On the low-density limit of the Lorentz gas for general scatterer configurations

Andreas Strömbergsson
Uppsala University
http://www.math.uu.se/~astrombe

based on joint work with Jens Marklof

February 4th, 2016

(Hendrik Lorentz, 1905, "The motion of electrons in metallic bodies")

Fix $\mathcal{P} \subset \mathbb{R}^d$.

Fix $\mathcal{P} \subset \mathbb{R}^d$. Place a ball of radius r > 0 around each point in \mathcal{P} .

Fix $\mathcal{P} \subset \mathbb{R}^d$.

Place a ball of radius r > 0 around each point in \mathcal{P} .

Non-interacting point particles moving in $K_r := \mathbb{R}^d - (\mathcal{P} + \mathcal{B}_r^d)$.

Fix $\mathcal{P} \subset \mathbb{R}^d$.

Place a ball of radius r > 0 around each point in \mathcal{P} .

Non-interacting point particles moving in $K_r := \mathbb{R}^d - (\mathcal{P} + \mathcal{B}_r^d)$.

Fix $\mathcal{P} \subset \mathbb{R}^d$.

Place a ball of radius r > 0 around each point in \mathcal{P} .

Non-interacting point particles moving in $K_r := \mathbb{R}^d - (\mathcal{P} + \mathcal{B}_r^d)$.

Fix $\mathcal{P} \subset \mathbb{R}^d$.

Place a ball of radius r > 0 around each point in \mathcal{P} .

Non-interacting point particles moving in $K_r := \mathbb{R}^d - (\mathcal{P} + \mathcal{B}_r^d)$. Boltzmann-Grad limit:

Let $r \to 0$ in macroscopic coordinates $(\vec{Q}, \vec{V}) = (r^{d-1}\vec{q}, \vec{v})$

Boltzmann-Grad limit for \mathcal{P} "Poisson"

Let Λ be a.c. prob. measure on $\mathsf{T}^1(\mathbb{R}^d) = \mathbb{R}^d \times \mathsf{S}_1^{d-1}$.

For (\vec{Q}_0, \vec{V}_0) random in $(T^1(\mathbb{R}^d), \Lambda)$, define:

(The picture is in macroscopic coordinates; $(\vec{Q}, \vec{V}) = (r^{d-1}\vec{q}, \vec{v})$)

Theorem (Boldrighini-Bunimovich-Sinai, 1983) For \mathcal{P} a fixed realization of a Poisson process in \mathbb{R}^d of intensity 1, one has almost surely:

$$\langle (\vec{Q}_0, \vec{V}_0), (T_1, \vec{V}_1), \ldots, (T_n, \vec{V}_n) \rangle$$

$$\xrightarrow[(r\to 0)]{\text{d}} \text{r.v. with density } \Lambda'(\vec{Q}_0, \vec{V}_0) \prod_{j=1}^n \left(\sigma(\vec{V}_{j-1}, \vec{V}_j) e^{-\overline{\sigma}T_j} \right).$$

 $(\sigma(\vec{V}', \vec{V}) = \text{differential cross section of a scatterer; } \overline{\sigma} = \text{vol}(\mathcal{B}_1^{d-1}))$

(The picture is in macroscopic coordinates; $(\vec{Q}, \vec{V}) = (r^{d-1}\vec{q}, \vec{v})$)

Theorem (Boldrighini-Bunimovich-Sinai, 1983) For \mathcal{P} a fixed realization of a Poisson process in \mathbb{R}^d of intensity 1, one has almost surely:

$$\langle (\vec{Q}_0, \vec{V}_0), (T_1, \vec{V}_1), \dots, (T_n, \vec{V}_n) \rangle$$

$$\xrightarrow{\text{d}} \text{r.v. with density } \Lambda'(\vec{Q}_0, \vec{V}_0) \prod_{j=1}^n \left(\sigma(\vec{V}_{j-1}, \vec{V}_j) e^{-\overline{\sigma}T_j} \right).$$

Hence in the Boltzmann-grad limit, the evolution of an initial particle density $f_0 \in L^1(T^1(\mathbb{R}^d))$ $(f_0 \ge 0)$ is governed by the *linear Boltzmann equation*,

$$(\partial_t + \vec{V}\nabla_{\vec{Q}})f_t(\vec{Q}, \vec{V}) = \int_{S_1^{d-1}} (f_t(\vec{Q}, \vec{V}') - f_t(\vec{Q}, \vec{V}))\sigma(\vec{V}', \vec{V}) d\vec{V}'.$$

Boltzmann-Grad limit for \mathcal{P} a lattice

Now let \mathcal{P} be a d-dimensional lattice, i.e. $\mathcal{P} = \mathbb{Z}\vec{b}_1 + \ldots + \mathbb{Z}\vec{b}_d$ for some $(\mathbb{R}$ -linear) basis $\vec{b}_1, \ldots, \vec{b}_d$ of \mathbb{R}^d .

In this case, F. Golse proved (2006): *The linear Boltzmann equation cannot hold in the limit.* (Using previous work by Bourgain - Golse - Wennberg, 1998.)

Boltzmann-Grad limit for $\mathcal P$ a lattice

Let Λ be a.c. prob. measure on $\mathsf{T}^1(\mathbb{R}^d) = \mathbb{R}^d \times \mathsf{S}_1^{d-1}$.

For (\vec{Q}_0, \vec{V}_0) random in $(T^1(\mathbb{R}^d), \Lambda)$, define:

(The picture is in macroscopic coordinates; $(\vec{Q}, \vec{V}) = (r^{d-1}\vec{q}, \vec{v})$)

Theorem (Marklof - S, 2011) For \mathcal{P} a lattice,

$$\langle (\vec{Q}_0, \vec{V}_0), (T_1, \vec{V}_1), \ldots, (T_n, \vec{V}_n) \rangle$$

$$\xrightarrow[(r\to 0)]{\text{d}} \text{r.v. with density } \Lambda'(\vec{Q}_0, \vec{V}_0) p(\vec{V}_0; T_1, \vec{V}_1) \prod_{j=2}^n p_0(\vec{V}_{j-2}, \vec{V}_{j-1}; T_j, \vec{V}_j).$$

ullet $\mathcal{P}=$ a *quasicrystal*, for example a "cut-and-project" set.

 \bullet $\mathcal{P}=$ a *quasicrystal*, for example a "cut-and-project" set.

E.g. take \mathcal{P} to the vertex set of a Penrose tiling.

ullet $\mathcal{P}=$ a *quasicrystal*, for example a "cut-and-project" set.

E.g. take \mathcal{P} to the vertex set of a Penrose tiling.

ullet $\mathcal{P}=$ a *quasicrystal*, for example a "cut-and-project" set.

E.g. take \mathcal{P} to the vertex set of a Penrose tiling.

- ullet $\mathcal{P}=$ a *quasicrystal*, for example a "cut-and-project" set.
- \mathcal{P} = a lattice with each point removed with probability p.
- $\mathcal{P} = a$ union of lattices.
- \bullet $\mathcal{P}=$ a lattice with each point perturbed slightly.

KEY ASSUMPTION ON \mathcal{P} (simplified form)

For any $\vec{q} \in \mathcal{P}$ and $\lambda \in P(S_1^{d-1})$, $\lambda \ll \operatorname{vol}_{S_1^{d-1}}$, for \vec{v} random in (S_1^{d-1}, λ) , we assume $\Pi_r(\vec{q}, \vec{v}) \stackrel{\mathsf{d}}{\longrightarrow} \Pi$ as $r \to 0$ (*), where the random point set Π is independent of \vec{q} , λ .

- (*) Convergence in distribution of random elements in N_s .
- In fact we need to assume that (*) holds *uniformly* over $\vec{q} \in \mathcal{P}$.

Total list of assumptions on \mathcal{P} (simplest & strongest form)

- $\mathcal{P} \subset \mathbb{R}^d$ is locally finite and has asymptotic density $c_{\mathcal{P}} > 0$ (viz., for every Jordan set $B \subset \mathbb{R}^d$, $\lim_{T\to\infty} T^{-d} \# (\mathcal{P} \cap TB) = c_{\mathcal{P}} \text{vol}(B)$.
- There exists a random element Π in N_s such that for any fixed $\lambda \in P(S_1^{d-1})$ with $\lambda \ll \operatorname{vol}_{\mathbb{S}_1^{d-1}}$, if \vec{v} is random in $(\mathbb{S}_1^{d-1}, \lambda)$ then

$$\Pi_r(\vec{q}, \vec{v}) \xrightarrow[r \to 0]{d} \Pi$$
, uniformly over all $\vec{q} \in \mathcal{P}$.

- The law of Π is invariant under $\begin{pmatrix} 1 & 0 \\ 0 & \mathrm{SO}(d-1) \end{pmatrix}$. $\forall \varepsilon > 0$: $\exists R > 0$: $\forall \vec{x} \in \mathbb{R}^d$: $\mathrm{Prob}(\Pi \cap (\mathcal{B}_R^d + \vec{x}) = \varnothing) < \varepsilon$. The image of Π under $(x_1, \ldots, x_d) \mapsto x_1$ is simple.
- " $T_1 < \infty$ a.s. for macroscopic initial conditions":

Set $C_{\xi} = (0, \xi) \times \mathcal{B}_1^{d-1}$. For any bounded Borel set $B \subset \mathbb{R}^d$,

$$\lim_{\xi\to\infty}\limsup_{r\to 0} \big[\mathrm{vol}\times\mathrm{vol}_{\mathsf{S}_1^{d-1}}\big]\big\{(\vec{Q},\vec{V})\in B\times\mathsf{S}_1^{d-1}\ :\ \Pi_r(r^{1-d}\vec{Q},\vec{V})\cap C_\xi=\varnothing\big\}=0.$$

Given (\vec{Q}_0, \vec{V}_0) , define $T_j \in \mathbb{R}_{>0}$, $\vec{V}_j \in S_1^{d-1}$:

(The picture is in macroscopic coordinates; $(\vec{Q}, \vec{V}) = (r^{d-1}\vec{q}, \vec{v})$)

Theorem 1 (Marklof & S, '16). Assume that the point set $\mathcal{P} \subset \mathbb{R}^d$ satisfies all the previous assumptions. Let Λ be a.c. probability measure on $\mathsf{T}^1(\mathbb{R}^d) = \mathbb{R}^d \times \mathsf{S}_1^{d-1}$. Let $n \geqslant 1$. Then for (\vec{Q}_0, \vec{V}_0) random in $(\mathsf{T}^1(\mathbb{R}^d), \Lambda)$,

$$\left\langle (\vec{Q}_0, \vec{V}_0), (T_1, \vec{V}_1), \ldots, (T_n, \vec{V}_n) \right\rangle$$

$$\xrightarrow[r\to 0]{d}$$
 r.v. with density $\Lambda'(\vec{Q}_0, \vec{V}_0) p(\vec{V}_0; T_1, \vec{V}_1) \prod_{j=2}^n p_0(\vec{V}_{j-2}, \vec{V}_{j-1}; T_j, \vec{V}_j)$,

where the collision kernels p and p_0 depend only on Π .

$$\mathsf{Prob}(\tau_1 \geqslant \xi r^{1-d}) = ?$$

$$\mathsf{Prob}(\tau_1 \geqslant \xi r^{1-d}) = \mathsf{Prob}(C_r(\vec{q}, \vec{v}, \xi) \cap \mathcal{P} = \emptyset)$$

$$Prob(\tau_1 \geqslant \xi r^{1-d}) = Prob(C_r(\vec{q}, \vec{v}, \xi) \cap \mathcal{P} = \emptyset)$$

=
$$Prob((C_r(\vec{q}, \vec{v}, \xi) - \vec{q})R_{\vec{v}}D_r \cap \Pi_r(\vec{q}, \vec{v}) = \emptyset)$$

$$Prob(\tau_1 \geqslant \xi r^{1-d}) = Prob(C_r(\vec{q}, \vec{v}, \xi) \cap \mathcal{P} = \emptyset)$$

=
$$Prob((C_r(\vec{q}, \vec{v}, \xi) - \vec{q})R_{\vec{v}}D_r \cap \Pi_r(\vec{q}, \vec{v}) = \emptyset)$$

$$Prob(\tau_{1} \geqslant \xi r^{1-d}) = Prob(C_{r}(\vec{q}, \vec{v}, \xi) \cap \mathcal{P} = \emptyset)$$

$$= Prob((C_{r}(\vec{q}, \vec{v}, \xi) - \vec{q})R_{\vec{v}}D_{r} \cap \Pi_{r}(\vec{q}, \vec{v}) = \emptyset)$$

$$\approx Prob(C_{\xi} \cap \Pi_{r}(\vec{q}, \vec{v}) = \emptyset)$$

$$C_{\xi} := (0, \xi) \times \mathcal{B}_{1}^{d-1}$$

$$\begin{aligned} \mathsf{Prob}(\tau_1 \geqslant \xi r^{1-d}) &= \mathsf{Prob}(C_r(\vec{q}, \vec{v}, \xi) \cap \mathcal{P} = \varnothing) \\ &= \mathsf{Prob}((C_r(\vec{q}, \vec{v}, \xi) - \vec{q}) R_{\vec{v}} D_r \cap \Pi_r(\vec{q}, \vec{v}) = \varnothing) \\ &\approx \mathsf{Prob}(C_\xi \cap \Pi_r(\vec{q}, \vec{v}) = \varnothing) & C_\xi := (0, \xi) \times \mathcal{B}_1^{d-1} \\ \hline \rightarrow \mathsf{Prob}(C_\xi \cap \Pi) = \varnothing & \text{as } r \to 0. \end{aligned}$$

First consider a particle starting at $\vec{q} \in \mathcal{P}$ (ignoring the scatterer at \vec{q}), with \vec{v} random in (S_1^{d-1}, λ) .

$$\operatorname{Prob}(\tau_{1} \geqslant \xi r^{1-d}) = \operatorname{Prob}(C_{r}(\vec{q}, \vec{v}, \xi) \cap \mathcal{P} = \varnothing)$$

$$= \operatorname{Prob}((C_{r}(\vec{q}, \vec{v}, \xi) - \vec{q})R_{\vec{v}}D_{r} \cap \Pi_{r}(\vec{q}, \vec{v}) = \varnothing)$$

$$\approx \operatorname{Prob}(C_{\xi} \cap \Pi_{r}(\vec{q}, \vec{v}) = \varnothing)$$

$$C_{\xi} := (0, \xi) \times \mathcal{B}_{1}^{d-1}$$

$$\rightarrow \operatorname{Prob}(C_{\xi} \cap \Pi) = \varnothing \quad \text{as } r \to 0.$$

The key input for this is
$$\Pi_r(\vec{q}, \vec{v}) \xrightarrow[r \to 0]{d} \Pi$$

One also uses the fact that the intensity measure of Π is \ll Lebesgue, i.e. $\mathbb{E}(\#\Pi \cap B) \leqslant c_{\mathcal{P}} \text{vol}(B)$ for any Borel $B \subset \mathbb{R}^d$.

We can even get convergence of the *joint* distribution of free path length $T_1 = r^{d-1}\tau_1$ and the (normalized) *impact parameter* $\vec{w_1}$:

Indeed, for
$$\vec{z}$$
 in $C_{\infty}=(0,\infty)\times\mathcal{B}_{1}^{d-1}$, set

$$\xi_r(\vec{z}) = \inf\{\xi > 0 : z \in \xi \vec{e}_1 + \mathcal{B}_r^d D_r\}$$

and define $F_r: N_s \to C_\infty \sqcup \{\text{undef}\}$ by:

$$F_r(Y) = (\xi_r(\vec{z}), -(0, z_2, \dots, z_d))$$

 $F_r(Y) = (\xi_r(\vec{z}), -(0, z_2, \dots, z_d))$ for the unique $\vec{z} \in C_\infty \cap Y$ which minimizes $\xi_r(\vec{z})$.

Then $\langle T_1, \vec{w_1} \rangle = F_r(\Pi_r(\vec{q}, \vec{v}))$ whenever $F_r(\Pi_r(\vec{q}, \vec{v})) \neq \text{undef!}$

Now: If $Y_n \to Y$ in N_s and $F_0(Y) \neq$ undef and $Y \cap \partial C_\infty = \emptyset$, and if $r_n \to 0$, then $F_{R_n}(Y_n) \to F_0(Y)$ in \mathbb{R}^d .

Also by our assumptions, $Prob(F_0(\Pi) \neq undef) = 1$.

Hence
$$\langle T_1, \vec{w}_1 \rangle = F_r(\Pi_r(\vec{q}, \vec{v})) \xrightarrow[r \to 0]{d} F_0(\Pi)$$
 as desired!

More general initial condition

Consider a point particle starting from $(\vec{q} + r\vec{\beta}(\vec{v}), \vec{v})$, where $\vec{\beta} : S_1^{d-1} \to S_1^{d-1}$ is a continuous function (subject to $(\vec{\beta}(\vec{v}) + \mathbb{R}^+ \vec{v}) \cap \mathcal{B}_1^d = \emptyset$).

Note
$$\Pi_r(\vec{q}, \vec{v}) - r\vec{\beta}(\vec{v})R_{\vec{v}}D_r \xrightarrow[r \to 0]{d} \Pi^{(\vec{\beta}, \lambda)} := \Pi - (\vec{\beta}(\vec{v})R_{\vec{v}})_{\perp}$$

with \vec{v} independent from Π .

Hence
$$\langle T_1, \vec{w_1} \rangle \xrightarrow[r \to 0]{d} F_0(\Pi^{(\vec{\beta}, \lambda)})$$

Getting the joint limit distribution of \vec{V}_0 , (T_1, \vec{V}_1) , (T_2, \vec{V}_2) – OUTLINE

From above, get the limit distribution of $\left| \langle \vec{V}_1, (T_2, \vec{V}_2) \rangle \right|$ as $r \to 0$, if \vec{V}_1 is picked at random according to a given $\lambda \in P(S_1^{d-1})$, and the particle starts at $\vec{q}_1 + r\vec{\beta}(\vec{V}_1)$, for given $\vec{q}_1 \in \mathcal{P}$ and $\vec{\beta} : S_1^{d-1} \to S_1^{d-1}$:

Decompose $S_1^{d-1} = \bigsqcup_{j=1}^N D_j$, with each D_j "nice" and of small diameter.

•
$$\vec{q}_1 \in \mathcal{P}$$
;

Decompose
$$S_1^{*} = \bigsqcup_{j=1}^{*} D_j$$
, with each D_j nice and of small diameter.
$$\begin{cases} \bullet \ \vec{q}_1 \in \mathcal{P}; \\ \bullet \ \vec{\beta} \ \text{in compact families, and} \end{cases}$$
 Make the limit result *uniform* over:
$$\begin{cases} \bullet \ \vec{q}_1 \in \mathcal{P}; \\ \bullet \ \vec{\lambda} \ \text{in compact families, and} \end{cases}$$
 $\bullet \ \lambda = \lambda' \cdot \text{vol}_{S_1^{d-1}|D_j} \ \text{for} \ j \in \{1, \dots, N\},$ $\lambda' \in \text{compact} \subset C(D_j)$

Getting the joint limit distribution of \vec{V}_0 , (T_1, \vec{V}_1) , (T_2, \vec{V}_2) – OUTLINE

After removing a set of \vec{V}_0 's of small λ -measure, the remaining \vec{V}_1 's emanate from "fully lighted D_i -sets", and the previous result can be applied!

Macroscopic initial condition $((\vec{Q}, \vec{V}) = (r^{d-1}\vec{q}, \vec{v}))$

Fix an a.c. prob. measure Λ on $\mathsf{T}^1(\mathbb{R}^d)=\mathbb{R}^d\times\mathsf{S}_1^{d-1}$.

Consider
$$\Pi_r(r^{1-d}\vec{Q}, \vec{V})$$
 for (\vec{Q}, \vec{V}) random in $\langle \mathsf{T}^1(\mathbb{R}^d), \Lambda \rangle$

Limit as $r \rightarrow 0$?

— In other words, for given $f \in C_b(N_s)$:

$$\lim_{r \to 0} \mathbb{E} f(\Pi_r(r^{1-d}\vec{Q}, \vec{V}))$$

$$= \lim_{r \to 0} r^{d(d-1)} \int_{S_1^{d-1}} \int_{\mathbb{R}^d} f(\Pi_r(\vec{q}, \vec{v})) \Lambda'(r^{d-1}\vec{q}, \vec{v}) d\vec{q} d\vec{v} = ???$$

(May assume $\Lambda' \in C_c(T^1(\mathbb{R}^d))$.)

Macroscopic initial condition. Given $f \in C_b(N_s)$, $\Lambda' \in C_c(T^1(\mathbb{R}^d))$:

$$\lim_{r \to 0} r^{d(d-1)} \int_{S_1^{d-1}} \int_{\mathbb{R}^d} f(\Pi_r(\vec{q}, \vec{v})) \Lambda'(r^{d-1}\vec{q}, \vec{v}) d\vec{q} d\vec{v} = ?$$

For fixed \vec{v} : Draw a "flat scatterer" $\vec{q}' + (\{0\} \times \mathcal{B}_r^{d-1}) R_{\vec{v}}$ at each $\vec{q}' \in \mathcal{P}$. To each $\vec{q} \in \mathbb{R}^d$, associate that $\vec{q}' \in \mathcal{P}$ whose scatterer is first hit by $\vec{q} + \mathbb{R}_{>0} \vec{v}$.

Then
$$(\vec{q}' - \vec{q})R_{\vec{v}}D_r = \vec{x}$$
 for some $\vec{x} \in C_{\infty}$; thus $\Pi_r(\vec{q}, \vec{v}) = \overline{\Pi}_r(\vec{q}', \vec{v}) + \vec{x}$,

where $\overline{\Pi}_r(\vec{q}', \vec{v}) := (\mathcal{P} - \vec{q}') R_{\vec{v}} D_r = \Pi_r(\vec{q}', \vec{v}) \cup \{\vec{0}\}.$

Macroscopic initial condition. Given $f \in C_b(N_s)$, $\Lambda' \in C_c(T^1(\mathbb{R}^d))$:

$$\lim_{r \to 0} r^{d(d-1)} \int_{S_1^{d-1}} \underbrace{\int_{\mathbb{R}^d} f(\Pi_r(\vec{q}, \vec{v})) \Lambda'(r^{d-1}\vec{q}, \vec{v}) d\vec{q}}_{(*)} d\vec{r} d\vec{v} = ?$$

For fixed \vec{v} : Contribution from one $\vec{q}' \in \mathcal{P}$ to (*):

$$\approx \int_{G(\vec{q}',\vec{v})} f(\overline{\Pi}_r(\vec{q}',\vec{v}) + \vec{x}) \Lambda'(r^{d-1}\vec{q}' - x_1\vec{v},\vec{v}) d\vec{x},$$

where $G(\vec{q}', \vec{v}) = \{\vec{x} \in C_{\infty} : (\Pi_r(\vec{q}', \vec{v}) + \vec{x}) \cap C_{x_1} = \emptyset\}.$

Macroscopic initial condition. Given $f \in C_b(N_s)$, $\Lambda' \in C_c(T^1(\mathbb{R}^d))$:

$$\lim_{r\to 0} r^{d(d-1)} \int_{\mathbb{S}_1^{d-1}} \underbrace{\int_{\mathbb{R}^d} f\left(\Pi_r(\vec{q}, \vec{v})\right) \Lambda'(r^{d-1}\vec{q}, \vec{v}) d\vec{q} d\vec{v}}_{(*)} = ?$$

For fixed \vec{v} : Contribution from one $\vec{q}' \in \mathcal{P}$ to (*):

$$\approx \int_{G(\vec{q}',\vec{v})} f(\overline{\Pi}_r(\vec{q}',\vec{v}) + \vec{x}) \Lambda'(r^{d-1}\vec{q}' - x_1\vec{v},\vec{v}) d\vec{x},$$

where $G(\vec{q}', \vec{v}) = \{ \vec{x} \in C_{\infty} : (\Pi_r(\vec{q}', \vec{v}) + \vec{x}) \cap C_{x_1} = \emptyset \}.$

Add over all $\vec{q}' \in \mathcal{P}!$

Full coverage

- by our assumption

"
$$T_1 < \infty$$
 a.s."!

Macroscopic initial condition

$$\cdots \implies \lim_{r\to 0} \mathbb{E} f(\Pi_r(r^{1-d}\vec{Q},\vec{V})) = c_{\mathcal{P}} \int_{(\vec{x},Y)\in\mathcal{G}} f(Y+\vec{x}) d\mu_0(Y) d\vec{x},$$

where $\mathcal{G}:=\{(\vec{x},Y): (Y+\vec{x})\cap C_{x_1}=\varnothing\}\subset C_\infty\times N_s$,

and $\mu_0 \in P(N_s)$ is the distribution of $\overline{\Pi}$.

Note in particular: $\nu(\mathcal{G}) = 1$, where $\nu = c_{\mathcal{P}}m \times \mu_0$ (m = Lebesgue).

ANSWER: Let $\widetilde{\mu} \in P(N_s)$ be the pushforward of $\nu_{|\mathcal{G}|}$ by $(\vec{x}, Y) \mapsto Y + \vec{x}$, and let $\widetilde{\Pi}$ be a random element in N_s with law $\widetilde{\mu}$. Then $\Pi_r(r^{1-d}\vec{Q}, \vec{V}) \xrightarrow[r \to 0]{d} \widetilde{\Pi}$

Macroscopic initial condition

ANSWER: Let $\widetilde{\mu} \in P(N_s)$ be the pushforward of $\nu_{|\mathcal{G}|}$ by $(\vec{x}, Y) \mapsto Y + \vec{x}$, and let $\widetilde{\Pi}$ be a random element in N_s with law $\widetilde{\mu}$. Then $\Pi_r(r^{1-d}\vec{Q}, \vec{V}) \xrightarrow[r \to 0]{d} \widetilde{\Pi}$

Properties of $\widetilde{\square}$:

- The law of $\widetilde{\Pi}$ (viz., $\widetilde{\mu}$) is invariant under *translations*, and also under $\{D_r\}_{r>0}$ and $\begin{pmatrix} 1 & 0 \\ 0 & \mathrm{SO}(d-1) \end{pmatrix}$.
- $\widetilde{\Pi}$ has intensity $c_{\mathcal{P}}$.
- $\operatorname{Prob}(\widetilde{\Pi} \cap \mathcal{B}_R^d = \varnothing) \xrightarrow[R \to \infty]{} 0.$

Transition kernel for the limiting process $(T_1, \vec{V}_1), (T_2, \vec{V}_2), \ldots$

For $\vec{x} \in \{0\} \times \mathcal{B}_1^{d-1}$, let the distr of $F_0(\Pi - \vec{x})$ be $k_0(\vec{x}, \xi, -\vec{y}) d\xi d\vec{y} \in P(C_\infty)$.

Thus: $\operatorname{Prob}(F_0(\Pi - \vec{x}) \in B) = \int_B k_0(\vec{x}; \xi, -\vec{y}) d\xi d\vec{y}, \quad \forall \vec{x} \in \mathcal{B}_1^{d-1}, B \subset C_\infty.$

Then the transition kernel for the limiting process $(T_1, \vec{V}_1), (T_2, \vec{V}_2), \ldots$ is:

$$p_0(\vec{V}_-, \vec{V}; \xi, \vec{V}_+) = \sigma(\vec{V}, \vec{V}_+) k_0 \left(\vec{b} [\vec{V}_-, \vec{V}] R_{\vec{V}}; \xi, \vec{s} [\vec{V}, \vec{V}_+] R_{\vec{V}} \right)$$

More about $k_0(\vec{x}; \xi, \vec{y})$

Assume Π has constant intensity $c_{\mathcal{P}}$. Then $k_0(\vec{x}; \xi, \vec{y})$ can be expressed in terms of the **Palm distributions** of Π ; $\nu : \mathbb{R}^d \times \mathcal{N} \to [0, 1]$.

 $(\mathcal{N} = \text{the Borel } \sigma\text{-field of } N_s. \text{ Intuitively: } \nu(\vec{x}, A) = \text{``Prob}(\Pi \in A \mid \vec{x} \in \Pi)\text{''})$

$$k_0(\vec{x}; \xi, \vec{y}) = c_{\mathcal{P}} \cdot \nu \Big((\xi, \vec{x} - \vec{y}), \{ Y \in N_s : (Y - \vec{x}) \cap C_{\xi} = \emptyset \} \Big).$$

Similarly: Transition kernel for macroscopic initial condition

Let the distribution of $F_0(\widetilde{\Pi})$ be $k(\xi, -\vec{y}) d\xi d\vec{y} \in P(C_{\infty})$.

Then the transition kernel for macroscopic initial conditions is:

$$p(\vec{V}; \xi, \vec{V}_+) = \sigma(\vec{V}, \vec{V}_+) \ k\left(\xi, \vec{s}[\vec{V}, \vec{V}_+]R_{\vec{V}}\right)$$

In fact,
$$k(\xi, \vec{y}) = c_{\mathcal{P}} \int_{\xi}^{\infty} \int_{\mathcal{B}_{1}^{d-1}} k_{0}(\vec{x}; \xi', \vec{y}) d\vec{x} d\xi'.$$

Some more relations for k_0 , k:

- $k(\xi, \vec{y}) = c_{\mathcal{P}} \int_{\xi}^{\infty} \int_{\mathcal{B}_{1}^{d-1}} k_{0}(\vec{x}; \xi', \vec{y}) d\vec{x} d\xi'.$
- Mean free path length: $\frac{1}{\overline{\sigma}} \int_{\mathcal{B}_1^{d-1}} \int_0^\infty \int_{\mathcal{B}_1^{d-1}} \xi k_0(\vec{x}; \xi, \vec{y}) \, d\vec{x} \, d\xi \, d\vec{y} = \frac{1}{\overline{\sigma} c_{\mathcal{P}}}.$
- $k_0(\vec{x}R; \xi, \vec{y}R) = k_0(\vec{x}; \xi, \vec{y}) \text{ for } R \in \begin{pmatrix} 1 & 0 \\ 0 & SO(d-1) \end{pmatrix}.$
- $k_0(\vec{y}; \xi, \vec{x}) = k_0(\vec{x}R_-; \xi, \vec{y}R_-)$ for $R_- \in \begin{pmatrix} 1 & 0 \\ 0 & O(d-1) \end{pmatrix}$ with $\det R_- = -1$.

Example: " \mathcal{P} = Poisson"

Let \mathbb{P} = the Poisson probability measure on N_s with parameter c > 0.

Then for \mathbb{P} -a.a. $\mathcal{P} \in \mathcal{N}_s$, the list of assumptions holds!

(And the limiting random point set Π has law \mathbb{P} .)

 $\begin{cases} \textit{Weaker form of the key assumption:} \\ \textit{There exists a subset } \mathcal{E} \subset \mathcal{P} \textit{ of vanishing density such that for any fixed } T \geqslant 1 \\ \textit{and } \lambda \in P(S_1^{d-1}) \textit{ with } \lambda \ll \textit{vol}_{S_1^{d-1}}, \textit{ if } \vec{v} \textit{ is random in } (S_1^{d-1}, \lambda), \textit{ then} \\ \hline \Pi_r(\vec{q}, \vec{v}) \xrightarrow[r \to 0]{d} \Pi, \textit{ uniformly over all } \vec{q} \in \mathcal{P}_T(r) := \mathcal{P} \cap \mathcal{B}^d(Tr^{1-d}) \backslash \mathcal{E}. \end{cases}$

$$\Pi_r(\vec{q}, \vec{v}) \xrightarrow[r \to 0]{d} \Pi$$
, uniformly over all $\vec{q} \in \mathcal{P}_T(r) := \mathcal{P} \cap \mathcal{B}^d(Tr^{1-d}) \setminus \mathcal{E}$.

We choose:

$$\mathcal{E} = \left\{ \vec{q} \in \mathcal{P} : d_{\mathcal{P}}(\vec{q}) \leqslant \|\vec{q}\|^{-\alpha/(d-1)} \right\}$$

where $d_{\mathcal{P}}(\vec{q}) = \min\{\|\vec{p} - \vec{q}\| : \vec{p} \in \mathcal{P} \setminus \{\vec{q}\}\} \text{ and } 0 < \alpha < 1 \text{ (fixed)}.$

Example: " $\mathcal{P} = Poisson$ "

For
$$\lambda = \omega(S)^{-1}\omega_{|S|}$$
 $(S \text{ nice } \subset S_1^{d-1}; \ \omega = \text{vol}_{S_1^{d-1}})$, $A = \{Y \in N_s : \#(Y \cap B) \geqslant m\}$ $(m \in \mathbb{Z}^+, \ B \subset \mathbb{R}^d, \text{ nice and bounded})$, and $\vec{q} \in r^{1+\beta}\mathbb{Z}^d \cap \mathcal{B}_{r^{1-d-\beta}}^d$, we want to bound:

$$\Delta = \lambda \left(\left\{ \vec{v} \in S_1^{d-1} : \widehat{\Pi}_r(\vec{q}, \vec{v}) \in A \right\} \right) - \mathbb{P}(A)$$

$$\widehat{\Pi}_r(\vec{q}, \vec{v}) := \left((\mathcal{P} \setminus (\vec{q} + \mathcal{B}_{r^{\alpha}/2}^d)) - \vec{q} \right) R_{\vec{v}} D_r$$

Decompose $S = \operatorname{supp}(\lambda) = \bigsqcup_{\ell=1}^n S_\ell \sqcup [\operatorname{small}]$, where $\operatorname{diam}(S_\ell) \ll r^{\beta_1}$ and $\operatorname{dist}(S_\ell, S_{\ell'}) \gg r^{\beta_2} \; \forall \ell \neq \ell'$. $(0 < \beta_1 < \beta_2 < 1 - \alpha)$.

Write $\Delta = \sum_{\ell=1}^{n} [\text{contr. from } S_{\ell}] + [\text{small}].$

Bernstein inequality $\Rightarrow \boxed{\mathbb{P}(|\Delta| \leqslant r^{\delta}) \geqslant 1 - \exp(r^{-\delta})}$ (some fixed $\delta > 0$).

Use Borel-Cantelli to conclude! □

Example: " $\mathcal{P} = Poisson$ "

Recall: The distribution of $F_0(\Pi - \vec{x})$ is $k_0(\vec{x}, \xi, -\vec{y}) d\xi d\vec{y} \in P(C_\infty)$.

Thus we get $k_0(\vec{x}, \xi, \vec{y}) = ce^{-c\overline{\sigma}\xi}$.

Also $k(\xi, \vec{y}) = ce^{-c\overline{\sigma}\xi}$.

Hence we get back the linear Boltzmann equation:

$$(\partial_t + \vec{V}\nabla_{\vec{Q}})f_t(\vec{Q}, \vec{V}) = c \int_{S_1^{d-1}} (f_t(\vec{Q}, \vec{V}') - f_t(\vec{Q}, \vec{V}))\sigma(\vec{V}', \vec{V}) d\vec{V}'.$$

Example: P = a lattice

Assume \mathcal{P} has covolume one for simplicity.

Then the list of assumptions holds, with " Π = random lattice $\setminus \{\vec{0}\}$ ":

$$\Pi = \mathbb{Z}^d g \setminus \{\vec{0}\}$$
 for Γg random in $(\Gamma \setminus G, \mu)$ with $G = \mathrm{SL}_d(\mathbb{R})$, $\Gamma = \mathrm{SL}_d(\mathbb{Z})$,

 $\mu =$ the invariant probability measure.

Palm distribution $\nu : \mathbb{R}^d \times \mathcal{B} \to [0, 1]$:

For $\vec{z} \neq \vec{0}$; $\nu(\vec{z}, B) = \sum_{m=1}^{\infty} \nu_{m, \vec{z}}(B)$ where $\nu_{m, \vec{z}}$ is the invariant measure on

$$X_{m,\vec{z}} = \{ \Gamma g \in \Gamma \setminus G : \vec{z} \in m\vec{e}_1 \Gamma g \} \text{ with } \nu_{m,\vec{z}}(X_{m,\vec{z}}) = m^{-d} \zeta(d)^{-1}.$$

Thus:
$$k(\vec{x}, \xi, \vec{y}) = \nu_{1,(\xi, \vec{x} - \vec{y})}(\{ \Gamma g \in \Gamma \setminus G : (\mathbb{Z}^d g - \vec{x}) \cap C_{\xi} = \emptyset \}).$$

Example requiring marking: $\mathcal{P} = \mathbb{Z}^d \cup (2\mathbb{Z}^d + (\sqrt{2}, \frac{1}{2}))$

The key assumption, allowing marking

Assume there is a compact metric space Σ , a map $\sigma: \mathcal{P} \to \Sigma$, and a continuous map $\Sigma \to P(N_s)$, $\sigma \mapsto \mu_{\sigma}$.

Let Π_{σ} be a random point set with law μ_{σ} .

We assume that for any fixed $T \geqslant 1$ and $\lambda \in P(S_1^{d-1})$ with $\lambda \ll \operatorname{vol}_{S_1^{d-1}}$, if \vec{v} is random in (S_1^{d-1}, λ) , then $\Pi_r(\vec{q}, \vec{v}) \xrightarrow[r \to 0]{d} \Pi_{\sigma(\vec{q})}$, uniformly over all $\vec{q} \in \mathcal{P}_T(r)$.

Note here:
$$N_s = N_s(\mathbb{R}^d \times \Sigma)$$
, and
$$\Pi_r(\vec{q}, \vec{v}) := \left\{ \vec{p} \in \mathcal{P} \backslash \{\vec{q}\} : ((\vec{p} - \vec{q})R_{\vec{v}}D_r, \sigma(\vec{p})) \right\} \subset \mathbb{R}^d \times \Sigma.$$

Example: P = a cut-and-project set

Fix a lattice L in $\mathbb{R}^n = \mathbb{R}^d \times \mathbb{R}^m$. n = d + m, $m \ge 1$.

Fix a (nice) window $W \subset \mathbb{R}^m$.

$$\mathcal{P} = \mathcal{P}(W, L) = \left\{ \vec{q} \in \mathbb{R}^d : \left[\exists \vec{w} \in W \text{ s.t. } (\vec{q}, \vec{w}) \in L \right] \right\}$$

For each $\vec{q} \in \mathcal{P}$, we assume there is a *unique* $\vec{w} = \vec{w}(\vec{q}) \in W$ giving $(\vec{q}, \vec{w}) \in L$.

Then, the list of assumptions holds, with $\Sigma = \overline{W}$.

Let
$$G = SL_n(\mathbb{R})$$
, $\Gamma = SL_n(\mathbb{Z})$. Write $L = \mathbb{Z}^n g$. Consider $\Gamma \setminus \Gamma g \begin{pmatrix} SL_d(\mathbb{R}) \\ I_m \end{pmatrix}$.

Ratner's orbit closure theorem $\Rightarrow \exists H < G \text{ (connected, closed, } \Gamma \cap H \text{ lattice)},$

with
$$\Gamma \setminus \Gamma g \begin{pmatrix} \operatorname{SL}_d(\mathbb{R}) \\ I_m \end{pmatrix} = \Gamma \setminus \Gamma H g$$
. Set $\mu = \operatorname{inv}$ prob measure on $\Gamma \setminus \Gamma H$.

Now
$$| \Pi_{\vec{w}} = \mathcal{P}(W - \vec{w}, \mathbb{Z}^n hg) \setminus \{\vec{0}\}$$
, for Γh random in $(\Gamma \setminus \Gamma H, \mu)$.

Some questions

- Which random point sets Π can occur?
- Invariance of Π ? All $SL_d(\mathbb{R})$?
- Characterize all (A) $\mathrm{SL}_d(\mathbb{R})$ -invariant point processes?

END

$$= \lim_{r \to 0} r^{d(d-1)} \int_{S_1^{d-1}} \sum_{\vec{q}' \in \mathcal{P}} \int_{G(\vec{q}', \vec{v})} f(\overline{\Pi}_r(\vec{q}', \vec{v}) + \vec{x}) \Lambda'(r^{d-1}\vec{q}' - x_1 \vec{v}, \vec{v}) d\vec{x} d\vec{v}$$

$$= \lim_{r \to 0} r^{d(d-1)} \int_{S_1^{d-1}} \sum_{\vec{q}' \in \mathcal{P}} \int_{G(\vec{q}', \vec{v})} f(\overline{\Pi}_r(\vec{q}', \vec{v}) + \vec{x}) \Lambda'(r^{d-1}\vec{q}' - x_1 \vec{v}, \vec{v}) d\vec{x} d\vec{v}$$

$$= \lim_{r \to 0} r^{d(d-1)} \sum_{\vec{q}' \in \mathcal{P}} \int_{C_{\infty}} \int_{\mathbb{S}_{1}^{d-1}} I\left(\left(\overline{\Pi}_{r}(\vec{q}', \vec{v}) + \vec{x}\right) \cap C_{x_{1}} = \varnothing\right) f\left(\Pi_{r}(\vec{q}', \vec{v}) + \vec{x}\right) \Lambda'(\cdots) d\vec{v} d\vec{x}$$

$$= \lim_{r \to 0} r^{d(d-1)} \int_{S_1^{d-1}} \sum_{\vec{q'} \in \mathcal{P}} \int_{G(\vec{q'}, \vec{v})} f(\overline{\Pi}_r(\vec{q'}, \vec{v}) + \vec{x}) \Lambda'(r^{d-1}\vec{q'} - x_1 \vec{v}, \vec{v}) d\vec{x} d\vec{v}$$

$$= \lim_{r \to 0} r^{d(d-1)} \sum_{\vec{q}' \in \mathcal{P}} \int_{C_{\infty}} \int_{S_1^{d-1}} I\left(\left(\overline{\Pi}_r(\vec{q}', \vec{v}) + \vec{x}\right) \cap C_{x_1} = \varnothing\right) f\left(\Pi_r(\vec{q}', \vec{v}) + \vec{x}\right) \Lambda'(\cdots) d\vec{v} d\vec{x}$$

Here
$$\Pi_r(\vec{q}', \vec{v}) \xrightarrow[r \to 0]{d} \Pi$$
; hence $\overline{\Pi}_r(\vec{q}', \vec{v}) + \vec{x} \xrightarrow[r \to 0]{d} \overline{\Pi} + \vec{x}$,

where
$$\overline{\Pi} := \Pi \cup \{\vec{0}\}$$

$$= \lim_{r \to 0} r^{d(d-1)} \int_{S_1^{d-1}} \sum_{\vec{q}' \in \mathcal{P}} \int_{G(\vec{q}', \vec{v})} f(\overline{\Pi}_r(\vec{q}', \vec{v}) + \vec{x}) \Lambda'(r^{d-1}\vec{q}' - x_1 \vec{v}, \vec{v}) d\vec{x} d\vec{v}$$

$$= \lim_{r \to 0} r^{d(d-1)} \sum_{\vec{q}' \in \mathcal{P}} \int_{C_{\infty}} \int_{S_1^{d-1}} I((\overline{\Pi}_r(\vec{q}', \vec{v}) + \vec{x}) \cap C_{x_1} = \varnothing) f(\Pi_r(\vec{q}', \vec{v}) + \vec{x}) \Lambda'(\cdots) d\vec{v} d\vec{x}$$

$$= \lim_{r \to 0} r^{d(d-1)} \sum_{\vec{q}' \in \mathcal{P}} \int_{C_{\infty}} \left(\int_{S_1^{d-1}} \Lambda'(r^{d-1}\vec{q}' - x_1 \vec{v}, \vec{v}) \, d\vec{v} \right) \times \mathbb{E} \left(I((\overline{\Pi} + \vec{x}) \cap C_{x_1} = \emptyset) f(\overline{\Pi} + \vec{x}) \right) d\vec{x}$$

$$= \lim_{r \to 0} r^{d(d-1)} \int_{S_1^{d-1}} \sum_{\vec{q'} \in \mathcal{P}} \int_{G(\vec{q'}, \vec{v})} f(\overline{\Pi}_r(\vec{q'}, \vec{v}) + \vec{x}) \Lambda'(r^{d-1}\vec{q'} - x_1 \vec{v}, \vec{v}) d\vec{x} d\vec{v}$$

$$= \lim_{r \to 0} r^{d(d-1)} \sum_{\vec{q}' \in \mathcal{P}} \int_{C_{\infty}} \int_{S_1^{d-1}} I((\overline{\Pi}_r(\vec{q}', \vec{v}) + \vec{x}) \cap C_{x_1} = \varnothing) f(\Pi_r(\vec{q}', \vec{v}) + \vec{x}) \Lambda'(\cdots) d\vec{v} d\vec{x}$$

$$= \lim_{r \to 0} r^{d(d-1)} \sum_{\vec{q}' \in \mathcal{P}} \int_{C_{\infty}} \left(\int_{S_1^{d-1}} \Lambda'(r^{d-1}\vec{q}' - x_1 \vec{v}, \vec{v}) \, d\vec{v} \right) \\ \times \mathbb{E} \left(I((\overline{\Pi} + \vec{x}) \cap C_{x_1} = \emptyset) f(\overline{\Pi} + \vec{x}) \right) d\vec{x}$$

 \mathcal{P} has asymptotic density $c_{\mathcal{P}}!$

$$= \lim_{r \to 0} r^{d(d-1)} \int_{S_1^{d-1}} \sum_{\vec{q}' \in \mathcal{P}} \int_{G(\vec{q}', \vec{v})} f(\overline{\Pi}_r(\vec{q}', \vec{v}) + \vec{x}) \Lambda'(r^{d-1}\vec{q}' - x_1 \vec{v}, \vec{v}) d\vec{x} d\vec{v}$$

$$= \lim_{r \to 0} r^{d(d-1)} \sum_{\vec{q}' \in \mathcal{P}} \int_{C_{\infty}} \int_{S_1^{d-1}} I\left(\left(\overline{\Pi}_r(\vec{q}', \vec{v}) + \vec{x}\right) \cap C_{x_1} = \varnothing\right) f\left(\Pi_r(\vec{q}', \vec{v}) + \vec{x}\right) \wedge'(\cdots) d\vec{v} d\vec{x}$$

$$= \lim_{r \to 0} r^{d(d-1)} \sum_{\vec{q}' \in \mathcal{P}} \int_{C_{\infty}} \left(\int_{S_1^{d-1}} \Lambda'(r^{d-1}\vec{q}' - x_1 \vec{v}, \vec{v}) \, d\vec{v} \right)$$

$$\times \mathbb{E}\Big(I((\overline{\Pi}+\vec{x})\cap C_{x_1}=\varnothing)f(\overline{\Pi}+\vec{x})\Big)\,d\vec{x}$$

$$= \int_{C_{\infty}} \left(c_{\mathcal{P}} \underbrace{\int_{S_{1}^{d-1}} \int_{\mathbb{R}^{d}} \Lambda'(\vec{y} - x_{1}\vec{v}, \vec{v}) \, d\vec{y} \, d\vec{v}}_{=1} \right) \times \mathbb{E}\left(\cdots \right) d\vec{x}$$

$$= c_{\mathcal{P}} \int_{C_{\infty}} \mathbb{E} \Big(I((\overline{\Pi} + \vec{x}) \cap C_{x_1} = \emptyset) f(\overline{\Pi} + \vec{x}) \Big) d\vec{x}$$