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» A line bundle £ on X is said to be nef if L- C > 0 for every
curve C C X.
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» Two divisors D7 and D, on X are numerically equivalent if
Dy - C = D5, - C for every curve C C X.

» Num(X) = Divf(x) denotes the group of divisors modulo
numerical equivalence.

» Seshadri criterion for ampleness of a line bundle.
Theorem (Seshadri criterion)

Let X be a projective variety and L be a line bundle on X. Then L
is ample if and only if 34 € > 0 such that

L-C>¢e-mult,C,

for every x € X and every irreducible curve C C X passing through
X.



» Motivated by the above criteria, Demailly defined the Seshadri
constants of an ample line bundle to quantify the positivity of
ample line bundle.

Definition (Seshadri constant at a point, Demailly, 1987)

Let X be a projective variety and £ be an ample (nef) line bundle
on X, then the Seshadri constant of £ at a point x € X is defined

as

. L-C
X Lyx) = XEIEEX { mu/tXC} '
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» Alternate realisation of Seshadri constant of a line bundle at a
point.

» Let X be a projective variety and L a nef line bundle on X.
Let x € X be a point and consider the blow up of X at x

7:BLX —> X
such that E is the exceptional divisor. Then,
e(X; L,x) =max{\: 7L — \-E is nef}.

» Note that 7L — X\ - E is nef gives

(T*L—X\)" > 0,
= L" > A"
= VI > )\
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> (X L) =i
) = Xlg(s(X;L,x)

> o(X;L,r):=
,r) sup e(X; L, x1, x2 )
s XDy eaey Xy

X1,X2 4., Xr EX



» ¢(X; L) = inf e(X;L,x)

xeX

> o(X;L,r):= sup  &(X; L, x1,x2, ..., Xr)

X1,X2,.,Xr €EX

> (XL X1, X0, 0 Xp) = inf —Lc

Cm{X17X27...7Xr}¢(f) g multxi C
i=1



e(X;L):= Xlg(s(X; L, x)

e(X;Lyr):= sup  &(X; L, x1,x2, ..., Xr)

X1,X2,.,Xr €EX

e(X; Lyx1, X2, ey Xp) i= inf —_— Lc
Cﬂ{Xl,XQ,...,Xr}¢¢ > mUItxl-C
i=1

It is easy to see that the following set of inequalities holds
0<e(X;L) <e(X;Lx)<e(X;L1)<VLn

Here n is the dimension of X.



Example
Let X =P" and L = O(1) be a an ample line bundle on X. Then

e(X;L,x) =1,
for every x € X.

Proof.

Fix x € X. Let [ C X denote the line passing through x.
Therefore we get (X, L,x) < (L-[)/1=1. Now, let C C X be a
curve of degree d passing through x with multiplicity m, then
Bézout's theorem says that d > m. Therefore d/m > 1. Hence
e(X,L,x)=1. O



Example

Let p1, po, p3 € IP? are three points and [ C P? denotes a line.
Then the multi-point Seshadri constant

, if the points are collinear
e(P? [, p1, P2, p3) = {

NI W=

, else.

Sketch of the proof:

Collinear: Let / C P? be the line containing those points. Then
e(P%, [, p1,p2,p3) < (£ -1)/3 =1/3. If C C P? be any curve
containing these points with multiplicities my, my, ms then
Bézout's theorem gives

deg(C)=C-1 > my+ my+ ms,
—deg(C) 1> 1.
my + my + ms3 3

Y



Non-collinear: Let / C P? denote the line passing through any two

of the points. Then we get e(P?; [, p1, p2, p3) < (£ -1)/2 =1/2. As
in the previous case take C be any curve of degree d passing with

pi with multiplicity m;. Then using bezouts theorem

d=C-h>m+ my,
d=C-h>m+ mz,
d:C'/12m2+m37

= 3d > 2(m1 —+ mo + m3),
= d/(m1+m2+m3) > 2/3 > 1/2.



Seshadri constant was introduced by Demailly to understand the
following conjecture.
Conjecture (Fujita, 1987)
Let X be a smooth projective algebraic variety of dimension n over
an algebraically closed field of characteristic zero. Let Kx be the
canonical line bundle on X and A be an ample Cartier divisor on
X. Then the adjoint line bundle

1. Ox(Kx + mA) is globally generated for all m > n+1,

2. Ox(Kx 4+ mA) is very ample for all m > n + 2.



The following theorem relates the Fujita's conjecture with the
Seshadri constants.

Theorem (Ein, Lazarsfeld)

Let X be a smooth projective variety of dimension n. Let Kx be

the canonical line bundle on X and L be a big and nef line bundle
on X. Then,

1. e(L,x) > n forall x e X = Kx + L is globally generated.
2. e(L,x)>n+1forallxe X = Kx + L is very ample.
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Theorem (Ein, Lazarsfeld)

Let X be a smooth projective variety of dimension n. Let Kx be

the canonical line bundle on X and L be a big and nef line bundle
on X. Then,

1. e(L,x) > n forall x e X = Kx + L is globally generated.
2. e(L,x)>n+1forallxe X = Kx + L is very ample.

» Note that

e(L,x)>1,Vxe X = e(mlL,x)>n, Ym>n+1.

Since,

e(L,x) >1>n/m=e(mL,x) > n.
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» By the previous theorem of Ein and Lazarsfeld we get

1. e(mL,;x) > nfor all x € X = Kx + mL is globally generated
for m > n+1,

2. e(mL,x) > n+1 for all x € X = Kx + mL is very ample for
m>n+2.

» Therefore we see that (L, x) > 1 for all x € X implies the
Fujita's conjecture.

» But it is too optimistic to prove that (L, x) > 1 for all x € X,
as the following example of Miranda suggests.



Example (Miranda)

For any given § > 0 there exists a smooth projective surface X, a
point x € X and an ample line bundle L on X such that

e(X; L, x) <.

Sketch of the proof : Consider a curve I' C P2 of degree d having
an m-fold point p € I, with § > 1/m. Choose a second curve

I’ C P? of degree d that meets I transversely. We can choose

d >> 0 and [ sufficiently general so that the linear system £
generated by [ and I are irreducible. We then consider the surface
obtained after the blow up of base points of this system.

o X = Blrar (P?) — P2



The linear system L defines a mapping
7 X — P!

Let C and C’ are curves in X isomorphic to I and I" appearing as

fibres of .

| \

|x




Let L = aC + E for a > 2, then it can be verified that L is ample
and

e(X;L,x) <
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So the natural questions arises are as follows

> Can we compute
E(X; LaX)a E(X; L)7 E(X; L, r)7 E(X; L, x1, x2, -"axr) ?

» Or at least can we bound them ?
> Ise(X;L)eQ7?
» Open questions

1. Is there a pair (X, L) such that ¢(X;L) =07
2. Is there a triple (X, L, x) such that e(X;L,x) ¢ Q ?
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Some of the known results in this direction on surfaces

e(X; L) € Q for

X =P2, and Blgy, p,....p3 P2 (r < 8)
Some geometrically ruled surfaces
Enrique surface

K3 surfaces of degree 6 and 8

Most hyperelliptic surfaces

vV V.V v v Y

Some surfaces of general type



In the direction of irrational Seshadri constant

Following is known in the direction of finding an irrational Seshadri
constant.
Theorem (Dumnicki, Kiironya, Maclean, Szemberg)

Let 7w : X — P? denotes the blow up of P? at s (> 9) very general
points for which the SHGH Conjecture holds true. Then

1. either there exists an ample line bundle L on X and a point
p € X such that

e(X; L, p) is irrational,
2. or the SHGH conjecture fails for s + 1 points.
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» Let X denotes the blow up of P? at s (> 0) very general
points

> Let m: Y — X denotes the blow up of X at a very general
point x € X and E an exceptional divisor.

» SHGH conjecture on Y implies the following fact.

x Any prime divisor C on Y with C? < 0 is an exceptional curve.

Theorem (Hanumanthu, Harbourne)

Assumption of x on Y implies the existence of an ample line
bundle L on X with e(X; L, x) being irrational if and only if s > 9.



Let X be smooth complex projective variety and L be a line bundle
on X. Consider the linear system |mL| for m € N. The global
sections of mL defines a rational map

GmL 2 X —=» ]P)(HO(X> mL))

Clearly, the dim(¢mi (X)) < dim(X).

Definition

k(X, L) := max{dim(¢m (X)) : m € N}.

Definition

Given a smooth complex projective variety X with canonical divisor
Kx, the Kodaira dimension of X is defined as x(X, Kx).



Introduction of Hyperelliptic surfacces

Definition

A hyperelliptic surface X is a minimal smooth surface with Kodaira
dimension k(X) = 0 satisfying h'(X,Ox) = 1 and h?*(X,Ox) = 0.
Alternate characterization

A smooth surface X is hyperelliptic if and only if X = (A x B)/G,
where A and B are elliptic curves and G is a finite group of
translation of A acting on B in such a way that B/G =~ P1. We
have the following diagram:

X~ (Ax B)/G—2~A/G

’

B/G = P!
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» Fibres of ¢ are smooth and isomorphic to P!

» Fibres of v are all multiples of smooth elliptic curves and all
but finitely many of them are smooth and isomorphic to A

» Further the singular fibres of 1) are all multiples of smooth
elliptic curves.

>




vy

Fibres of ¢ are smooth and isomorphic to P*.

Fibres of ¢ are all multiples of smooth elliptic curves and all
but finitely many of them are smooth and isomorphic to A

Further the singular fibres of v are all multiples of smooth
elliptic curves.

Let my, mo,...ms denote the multiplicities of the singular
fibres and s denotes the number of them.
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» Intersection product on X is governed by

A2 =B? =0,
A-B=|G]

» [ is ample if and only if a,b > 0.



v

Let = lem(my, my,...ms) and v = |G|, then Num(X) is
generated by A/u and (u/v)B.
A line bundle L on X is represented by L = aﬁ + b(%)B.

Intersection product on X is governed by

A2 =B? =0,
A-B=|G]

L is ample if and only if a, b > 0.

There are seven types of hyperelliptic surfaces depending on
G.



Theorem

Let X = (A x B)/G be a hyperelliptic surface. A basis for the
group Num(X) of divisors modulo numerical equivalence and the
multiplicities of the singular fibres of W : X — B/G in each type
are given in the following table.

Type of X G my, my, ..., ms | Basis of Num(X)
1 Za 2.2.2.2 A2, B
2 Ty X T 2.2,2.2 A/2, B/2
3 Za 2.4,4 A/, B
4 Za X Tn 2,4,4 A/4,B/2
5 Zs 33,3 A/3,B
6 Zs % Zs 3,3,3 A/3,B/3
7 Ze 2,3,6 A/6, B




Theorem (Hanumanthu, Roy)

Let X be a hyperelliptic surface of type different from 6 and let L
be an ample line bundle on X. Then (L) € Q.

Proof

Let X be of type 1 hyperelliptic surface. Let L = (a, b) be an ample
line bundle. We can also write L as a- é + b- B where A/2 and B
are the generators of Num(X). Notice that, through any point

x € X there are copies of A and B passing through it. Therefore,

L-B
X, 1)< -
X D= BT ?
L-A  2b
e(X,L) < =— =b.



Therefore we see that (X, L) < min(a, b). Now, we will show that
e(X,L) > min(a, b). To thisend, let C=s-A/2+t-B (# A, B)
be a reduced and irreducible curve in X passing through x with
multiplicity m. Then by Bézout's theorem we get

s=C-B>m-1= bs > bm,
2t=C-A>m-2= at > am.

Thus we have

L.
¢ = at;bs > a+ b > min(a, b),

m

and therefore (X, L) = min(a, b).



In fact it is true that ¢(X; L) = min(a, b) for all ample line bundle
on every hyperelliptic surfaces of odd type. For even type, except
of type 6, we show that £(X; L, x) < VL2 = v/2ab for some x € X.
Then the proof follows from the following theorem

Theorem (Bauer, Szemberg)

Let X be a smooth projective surface and L be an ample line
bundle on X. If there exists a point x € X such that
e(X, L,x) < VL2, then ¢(X, L) € Q.



Theorem (Hanumanthu, Roy)

Let X be a hyperelliptic surface and let L be an ample line bundle
on X. Ife(L,1) < (0.93)V/L2, then e(L,1) = min(L- A, L- B).

Definition (Surface of General type)

A smooth complex algebraic surface X is said to be of general type
if the Kodaira dimension x(X) = 2.



Example

Let S = C x D where C and D are two curves of genus > 2 then
S is a surface of general type. Now let p and g denotes the two
projection then Ks = p*(K¢) ® g*(Kp) and the rational map
Onks 1 S > PN factorises as

((z)"K_CL(i"KD) PNl % ]P"N2 i) ]P)N

(;5,,;(5 :CxD
where s is the Segre embedding (defined by (x;), (y;) — (xiy;))-
Since k(C) = k(D) = 1 we see that x(S) =2 and hence S is a
surface of general type. In fact if S is any surface fibred over a
curve of genus at least 2, whose generic fibre is of genus at least
two, is a surface of general type.



Multi-point Seshadri constant

Theorem

Let X be a surface of general type and Kx be the canonical line
bundle on X. If Kx is big and nef and x1,x2,...,x, € X are r > 2

points, then we have the following.

1. e(X; Kx, x1,x2, ..., x,) = 0 < at least one of x; lies on one of

the finitely many (-2)-curves on X.

2. If0 < &(X; Kx, x1, X2, ..., x-) < L, then the Seshadri curve C

satisfies Kx - C < 2 and

1 1 2
3 or 7 or 5
1 1
r+1 or r+2
1 1

e(X; Kxy X1, X0, ooy Xp) =

+1 9 2 O 3

if r=2,
if 3<r<9,
L if r>0.



Theorem
Let X = C x C, where C is a general member of moduli of smooth
curves of genus g > 2. Let L =pym a1F1 + axF + a3d be an ample

line bundle satisfying any of the following conditions on ay, a, and
as.

1. a3z = 0,
2. a3>0, a1 < ap and a? + a3 < 2aja»,
2
3. a3<0andap > (%) - a1, where k = (1L‘?|3J3/|?1311.
Then e(X;L) € Q.




Thank You!
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