$ being irrational if and only if $s \ge 9$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let X be smooth complex projective variety and L be a line bundle on X. Consider the linear system |mL| for $m \in \mathbb{N}$. The global sections of mL defines a rational map

$$\phi_{mL}: X \dashrightarrow \mathbb{P}(H^0(X, mL)).$$

Clearly, the $dim(\phi_{mL}(X)) \leq dim(X)$.

Definition

 $\kappa(X,L) := \max\{\dim(\phi_{mL}(X)) : m \in \mathbb{N}\}.$

Definition

Given a smooth complex projective variety X with canonical divisor K_X , the Kodaira dimension of X is defined as $\kappa(X, K_X)$.

A D N A 目 N A E N A E N A B N A C N

Introduction of Hyperelliptic surfacces

Definition

A hyperelliptic surface X is a minimal smooth surface with Kodaira dimension $\kappa(X) = 0$ satisfying $h^1(X, \mathcal{O}_X) = 1$ and $h^2(X, \mathcal{O}_X) = 0$.

Alternate characterization

A smooth surface X is hyperelliptic if and only if $X \cong (A \times B)/G$, where A and B are elliptic curves and G is a finite group of translation of A acting on B in such a way that $B/G \cong \mathbb{P}^1$. We have the following diagram:

A D N A 目 N A E N A E N A B N A C N

• Fibres of ϕ are smooth and isomorphic to \mathbb{P}^1 .

- Fibres of ϕ are smooth and isomorphic to \mathbb{P}^1 .
- Fibres of \u03c6 are all multiples of smooth elliptic curves and all but finitely many of them are smooth and isomorphic to A

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- Fibres of ϕ are smooth and isomorphic to \mathbb{P}^1 .
- Fibres of \u03c6 are all multiples of smooth elliptic curves and all but finitely many of them are smooth and isomorphic to A
- Further the singular fibres of ψ are all multiples of smooth elliptic curves.

- Fibres of ϕ are smooth and isomorphic to \mathbb{P}^1 .
- Fibres of \u03c6 are all multiples of smooth elliptic curves and all but finitely many of them are smooth and isomorphic to A
- Further the singular fibres of ψ are all multiples of smooth elliptic curves.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Fibres of ϕ are smooth and isomorphic to \mathbb{P}^1 .
- Fibres of \u03c6 are all multiples of smooth elliptic curves and all but finitely many of them are smooth and isomorphic to A
- Further the singular fibres of ψ are all multiples of smooth elliptic curves.

Let m₁, m₂, ... m_s denote the multiplicities of the singular fibres and s denotes the number of them.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Let $\mu = lcm(m_1, m_2, ..., m_s)$ and $\gamma = |G|$, then Num(X) is generated by A/μ and $(\mu/\gamma)B$.

• Let $\mu = lcm(m_1, m_2, ..., m_s)$ and $\gamma = |G|$, then Num(X) is generated by A/μ and $(\mu/\gamma)B$.

A line bundle L on X is represented by $L \equiv a \frac{A}{\mu} + b(\frac{\mu}{\gamma})B$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let μ = lcm(m₁, m₂, ...m_s) and γ = |G|, then Num(X) is generated by A/μ and (μ/γ)B.

A line bundle L on X is represented by $L \equiv a \frac{A}{\mu} + b(\frac{\mu}{\gamma})B$.

Intersection product on X is governed by

$$A^2 = B^2 = 0,$$
$$A \cdot B = |G|$$

- Let μ = lcm(m₁, m₂, ...m_s) and γ = |G|, then Num(X) is generated by A/μ and (μ/γ)B.
- ► A line bundle *L* on *X* is represented by $L \equiv a_{\mu}^{\underline{A}} + b(\frac{\mu}{\gamma})B$.

Intersection product on X is governed by

$$A^2 = B^2 = 0,$$
$$A \cdot B = |G|$$

A D N A 目 N A E N A E N A B N A C N

• *L* is ample if and only if a, b > 0.

- Let μ = lcm(m₁, m₂, ...m_s) and γ = |G|, then Num(X) is generated by A/μ and (μ/γ)B.
- A line bundle *L* on *X* is represented by $L \equiv a\frac{A}{\mu} + b(\frac{\mu}{\gamma})B$.

Intersection product on X is governed by

$$A^2 = B^2 = 0,$$
$$A \cdot B = |G|$$

- *L* is ample if and only if a, b > 0.
- There are seven types of hyperelliptic surfaces depending on G.

Theorem

Let $X \cong (A \times B)/G$ be a hyperelliptic surface. A basis for the group Num(X) of divisors modulo numerical equivalence and the multiplicities of the singular fibres of $\Psi : X \to B/G$ in each type are given in the following table.

Type of X	G	m_1, m_2, \ldots, m_s	Basis of Num(X)
1	\mathbb{Z}_2	2, 2, 2, 2	A/2, B
2	$\mathbb{Z}_2\times\mathbb{Z}_2$	2, 2, 2, 2	A/2, B/2
3	\mathbb{Z}_4	2, 4, 4	A/4, B
4	$\mathbb{Z}_4\times\mathbb{Z}_2$	2, 4, 4	A/4,B/2
5	\mathbb{Z}_3	3, 3, 3	A/3, B
6	$\mathbb{Z}_3\times\mathbb{Z}_3$	3, 3, 3	A/3, B/3
7	\mathbb{Z}_6	2, 3, 6	A/6, B

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Hanumanthu, Roy)

Let X be a hyperelliptic surface of type different from 6 and let L be an ample line bundle on X. Then $\varepsilon(L) \in \mathbb{Q}$.

Proof

Let X be of type 1 hyperelliptic surface. Let $L \equiv (a, b)$ be an ample line bundle. We can also write L as $a \cdot \frac{A}{2} + b \cdot B$ where A/2 and B are the generators of Num(X). Notice that, through any point $x \in X$ there are copies of A and B passing through it. Therefore,

$$\varepsilon(X,L) \leq \frac{L \cdot B}{mult_{x}B} = a,$$

$$\varepsilon(X,L) \leq \frac{L \cdot A}{mult_{x}A} = \frac{2b}{2} = b.$$

Therefore we see that $\varepsilon(X, L) \leq \min(a, b)$. Now, we will show that $\varepsilon(X, L) \geq \min(a, b)$. To this end, let $C \equiv s \cdot A/2 + t \cdot B \ (\neq A, B)$ be a reduced and irreducible curve in X passing through x with multiplicity m. Then by Bézout's theorem we get

$$s = C \cdot B \ge m \cdot 1 \Rightarrow bs \ge bm,$$

 $2t = C \cdot A \ge m \cdot 2 \Rightarrow at \ge am.$

Thus we have

$$\frac{L \cdot C}{m} = \frac{at + bs}{m} \ge a + b \ge \min(a, b),$$

A D N A 目 N A E N A E N A B N A C N

and therefore $\varepsilon(X, L) = \min(a, b)$.

In fact it is true that $\varepsilon(X; L) = \min(a, b)$ for all ample line bundle on every hyperelliptic surfaces of odd type. For even type, except of type 6, we show that $\varepsilon(X; L, x) < \sqrt{L^2} = \sqrt{2ab}$ for some $x \in X$. Then the proof follows from the following theorem

Theorem (Bauer, Szemberg)

Let X be a smooth projective surface and L be an ample line bundle on X. If there exists a point $x \in X$ such that $\varepsilon(X, L, x) < \sqrt{L^2}$, then $\varepsilon(X, L) \in \mathbb{Q}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Hanumanthu, Roy)

Let X be a hyperelliptic surface and let L be an ample line bundle on X. If $\varepsilon(L, 1) < (0.93)\sqrt{L^2}$, then $\varepsilon(L, 1) = \min(L \cdot A, L \cdot B)$.

Definition (Surface of General type)

A smooth complex algebraic surface X is said to be of general type if the Kodaira dimension $\kappa(X) = 2$.

Example

Let $S = C \times D$ where C and D are two curves of genus ≥ 2 then S is a surface of general type. Now let p and q denotes the two projection then $K_S = p^*(K_C) \otimes q^*(K_D)$ and the rational map $\phi_{nK_S} : S \dashrightarrow \mathbb{P}^N$ factorises as

$$\phi_{nK_{S}}: C \times D \xrightarrow{(\phi_{nK_{C}}, \phi_{nK_{D}})} \mathbb{P}^{N_{1}} \times \mathbb{P}^{N_{2}} \stackrel{s}{\hookrightarrow} \mathbb{P}^{N_{1}}$$

where s is the Segre embedding (defined by $(x_i), (y_j) \mapsto (x_iy_j)$). Since $\kappa(C) = \kappa(D) = 1$ we see that $\kappa(S) = 2$ and hence S is a surface of general type. In fact if S is any surface fibred over a curve of genus at least 2, whose generic fibre is of genus at least two, is a surface of general type.

Multi-point Seshadri constant

Theorem

Let X be a surface of general type and K_X be the canonical line bundle on X. If K_X is big and nef and $x_1, x_2, ..., x_r \in X$ are $r \ge 2$ points, then we have the following.

- 1. $\varepsilon(X; K_X, x_1, x_2, ..., x_r) = 0 \Leftrightarrow$ at least one of x_i lies on one of the finitely many (-2)-curves on X.
- 2. If $0 < \varepsilon(X; K_X, x_1, x_2, ..., x_r) < \frac{1}{r}$, then the Seshadri curve C satisfies $K_X \cdot C \le 2$ and

$$\varepsilon(X; K_X, x_1, x_2, ..., x_r) = \begin{cases} \frac{1}{3} \text{ or } \frac{1}{4} \text{ or } \frac{2}{5} & \text{if } r = 2, \\ \frac{1}{r+1} \text{ or } \frac{1}{r+2} & \text{if } 3 \le r < 9, \\ \frac{1}{r+1} \text{ or } \frac{1}{r+2} \text{ or } \frac{1}{r+3} & \text{if } r \ge 9. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem

Let $X = C \times C$, where C is a general member of moduli of smooth curves of genus $g \ge 2$. Let $L \equiv_{num} a_1F_1 + a_2F_2 + a_3\delta$ be an ample line bundle satisfying any of the following conditions on a_1, a_2 and a_3 .

1.
$$a_3 = 0$$
,
2. $a_3 > 0$, $a_1 \le a_2$ and $a_1^2 + a_3^2 < 2a_1a_2$,
3. $a_3 < 0$ and $a_2 \ge \left(\frac{2gk^2 + 2k + 1}{2(k+1)}\right) \cdot a_1$, where $k = \lceil \frac{|a_3|/a_1}{1 - |a_3|/a_1} \rceil$.
Then $\varepsilon(X; L) \in \mathbb{Q}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thank You!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●