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The Lorentz gas
(Hendrik Lorentz, 1905, “The motion of electrons in metallic bodies™)
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The Lorentz gas
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Fix P c RY.

Place a ball of radius r > 0 around each point in P.

Non-interacting point particles moving in K, := R? — (P + BY).

Boltzmann-Grad limit:

Let r — 0 in macroscopic coordinates (Q, V) = (rd-
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Boltzmann-Grad limit for P “Poisson”
Let A be a.c. prob. measure on TH(RY) = R x S971.
For (Qo, Vi) random in (TY(RY), A), define:

v,
V) = (r"1q.v))

(The picture is in macroscopic coordinates; (Q,

Theorem (Boldrighini-Bunimovich-Sinai, 1983) For P a fixed realization of
a Poisson process in RY of intensity 1, one has almost surely:

—

{(Qo, ), (T1,VA), ..., (T, Vi)

S

Sl

— 9, rv. with density /\’(60, %) ( (V)

\7 —0T>
(r—0) b J>

j=1

(o(V', V) = differential cross section of a scatterer; & = vol(B3971))




Vi Vs
(The picture is in macroscopic coordinates; (Q, V) = (r?-1g, v))

Theorem (Boldrighini-Bunimovich-Sinai, 1983) For P a fixed realization of
a Poisson process in RY of intensity 1, one has almost surely:

S

ﬁ) r.v. with density /\’(60, \70) (UOZ—L \_/DejTj)'
r— J=1

Hence In the Boltzmann-grad limit, the evolution of an initial particle density
foe LY(THRY)  (fy = 0) is governed by the linear Boltzmann equation,

(0 + VV5)R(Q,V) = J (R(Q, V") = R(Q,V))o(V',V)adV"

d—1
S1




Boltzmann-Grad limit for P a lattice

Now let P be a d-dimensional lattice, 1.e. P = ZBl — ZBd for some
(R-linear) basis by, . .., by of RY.

ol
!

In this case, F. Golse proved (2006): The linear Boltzmann equation cannot
hold in the limit. (Using previous work by Bourgain - Golse - Wennberg, 1998.)
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Boltzmann-Grad limit for P a lattice
Let A be a.c. prob. measure on TH(RY) = R? x S971.

For (Qo, V5) random in (T*(RY), A), define:

Theorem (Marklof - S, 2011) For P a lattice,

—

(R0 %), (T1, ), . ., (To Vi)

— 94, rv. with density /\'(Cjo. \70)[)(\70: T, \71> 1

(r—0)
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Other choices of P?
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Other choices of P?

e P = a quasicrystal, for example a “cut-and-project” set.

e P = a lattice with each point removed with probability p.

e P = a union of lattices.

e P = a lattice with each point perturbed slightly.
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KEY ASSUMPTION ON P (simplified form)

for v random in (S{7%, \), we assume

Forany Ge P and A e P(S971), X « VOlcg-1,
1

I_Ir(c7,\7)i>l_lasr—>0

where the random point set Il is independent of g, .

(*).

(*) Convergence in distribution of random elements in N.

— In fact we need to assume that (*) holds uniformly over G € P.
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Total list of assumptions on P (simplest & strongest form)

e P < R%is locally finite and has asymptotic density cp > 0 (viz., for every
Jordan set B < RY, lim7_,. T 94#(P n TB) = cpvol(B)).

e There exists a random element I in N, such that for any fixed A € P(S¢™1)
with A « VOlSclf—l, if 7 is random in (S¢~%, ) then

N,(q, V) %o) M, uniformly over all e P.

-

o . 1 0
e [he law of Il Is invariant under (O SO(d — 1))

) e Ve > 0: IR > 0: VX € R?: Prob(Mn(B%+X) = &) < €.

e The image of 1 under (x, ..., Xq) — X1 Is simple.

e "J1 < o0 a.s. for macroscopic initial conditions” :
Set C¢ = (0,€) x B9, For any bounded Borel set B < R,

lim lim sup|vol x VOlS(l:/—l]{(é, V)e BxSI™: M(rr9Q,V) n Ce = i} = 0.

-0 r0
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Given (@o,%) define T; € R, \/ Sd L.

v,
V) = (r1q.v))

(The picture is in macroscopic coordinates; (@

Theorem 1 (Marklof & S, '16). Assume that the point set P < RY
satisfies all the previous assumptions. Let A be a.c. probability measure on
THRY) = R? x S Let n > 1. Then for (Qo, V4) random in (T*(R9), A),

<
~
51

4, v, with density A\ (Qo Vo) (\70; T, \71) Hjnzz Po(\Z_z, -

r—0

where the collision kernels p and py depend only on 1.
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Outline of proof of Theorem 1

First consider a particle starting at g € P (ignoring the scatterer at @), with vV
random in (S971, ).

Prob(1y = ért79) =7

2r 1@ O ¢
@ O
O O
O 0 o
@
@ O
O O
O
O O
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Outline of proof of Theorem 1

First consider a particle starting at g € P (ignoring the scatterer at @), with Vv
random in (S971, ).

Prob(ry = £r'=¢) = Prob(C(q, V. §) n P = &)
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First consider a particle starting at g € P (ignoring the scatterer at @), with Vv
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Outline of proof of Theorem 1

First consider a particle starting at g € P (ignoring the scatterer at @), with Vv
random in (S971, ).

Prob(1; > £r'79) = Prob(C (_) V.&) P =)

The key input for this is | ,(q, V) — Tl

One also uses the fact that the intensity measure of I'l is « Lebesgue,
i.e. E(#MN n B) < cpvol(B) for any Borel B < R¢.

27



Outline of proof of Theorem 1

We can even get convergence of the joint distribution of free path length
T1 = r? 17 and the (normalized) impact parameter w:

Def: W, = iRy € {0} x B!

<l
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Outline of proof of Theorem 1

Indeed, for Zin C,, = (0,00) x B!, set
¢(2)=inf{¢ >0 : ze & + BID,}
and define F, : Ny — C, u {undef} by:

F(Y)=(&(2),—(0, 2, ..., Z4)) for the unique Z € C,, n'Y which
minimizes &,(Z).

&r(2)

(Z)
A

1 é
Y § S X1

Then (T1, wy) = F,(1,(gG, V)) whenever F,(,(q, V)) # undef!
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Outline of proof of Theorem 1

Now: If Y, — Y in Ns and Fo(Y) # undef and Y n dC, = &, and if r, — 0,
then Fg, (Y,) — Fo(Y) in RY.

Also by our assumptions, Prob(Fq(IT) # undef) = 1.

Hence | (T1, wy) = F,(,(qJ, V)) LN Fo(IT) | as desired!

r—0
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More general initial condition

Consider a point particle starting fro
Is a continuous function (subject to

Note TM,.(g, V) — rB(V)RyD,

Hence

(G
(v

—

—

q+ rB(v)

vV

(T, Wr) %’ Fo(N©2)

— []
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), V), where 8 : 971 — S9!
R*V) n B = ).

M= (BV)R)L,

with Vv independent from [1.



Getting the joint limit distribution of V}, (T1,V4), (T»,V4) — OUTLINE

From above, get the limit distribution of

Vi, (Ta Vb))

as r — 0,

if /i is picked at random according to a given X € P(S91), and the particle
starts at g; + rﬁ(\Z) for given q; € P and E: S{’_l > S‘f—l:

Decompose S{ ! = |_|J’-V:1DJ-, with each D; "nice” and of small diameter.

Make the limit result uniform over: <

(o G, € P;

s{1D;

e (3 in compact families, and

e A =\-vol forje {1,..., N},

M\ e compact < C(D))



Getting the joint limit distribution of V}, (71, V), (T»,V4) — OUTLINE

e

/D/3D2 Dl p
|

After removing a set of Vi's of small A-measure, the remaining \i's emanate
from “fully lighted Dj-sets”, and the previous result can be applied!



Macroscopic initial condition ((Q,V) = (r?-1§, v))

Fix an a.c. prob. measure A on TH(R9) = R? x S¢71.

Consider

N,(r'=4Q, V) for (Q, V) random in (T(R), A)

Limit as r — 07

— In other words, for given f € Cp(Ns):

lim
r—0

Ef(M,(r'=9Q, V))

— lim rd(d_l)f J F(N(q, 7)) N(r'=1q, v) dgdv =277
s¢=t Jrd

r—0

(May assume A € C.(TH(RY)).)
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Macroscopic initial condition.  Given f € C,(N), ' € C.(TH(RY)):

ymor (d=1) Jd Jd (G V))N(re g, v)dgdv =7
- S R

For fixed V: Draw a “flat scatterer” ¢’ + ({0} x BY"1)R; at each g’ € P. To
each e RY, associate that g’ € P whose scatterer is first hit by §+ R-oV.

Then (" — cT)RVD =X for some X € C; thus




Macroscopic initial condition.

Given f € Cyp(Ns), N e Co(THRY)):

lim r9(@-1)
r—0 Sd 1 Rd

C_f \7 )/\/(rd—l

~N"

)

/N

For fixed v: Contribution from one g’ € P to (*):

N f f(ﬁr(q
G(q'.v)

where G(q', V) = {Xe Cy, : (M(q",

V) + )N (r?7tq" — xq v, V) dX,

V) +X)nCy = T},

\ )
X g’
A \
. 7 — Ry
. (7" —)RvD:
b *




Macroscopic initial condition.  Given f € C,(N), ' € C.(TH(RY)):

ymor dlfdlfd (G V)N g, v)dg dv =7
- S R

(+)

For fixed v: Contribution from one g’ € P to (*):

Add over all g’ € P!

Full coverage
( — by our assumption )

T <ooas!
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Macroscopic initial condition

. — lim Ef(N(r*9Q,V)) = CPJ f(Y 4+ X) duo(Y) dX,
(X,Y)eg

r—0

where G :={(X,Y) : (Y +X)nCy =T} < Cypy x Ns,
and o € P(Ns) is the distribution of TT.

Note in particular: v(G) =1, where v = cpm x ug (m = Lebesgue).

ANSWER: Let 11 € P(N;) be the pushforward of vg by (X,Y) — Y + X, and

let T1 be a random element in N with law . Then| M,(r*9Q, V) Lo) 1

~

"M=T1+x": .




Macroscopic initial condition

ANSWER: Let i1 € P(N;) be the pushforward of vg by (X,Y) — Y + X, and

let T1 be a random element in Ns with law f&. Then I_Ir(rl_d@, \7) Lo) M

Properties of r:

e The law of I (viz., @) is invariant under translations, and also under {D,},~q
1 0
and (o SO(d — 1))'

e 1 has Intensity cp.

e Prob(M n BY = &) —— 0.

R—w
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Transition kernel for the limiting process (71, V%), (T, V5), . ..
For X € {0} x BI71, let the distr of Fy(I1—X) be ko(X, &, —y) d€ dy € P(C.,).

Thus: Prob(Fo(M—X) € B) = {5 ko(X: €, —y)dédy, VXeB{ ', BcC,.

Then the transition kernel for the limiting process (T, V4), (T2, V4), . .. is:
po(V V€)= o(V, \7+)/<O(E[\7_, VIRy: €. 5[V, \7+]R\7>

<!
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More about ky(X; €&, V)

Assume [1 has constant intensity cp. Then ky(X; &, ) can be expressed in
terms of the Palm distributions of [1; v :R? x A/ — [0, 1].

(N = the Borel o-field of Ns. Intuitively: v(X, A) = “Prob(lMe A|Xell)")

k(X2 €, 7) = cp-u<(g,z—y),{ve Nyt (Y - %) Ce = @}).

41



Similarly: Transition kernel for macroscopic initial condition
Let the distribution of Fo(I1) be k(¢, —y) d€ dy € P(C.,).

Then the transition kernel for macroscopic initial conditions Is:

p(V:€ V) =a(V,V.) k(g SV, \7+]Rv>

<
/

Ol

-

In fact, k(&,V) —CPJ J y)dx d€§'.
Bd 1
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Some more relations for kj, k:

e k(£ Y) —cpf Ldl y)dxd€'.

1
e Mean free path length: f J f Eko(X; &, Y)dXdEdy = —
Bd 1 Bd 1

5C73

o ky(XR; &, VR) = ko(X;&,y) for Re (é SO(O?— 1>)

o e 1 0 | B
o ko(V;&,X) = ko(XR_;&, VR ) for R_ € (O O(d — 1>) withdet R = —1.
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Example: ‘““P = Poisson”
Let P = the Poisson probability measure on N with parameter ¢ > 0.

Then for P-a.a. P € N, the list of assumptions holds!
(And the limiting random point set 1 has law P.)

( Weaker form of the key assumption:

There exists a subset £ < P of vanishing density such that for any fixed T > 1
and X € P(S¢71) with X « volgg1, if ¥ is random in (SY71, N, then

A\

M,(g, V) — M, uniformly over all € Pr(r) :=P A BUTri=-9N\E.

r—0

\

We choose:
£={qeP : dp(q) < |G~}

where dp(q) = min{|p— §| : peP\{F}} and 0 < o < 1 (fixed).
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Example: ‘““P = Poisson”

For A = w(S) 'wis (S nice © SIt w = voIS(l;/_l),
A={YeNs : #(Y nB)=m} (meZ", B < RY nice and bounded),
and G e r'*PZ9 n B% , 5 we want to bound:

A=X({VesSi? : T,(q V)eA}) —P(A)
1.(q. 7) := (P\(T + B%),)) — @) RyD;

S Decompose S = supp(A) = w) Sy 1 [small|, where
%%% (A) = Lg_1 5S¢ 1 [small]

diam(S;) « Pt and dist(Sy, Sp) » rP2 VL # £
0<Bi1<Br<1—a).

Write A = >}, [contr. from S,] + [small].

Bernstein inequality = | P(|A| < r°) > 1 — exp(r=°) | (some fixed § > 0).

Use Borel-Cantelll to conclude! o



Example: ““P = Poisson”

Recall: The distribution of F(I' — X) is ko(X, &, —y) d€ dy € P(C).
Thus we get ko(X, €, 7) = ce %%,
Also k(€, ) = ce™ ¢

Hence we get back the linear Boltzmann equation:

(0 + VV)R(Q,V) = CJ (R(Q V") — £(Q,V))a(V' V) dV"

d—1
S1
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Example: P = a lattice
Assume P has covolume one for simplicity.

Then the list of assumptions holds, with “I1 = random lattice \{0}":

1= ng\{ﬁ} for ['g random in (I'\G, i) |with G = SL4(R), I = SL4(Z),

. = the invariant probability measure.

Palm distribution v : RY x B — [0, 1]:

For 7 # 0; |v(Z, B) = Y., vmz(B)| where v, 7 is the invariant measure on

Xmz={lge N\G : Ze mé& g} with v, (X, ) = m9(d)1.

Thus: k(X & ¥) = exp{lge MG : (299 —X) nCe = T}).
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Example requiring marking: P = Z¢ u (229 + (v/2, %))
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The key assumption, allowing marking

Assume there 1s a compact metric space 2, amap o0 : P — 2, and a
continuous map >~ — P(Ns), 0 — U,

Let I'l, be a random point set with law .

We assume that for any fixed T > 1 and A € P(S¢™1) with X « VOlSclj—l, if Vis

random in (S9!, \), then | M,(q, V) SN No(q) | uniformly over all g € Pr(r).

Note here: Ns = Ns(R? x ¥), and
N.(G,v):={peP\{d} : (F—TRsD,0(p)} = RI x L.
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Example: P = a cut-and-project set
Fixalattice LInR"=RIxR™ n=d+m m>1.

Fix a (nice) window W < R™.

P=PW,L)={GeR?: IweW st (G w)el]}

For each ¢ € P, we assume there is a unique w = w(q) € W giving (q, w) € L.
Then, the list of assumptions holds, with ¥ = V.
Let G = SL,(R), I = SL,(Z). Write L = Z"g. Consider ['\["g (SL" (R) | )

Ratner's orbit closure theorem = 3H < G (connected, closed, I" n H lattice),

with [\ g SLa(R) = [\[ Hg. Set u = inv prob measure on [\ H.
Im

Now | My = P(W — w, Z"hg)\{0}, for I'h random in (I'\I"'H, ).
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Some questions

e \Which random point sets [1 can occur?

e Invariance of 17 All SL4(R)?

e Characterize all (A)SL,(IR)-invariant point processes?
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END
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Macroscopic initial condition. Hence get (here formally):

— lim r9(9= 1J ZJ G' V) + X)N(r'7tq" — xqv, V) dx dv
r—0 Sd 1q€’P d \7
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Macroscopic initial condition.

— lim r¢ dlf ZJ

geP

r—0
q'eP

Hence get (here formally):

)+ X)N(rfrq = xq v, V) dxX dv

= lim r?@=" ZJ@LM (G V) +X) nCq = @) (NG, V) + X)N(---
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Macroscopic initial condition. Hence get (here formally):

— |jm r9(@-1) Z
r—0 Sdl

J ')+ XN (r?7r g — XV, V) dX dV
qeP dq

V

— lim r9d=1) ZJ Jd (G V) +X)nCy =) (M(G", V) + X)N(--+)dVdx
Coo JST

r—0
q'eP
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Macroscopic initial condition. Hence get (here formally):

— lim r¢

r—0

= lmr

r—0

= lmr

r—0

d1Ldlz

d(d—1) Z

c7”e73

d(d—1) Z

qep v

J ')+ XN (r?7r g — XV, V) dX dV
qeP 67‘7
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Macroscopic initial condition. Hence get (here formally):

— lim r99=1) Z
r—0 Sdl

J ')+ XN (r?7r g — XV, V) dX dV
qeP 67‘7

_ m pd(d-1) Z | Ld 1 (TG, V) + %) 0 Cy = D) F(NAG", 7) + X)N(---
gep Y Co

_ iy pd(d=1) p Id=1=1 o o\ o
pﬂ%r Z (Ldl/\(r g — xiv, v)dv)

qeP JCo 1

P has asymptotic density cp!
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Macroscopic initial condition. Hence get (here formally):

lim r9(@-1) Z
r—0 Sd 1

J V) XN (g — x v, V) dX dV
qeP d’ﬁ

V

lim r@1 L«;l (TG, 7) + %) 0 Cqy = @) F(NAG", V) + ) N(- -

r
lim P90y N(r''q' = xv,v) dv
r—0 = JC Sd—l
qgep ©=* 1
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