DIRICHLET'S THEOREM FOR INHOMOGENEOUS APPROXIMATION

Dmitry Kleinbock and Nick Wadlegh

Brandeis University

GOA 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

nhomogeneous opproximation

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Theorem (Dirichlet): for any $A \in M_{m \times n}(\mathbb{R})$ and any T > 1 $\exists \mathbf{p} \in \mathbb{Z}^m, \mathbf{q} \in \mathbb{Z}^n \setminus \{0\}$ such that

(1)
$$||A\mathbf{q}-\mathbf{p}||^m \leq \frac{1}{T} \text{ and } ||\mathbf{q}||^n \leq T.$$

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theorem (Dirichlet): for any $A \in M_{m \times n}(\mathbb{R})$ and any T > 1 $\exists \mathbf{p} \in \mathbb{Z}^m, \mathbf{q} \in \mathbb{Z}^n \setminus \{0\}$ such that

(1)
$$||A\mathbf{q} - \mathbf{p}||^m \leq \frac{1}{T} \text{ and } ||\mathbf{q}||^n \leq T.$$

Corollary (Dirichlet): for any $A \in M_{m \times n}(\mathbb{R})$ $\exists \infty \text{ many } \mathbf{q} \in \mathbb{Z}^n \text{ such that}$

(2)
$$||A\mathbf{q} - \mathbf{p}||^m \leq \frac{1}{||\mathbf{q}||^n}$$
 for some $\mathbf{p} \in \mathbb{Z}^m$.

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Theorem (Dirichlet): for any $A \in M_{m \times n}(\mathbb{R})$ and any T > 1 $\exists \mathbf{p} \in \mathbb{Z}^m$, $\mathbf{q} \in \mathbb{Z}^n \setminus \{0\}$ such that

(1)
$$||A\mathbf{q} - \mathbf{p}||^m \leq \frac{1}{T} \text{ and } ||\mathbf{q}||^n \leq T.$$

Corollary (Dirichlet): for any $A \in M_{m \times n}(\mathbb{R})$ $\exists \infty \text{ many } \mathbf{q} \in \mathbb{Z}^n \text{ such that}$

(2)
$$||A\mathbf{q} - \mathbf{p}||^m \leq \frac{1}{||\mathbf{q}||^n}$$
 for some $\mathbf{p} \in \mathbb{Z}^m$.

Questions: what happens if in (1) and (2) the RHS is replaced by a faster decreasing function of T and $||\mathbf{q}||$ respectively? In particular, what happens for typical A?

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Theorem (Dirichlet): for any $A \in M_{m \times n}(\mathbb{R})$ and any T > 1 $\exists \mathbf{p} \in \mathbb{Z}^m$, $\mathbf{q} \in \mathbb{Z}^n \setminus \{0\}$ such that

(1)
$$\|A\mathbf{q} - \mathbf{p}\|^m \leq \frac{1}{T} \text{ and } \|\mathbf{q}\|^n \leq T.$$

Corollary (Dirichlet): for any $A \in M_{m \times n}(\mathbb{R})$ $\exists \infty \text{ many } \mathbf{q} \in \mathbb{Z}^n \text{ such that}$

(2)
$$||A\mathbf{q} - \mathbf{p}||^m \leq \frac{1}{||\mathbf{q}||^n}$$
 for some $\mathbf{p} \in \mathbb{Z}^m$.

Questions: what happens if in (1) and (2) the RHS is replaced by a faster decreasing function of T and $||\mathbf{q}||$ respectively? In particular, what happens for typical A?

Well studied in the setting of (2), not so well for (1).

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

Definition: $W(\psi)$ is the set of ψ -approximable matrices,

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition: $W(\psi)$ is the set of ψ -approximable matrices,

that is, $A \in M_{m \times n}(\mathbb{R})$ for which $\exists \infty$ many $\mathbf{q} \in \mathbb{Z}^n$ such that

(2 ψ) $\|A\mathbf{q} - \mathbf{p}\|^m \le \psi(\|\mathbf{q}\|^n)$ for some $\mathbf{p} \in \mathbb{Z}^m$.

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definition: $W(\psi)$ is the set of ψ -approximable matrices,

that is, $A \in M_{m \times n}(\mathbb{R})$ for which $\exists \infty$ many $\mathbf{q} \in \mathbb{Z}^n$ such that

(2
$$\psi$$
) $\|A\mathbf{q} - \mathbf{p}\|^m \le \psi(\|\mathbf{q}\|^n)$ for some $\mathbf{p} \in \mathbb{Z}^m$.

Khintchine-Groshev Theorem: given a non-increasing ψ , the set $W(\psi)$ has zero (resp. full) measure if and only if the series $\sum_{k} \psi(k)$ converges (resp. diverges).

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Definition: $W(\psi)$ is the set of ψ -approximable matrices,

that is, $A \in M_{m \times n}(\mathbb{R})$ for which $\exists \infty$ many $\mathbf{q} \in \mathbb{Z}^n$ such that

(2
$$\psi$$
) $\|A\mathbf{q} - \mathbf{p}\|^m \le \psi(\|\mathbf{q}\|^n)$ for some $\mathbf{p} \in \mathbb{Z}^m$.

Khintchine-Groshev Theorem: given a non-increasing ψ , the set $W(\psi)$ has zero (resp. full) measure if and only if the series $\sum_{k} \psi(k)$ converges (resp. diverges).

Note: $W(\psi)$ is a **limsup set**. In fact it is easy to see that $A \in W(\psi)$ if and only if the system

(1
$$\psi$$
) $\|A\mathbf{q} - \mathbf{p}\|^m \le \psi(T) \text{ and } \|\mathbf{q}\|^n \le T$

has a nontrivial integer solution for ∞ many $T \in \mathbb{N}$.

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

Now we see that to improve the original Dirichlet's Theorem, not its corollary, we need to consider a corresponding **liminf set**!

Definition: $DI(\psi)$ is the set of ψ -Dirichlet-improvable matrices,

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Now we see that to improve the original Dirichlet's Theorem, not its corollary, we need to consider a corresponding **liminf set**!

Definition: $DI(\psi)$ is the set of ψ -Dirichlet-improvable matrices,

that is, $A \in M_{m imes n}(\mathbb{R})$ for which the system

(1
$$\psi$$
) $\|A\mathbf{q} - \mathbf{p}\|^m \le \psi(T) \text{ and } \|\mathbf{q}\|^n \le T$

has a nontrivial integer solution for all large enough T.

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

(日)、(型)、(E)、(E)、(E)、(Q)

Now we see that to improve the original Dirichlet's Theorem, not its corollary, we need to consider a corresponding **liminf set**!

Definition: $DI(\psi)$ is the set of ψ -Dirichlet-improvable matrices,

that is, $A \in M_{m imes n}(\mathbb{R})$ for which the system

(1
$$\psi$$
) $\|A\mathbf{q} - \mathbf{p}\|^m \le \psi(T) \text{ and } \|\mathbf{q}\|^n \le T$

has a nontrivial integer solution for all large enough T.

Questions:

• What is the necessary and sufficient condition for (non-increasing) ψ so that $DI(\psi)$ has zero/full measure?

(日)、(型)、(E)、(E)、(E)、(Q)

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Now we see that to improve the original Dirichlet's Theorem, not its corollary, we need to consider a corresponding **liminf set**!

Definition: $DI(\psi)$ is the set of ψ -Dirichlet-improvable matrices,

that is, $A \in M_{m imes n}(\mathbb{R})$ for which the system

(1 ψ) $\|A\mathbf{q} - \mathbf{p}\|^m \le \psi(T) \text{ and } \|\mathbf{q}\|^n \le T$

has a nontrivial integer solution for all large enough T.

Questions:

• What is the necessary and sufficient condition for (non-increasing) ψ so that $DI(\psi)$ has zero/full measure? (Not known)

(日)、(型)、(E)、(E)、(E)、(Q)

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Now we see that to improve the original Dirichlet's Theorem, not its corollary, we need to consider a corresponding **liminf set**!

Definition: $DI(\psi)$ is the set of ψ -Dirichlet-improvable matrices,

that is, $A \in M_{m imes n}(\mathbb{R})$ for which the system

(1
$$\psi$$
) $\|A\mathbf{q} - \mathbf{p}\|^m \le \psi(T) \text{ and } \|\mathbf{q}\|^n \le T$

has a nontrivial integer solution for all large enough T.

Questions:

- What is the necessary and sufficient condition for (non-increasing) ψ so that $DI(\psi)$ has zero/full measure? (Not known)
- Why is this problem more difficult? after all there is a duality between limsup and liminf sets, $\lim \inf_k E_k = (\lim \sup_k E_k^c)^c$.

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Now we see that to improve the original Dirichlet's Theorem, not its corollary, we need to consider a corresponding **liminf set**!

Definition: $DI(\psi)$ is the set of ψ -Dirichlet-improvable matrices,

that is, $A \in M_{m imes n}(\mathbb{R})$ for which the system

(1
$$\psi$$
) $\|A\mathbf{q} - \mathbf{p}\|^m \le \psi(T) \text{ and } \|\mathbf{q}\|^n \le T$

has a nontrivial integer solution for all large enough T.

Questions:

- What is the necessary and sufficient condition for (non-increasing) ψ so that $DI(\psi)$ has zero/full measure? (Not known)
- Why is this problem more difficult? after all there is a duality between limsup and liminf sets, $\liminf_k E_k = (\limsup_k E_k^c)^c$.. (Yes, but E_k^c are way more complicated and harder to work with...)

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

• The Khintchine-Groshev Theorem can also be proved using dynamics [K-Margulis, 1999]. Can the same approach work here?

Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• The Khintchine-Groshev Theorem can also be proved using dynamics [K-Margulis, 1999]. Can the same approach work here? well, let's try..

Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• The Khintchine-Groshev Theorem can also be proved using dynamics [K-Margulis, 1999]. Can the same approach work here? well, let's try..

Recall: if one takes d = m + n and $X = SL_d(\mathbb{R})/SL_d(\mathbb{Z})$ (the space of unimodular lattices in \mathbb{R}^d), then the Diophantine properties of A can be understood via the trajectory $\{g_t\Lambda_A : t \ge 0\}$, where DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

• The Khintchine-Groshev Theorem can also be proved using dynamics [K-Margulis, 1999]. Can the same approach work here? well, let's try..

Recall: if one takes d = m + n and $X = SL_d(\mathbb{R}) / SL_d(\mathbb{Z})$ (the space of unimodular lattices in \mathbb{R}^d), then the Diophantine properties of A can be understood via the trajectory $\{g_t \Lambda_A : t \ge 0\}$, where

$$\Lambda_{\mathcal{A}} = \begin{pmatrix} I_m & \mathcal{A} \\ 0 & I_n \end{pmatrix} \mathbb{Z}^d = \left\{ \begin{pmatrix} \mathcal{A}\mathbf{q} - \mathbf{p} \\ \mathbf{q} \end{pmatrix} : \mathbf{p} \in \mathbb{Z}^m, \ \mathbf{q} \in \mathbb{Z}^n \right\}$$

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

• The Khintchine-Groshev Theorem can also be proved using dynamics [K-Margulis, 1999]. Can the same approach work here? well, let's try..

Recall: if one takes d = m + n and $X = SL_d(\mathbb{R}) / SL_d(\mathbb{Z})$ (the space of unimodular lattices in \mathbb{R}^d), then the Diophantine properties of A can be understood via the trajectory $\{g_t \Lambda_A : t \ge 0\}$, where

$$\Lambda_{A} = \begin{pmatrix} I_{m} & A \\ 0 & I_{n} \end{pmatrix} \mathbb{Z}^{d} = \left\{ \begin{pmatrix} A\mathbf{q} - \mathbf{p} \\ \mathbf{q} \end{pmatrix} : \mathbf{p} \in \mathbb{Z}^{m}, \ \mathbf{q} \in \mathbb{Z}^{n} \right\}$$

and

$$g_t = \begin{pmatrix} e^{t/m}I_m & 0\\ 0 & e^{-t/n}I_n \end{pmatrix}.$$

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

• The Khintchine-Groshev Theorem can also be proved using dynamics [K-Margulis, 1999]. Can the same approach work here? well, let's try..

Recall: if one takes d = m + n and $X = SL_d(\mathbb{R})/SL_d(\mathbb{Z})$ (the space of unimodular lattices in \mathbb{R}^d), then the Diophantine properties of A can be understood via the trajectory $\{g_t\Lambda_A : t \ge 0\}$, where

$$\Lambda_{A} = \begin{pmatrix} I_{m} & A \\ 0 & I_{n} \end{pmatrix} \mathbb{Z}^{d} = \left\{ \begin{pmatrix} A\mathbf{q} - \mathbf{p} \\ \mathbf{q} \end{pmatrix} : \mathbf{p} \in \mathbb{Z}^{m}, \ \mathbf{q} \in \mathbb{Z}^{n} \right\}$$

and

$$g_t = \begin{pmatrix} e^{t/m}I_m & 0\\ 0 & e^{-t/n}I_n \end{pmatrix}.$$

Also define $\delta: X \to \mathbb{R}_+$ by $\delta(\Lambda) := \min_{\mathbf{v} \in \Lambda \setminus \{0\}} \|\mathbf{v}\|.$

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

• The Khintchine-Groshev Theorem can also be proved using dynamics [K-Margulis, 1999]. Can the same approach work here? well, let's try..

Recall: if one takes d = m + n and $X = SL_d(\mathbb{R})/SL_d(\mathbb{Z})$ (the space of unimodular lattices in \mathbb{R}^d), then the Diophantine properties of A can be understood via the trajectory $\{g_t\Lambda_A : t \ge 0\}$, where

$$\Lambda_{A} = \begin{pmatrix} I_{m} & A \\ 0 & I_{n} \end{pmatrix} \mathbb{Z}^{d} = \left\{ \begin{pmatrix} A\mathbf{q} - \mathbf{p} \\ \mathbf{q} \end{pmatrix} : \mathbf{p} \in \mathbb{Z}^{m}, \ \mathbf{q} \in \mathbb{Z}^{n} \right\}$$

and

$$g_t = \begin{pmatrix} e^{t/m}I_m & 0\\ 0 & e^{-t/n}I_n \end{pmatrix}.$$

Also define $\delta: X \to \mathbb{R}_+$ by $\delta(\Lambda) := \min_{\mathbf{v} \in \Lambda \smallsetminus \{0\}} \|\mathbf{v}\|.$

Minkowski's Lemma: $\delta(\Lambda) \leq 1$ for any $\Lambda \in X$.

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

(日)、(型)、(E)、(E)、(E)、(Q)

• The Khintchine-Groshev Theorem can also be proved using dynamics [K-Margulis, 1999]. Can the same approach work here? well, let's try..

Recall: if one takes d = m + n and $X = SL_d(\mathbb{R})/SL_d(\mathbb{Z})$ (the space of unimodular lattices in \mathbb{R}^d), then the Diophantine properties of A can be understood via the trajectory $\{g_t\Lambda_A : t \ge 0\}$, where

$$\Lambda_{A} = \begin{pmatrix} I_{m} & A \\ 0 & I_{n} \end{pmatrix} \mathbb{Z}^{d} = \left\{ \begin{pmatrix} A\mathbf{q} - \mathbf{p} \\ \mathbf{q} \end{pmatrix} : \mathbf{p} \in \mathbb{Z}^{m}, \ \mathbf{q} \in \mathbb{Z}^{n} \right\}$$

and

$$g_t = \begin{pmatrix} e^{t/m}I_m & 0\\ 0 & e^{-t/n}I_n \end{pmatrix}.$$

Also define $\delta: X \to \mathbb{R}_+$ by $\delta(\Lambda) := \min_{\mathbf{v} \in \Lambda \smallsetminus \{0\}} \|\mathbf{v}\|.$

Minkowski's Lemma: $\delta(\Lambda) \leq 1$ for any $\Lambda \in X$.

Mahlers's Criterion: $\delta(\Lambda)$ is very small $\leftrightarrow \Lambda$ is far far away in X.

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

◆□▶ ◆□▶ ◆□▶ ◆□▶ = 三 のへで

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

Lemma [K-Margulis '99]: given a non-increasing ψ , there exists a function $r : \mathbb{R}_+ \to \mathbb{R}_+$ such that the system

(1
$$\psi$$
) $\|A\mathbf{q} - \mathbf{p}\|^m \le \psi(T) \text{ and } \|\mathbf{q}\|^n \le T$

has a nontrivial integer solution for some $T \iff \delta(g_t \Lambda_A) \le r(t)$,

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Lemma [K-Margulis '99]: given a non-increasing ψ , there exists a function $r : \mathbb{R}_+ \to \mathbb{R}_+$ such that the system

(1
$$\psi$$
) $\|A\mathbf{q} - \mathbf{p}\|^m \le \psi(T) \text{ and } \|\mathbf{q}\|^n \le T$

has a nontrivial integer solution for some $T \iff \delta(g_t \Lambda_A) \le r(t)$, with t explicitly depending on T. DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Lemma [K-Margulis '99]: given a non-increasing ψ , there exists a function $r : \mathbb{R}_+ \to \mathbb{R}_+$ such that the system

(1
$$\psi$$
) $\|A\mathbf{q} - \mathbf{p}\|^m \le \psi(T) \text{ and } \|\mathbf{q}\|^n \le T$

has a nontrivial integer solution for some $T \iff \delta(g_t \Lambda_A) \le r(t)$, with t explicitly depending on T.

So the setting of (2) is about the family of targets

 $\{\Lambda \in X : \delta(\Lambda) \leq r\}$

shrinking to ∞ as $r \rightarrow 0$.

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Lemma [K-Margulis '99]: given a non-increasing ψ , there exists a function $r : \mathbb{R}_+ \to \mathbb{R}_+$ such that the system

(1
$$\psi$$
) $\|A\mathbf{q} - \mathbf{p}\|^m \le \psi(T) \text{ and } \|\mathbf{q}\|^n \le T$

has a nontrivial integer solution for some $T \iff \delta(g_t \Lambda_A) \le r(t)$, with t explicitly depending on T.

So the setting of (2) is about the family of targets

 $\{\Lambda \in X : \delta(\Lambda) \leq r\}$

shrinking to ∞ as $r \rightarrow 0$.

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

(easy)

Lemma [K-Margulis '99]: given a non-increasing ψ , there exists a function $r : \mathbb{R}_+ \to \mathbb{R}_+$ such that the system

(1
$$\psi$$
) $\|A\mathbf{q} - \mathbf{p}\|^m \le \psi(T) \text{ and } \|\mathbf{q}\|^n \le T$

has a nontrivial integer solution for some $T \iff \delta(g_t \Lambda_A) \le r(t)$, with t explicitly depending on T.

So the setting of (2) is about the family of targets

$$\{\Lambda \in X : \delta(\Lambda) \leq r\}$$

shrinking to ∞ as $r \rightarrow 0$.

On the other hand, in the setting of (1) one needs to consider a family of complements to the above sets:

$$\{\Lambda \in X : \delta(\Lambda) > r\},\$$

which shrink to a certain compact set as $r \rightarrow 1$.

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

(easy)

(日)、(型)、(E)、(E)、(E)、(Q)

Lemma [K-Margulis '99]: given a non-increasing ψ , there exists a function $r : \mathbb{R}_+ \to \mathbb{R}_+$ such that the system

(1
$$\psi$$
) $\|A\mathbf{q} - \mathbf{p}\|^m \le \psi(T) \text{ and } \|\mathbf{q}\|^n \le T$

has a nontrivial integer solution for some $T \iff \delta(g_t \Lambda_A) \le r(t)$, with t explicitly depending on T.

So the setting of (2) is about the family of targets

$$\{\Lambda \in X : \delta(\Lambda) \leq r\}$$

shrinking to ∞ as $r \rightarrow 0$.

On the other hand, in the setting of (1) one needs to consider a family of complements to the above sets:

$$\{\Lambda \in X : \delta(\Lambda) > r\},\$$

which shrink to a certain compact set as $r \to 1$. (????)

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

(easy)

Corollary: $A \notin DI(\psi) \iff \delta(g_t \Lambda_A) > r(t)$ for an unbounded set of t.

Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Corollary: $A \notin DI(\psi) \iff \delta(g_t \Lambda_A) > r(t)$ for an unbounded set of *t*.

But the family of shrinking targets $\{\delta^{-1}((r, 1])\}$ is kind of complicated. Some partial results (for slowly decaying functions ψ) can be obtained, not a complete solution yet.

Example: put $\psi_c(T) = \frac{c}{T}$ where c < 1. This corresponds to

$$r(t) \equiv 1 - \varepsilon, \quad \varepsilon > 0.$$

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks
Dani Correspondence

Corollary: $A \notin DI(\psi) \iff \delta(g_t \Lambda_A) > r(t)$ for an unbounded set of *t*.

But the family of shrinking targets $\{\delta^{-1}((r, 1])\}$ is kind of complicated. Some partial results (for slowly decaying functions ψ) can be obtained, not a complete solution yet.

Example: put $\psi_c(T) = \frac{c}{T}$ where c < 1. This corresponds to

$$r(t) \equiv 1 - \varepsilon, \quad \varepsilon > 0.$$

By ergodicity of the g_t -action on X,

$$\{\Lambda \in X : \delta(g_t\Lambda) > 1 - \varepsilon \text{ for all large enough } t\}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

has measure 0,

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Dani Correspondence

Corollary: $A \notin DI(\psi) \iff \delta(g_t \Lambda_A) > r(t)$ for an unbounded set of t.

But the family of shrinking targets $\{\delta^{-1}((r, 1])\}$ is kind of complicated. Some partial results (for slowly decaying functions ψ) can be obtained, not a complete solution yet.

Example: put $\psi_c(T) = \frac{c}{T}$ where c < 1. This corresponds to

$$r(t) \equiv 1 - \varepsilon, \quad \varepsilon > 0.$$

By ergodicity of the g_t -action on X,

$$\{\Lambda \in X : \delta(g_t\Lambda) > 1 - \varepsilon \text{ for all large enough } t\}$$

has measure 0, therefore $DI(\psi_c)$ has measure zero (Davenport and Schmidt 1969).

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

The set-up: we now have $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$, and look for the following statement:

for any T > 1 (or at least any large enough T) $\exists \mathbf{p} \in \mathbb{Z}^m$, $\mathbf{q} \in \mathbb{Z}^n$ such that

(1)
$$||A\mathbf{q} + \mathbf{b} - \mathbf{p}||^m \le ????$$
 and $||\mathbf{q}||^n \le T$

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

The set-up: we now have $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$, and look for the following statement:

for any T > 1 (or at least any large enough T) $\exists \mathbf{p} \in \mathbb{Z}^m$, $\mathbf{q} \in \mathbb{Z}^n$ such that

(
$$\widehat{1}$$
) $\|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \le ????$ and $\|\mathbf{q}\|^n \le T$

(there are no reasons to exclude $\mathbf{q} = 0$ anymore).

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

The set-up: we now have $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$, and look for the following statement:

for any T > 1 (or at least any large enough T) $\exists \mathbf{p} \in \mathbb{Z}^m$, $\mathbf{q} \in \mathbb{Z}^n$ such that

(1)
$$||A\mathbf{q} + \mathbf{b} - \mathbf{p}||^m \le ????$$
 and $||\mathbf{q}||^n \le T$

(there are no reasons to exclude $\mathbf{q} = 0$ anymore).

And what to put instead of ????

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

The set-up: we now have $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$, and look for the following statement:

for any T > 1 (or at least any large enough T) $\exists \mathbf{p} \in \mathbb{Z}^m$, $\mathbf{q} \in \mathbb{Z}^n$ such that

(
$$\widehat{1}$$
) $\|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \leq ????$ and $\|\mathbf{q}\|^n \leq T$

(there are no reasons to exclude $\mathbf{q} = 0$ anymore).

And what to put instead of ????

Turns out that no function which goes to 0 as $T \to \infty$ will work!

Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

The set-up: we now have $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$, and look for the following statement:

for any T > 1 (or at least any large enough T) $\exists \mathbf{p} \in \mathbb{Z}^m$, $\mathbf{q} \in \mathbb{Z}^n$ such that

(
$$\widehat{1}$$
) $\|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \le ????$ and $\|\mathbf{q}\|^n \le T$

(there are no reasons to exclude $\mathbf{q} = 0$ anymore).

And what to put instead of ???? Turns out that no function which goes to 0 as $T \to \infty$ will work! Just take A = 0 and $\mathbf{b} \in \frac{1}{2}\mathbb{Z}^m \setminus \mathbb{Z}^m$. DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

The set-up: we now have $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$, and look for the following statement:

for any T > 1 (or at least any large enough T) $\exists \mathbf{p} \in \mathbb{Z}^m$, $\mathbf{q} \in \mathbb{Z}^n$ such that

(
$$\widehat{1}$$
) $\|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \leq ????$ and $\|\mathbf{q}\|^n \leq T$

(there are no reasons to exclude $\mathbf{q} = 0$ anymore).

And what to put instead of ???? Turns out that no function which goes to 0 as $T \to \infty$ will work! Just take A = 0 and $\mathbf{b} \in \frac{1}{2}\mathbb{Z}^m \setminus \mathbb{Z}^m$.

And even we exclude stupid rational cases, there will always be irrational counterexamples (Khintchine).

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

The set-up: we now have $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$, and look for the following statement:

for any T > 1 (or at least any large enough T) $\exists \mathbf{p} \in \mathbb{Z}^m$, $\mathbf{q} \in \mathbb{Z}^n$ such that

(1)
$$||A\mathbf{q} + \mathbf{b} - \mathbf{p}||^m \le ????$$
 and $||\mathbf{q}||^n \le T$

(there are no reasons to exclude $\mathbf{q} = 0$ anymore).

And what to put instead of ???? Turns out that no function which goes to 0 as $T \to \infty$ will work! Just take A = 0 and $\mathbf{b} \in \frac{1}{2}\mathbb{Z}^m \smallsetminus \mathbb{Z}^m$.

And even we exclude stupid rational cases, there will always be irrational counterexamples (Khintchine). So the best we could do is:

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

The set-up: we now have $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$, and look for the following statement:

for any T > 1 (or at least any large enough T) $\exists \mathbf{p} \in \mathbb{Z}^m$, $\mathbf{q} \in \mathbb{Z}^n$ such that

(
$$\widehat{1}$$
) $\|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \le ????$ and $\|\mathbf{q}\|^n \le T$

(there are no reasons to exclude $\mathbf{q} = 0$ anymore).

And what to put instead of ???? Turns out that no function which goes to 0 as $T \to \infty$ will work! Just take A = 0 and $\mathbf{b} \in \frac{1}{2}\mathbb{Z}^m \setminus \mathbb{Z}^m$.

And even we exclude stupid rational cases, there will always be irrational counterexamples (Khintchine). So the best we could do is:

for any $\mathcal{T}>1~\exists~\mathbf{p}\in\mathbb{Z}^m$, $\mathbf{q}\in\mathbb{Z}^n$ such that

(1)
$$||A\mathbf{q} + \mathbf{b} - \mathbf{p}||^m \le 2^{-m}$$
 and $||\mathbf{q}||^n \le T$

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

The set-up: we now have $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$, and look for the following statement:

for any T > 1 (or at least any large enough T) $\exists \mathbf{p} \in \mathbb{Z}^m$, $\mathbf{q} \in \mathbb{Z}^n$ such that

(
$$\hat{1}$$
) $\|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \leq ????$ and $\|\mathbf{q}\|^n \leq T$

(there are no reasons to exclude $\mathbf{q} = 0$ anymore).

And what to put instead of ???? Turns out that no function which goes to 0 as $T \to \infty$ will work! Just take A = 0 and $\mathbf{b} \in \frac{1}{2}\mathbb{Z}^m \setminus \mathbb{Z}^m$.

And even we exclude stupid rational cases, there will always be irrational counterexamples (Khintchine). So the best we could do is:

for any $\mathcal{T}>1~\exists~\mathbf{p}\in\mathbb{Z}^m$, $\mathbf{q}\in\mathbb{Z}^n$ such that

(1)
$$||A\mathbf{q} + \mathbf{b} - \mathbf{p}||^m \le 2^{-m}$$
 and $||\mathbf{q}||^n \le T$

(which is not much).

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Still something can be said in the setting of (2).

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ ○ ○ ○ ○

Still something can be said in the setting of (2).

Theorem (Minkowski?): there exist constants $C_{m,n}$ such that for $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m \exists \infty \text{ many } \mathbf{q} \in \mathbb{Z}^n$ with

(2)
$$||A\mathbf{q} + \mathbf{b} - \mathbf{p}||^m \le \frac{C_{m,n}}{||\mathbf{q}||^n}$$
 for some $\mathbf{p} \in \mathbb{Z}^m$,

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Still something can be said in the setting of (2).

Theorem (Minkowski?): there exist constants $C_{m,n}$ such that for $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m \exists \infty \text{ many } \mathbf{q} \in \mathbb{Z}^n$ with

(
$$\widehat{2}$$
) $\|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \leq \frac{C_{m,n}}{\|\mathbf{q}\|^n}$ for some $\mathbf{p} \in \mathbb{Z}^m$,

unless there exists $\mathbf{u} \in \mathbb{Z}^m$ such that $A^T \mathbf{u} \in \mathbb{Z}^n$ but $\mathbf{b}^T \mathbf{u} \notin \mathbb{Z}$.

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Still something can be said in the setting of (2).

Theorem (Minkowski?): there exist constants $C_{m,n}$ such that for $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m \exists \infty \text{ many } \mathbf{q} \in \mathbb{Z}^n$ with

(
$$\widehat{2}$$
) $\|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \leq \frac{C_{m,n}}{\|\mathbf{q}\|^n}$ for some $\mathbf{p} \in \mathbb{Z}^m$,

unless there exists $\mathbf{u} \in \mathbb{Z}^m$ such that $A^T \mathbf{u} \in \mathbb{Z}^n$ but $\mathbf{b}^T \mathbf{u} \notin \mathbb{Z}$.

This is a starting point for inhomogeneous Khintchine-Groshev theory.

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Still something can be said in the setting of (2).

Theorem (Minkowski?): there exist constants $C_{m,n}$ such that for $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m \exists \infty \text{ many } \mathbf{q} \in \mathbb{Z}^n$ with

$$(\widehat{2})$$
 $\|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \leq rac{C_{m,n}}{\|\mathbf{q}\|^n}$ for some $\mathbf{p} \in \mathbb{Z}^m$,

unless there exists $\mathbf{u} \in \mathbb{Z}^m$ such that $A^T \mathbf{u} \in \mathbb{Z}^n$ but $\mathbf{b}^T \mathbf{u} \notin \mathbb{Z}$.

This is a starting point for inhomogeneous Khintchine-Groshev theory.

Definition: $\widehat{W}(\psi)$ is the set of ψ -approximable pairs (A, \mathbf{b}) ,

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Still something can be said in the setting of (2).

Theorem (Minkowski?): there exist constants $C_{m,n}$ such that for $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m \exists \infty \text{ many } \mathbf{q} \in \mathbb{Z}^n$ with

$$(\widehat{2})$$
 $\|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \leq \frac{C_{m,n}}{\|\mathbf{q}\|^n}$ for some $\mathbf{p} \in \mathbb{Z}^m$,

unless there exists $\mathbf{u} \in \mathbb{Z}^m$ such that $A^T \mathbf{u} \in \mathbb{Z}^n$ but $\mathbf{b}^T \mathbf{u} \notin \mathbb{Z}$.

This is a starting point for inhomogeneous Khintchine-Groshev theory.

Definition: $\widehat{W}(\psi)$ is the set of ψ -approximable pairs (A, \mathbf{b}) ,

that is, those for which $\exists \infty$ many $\mathbf{q} \in \mathbb{Z}^n$ such that

~

$$(\widehat{2\psi})$$
 $\|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \le \psi(\|\mathbf{q}\|^n)$ for some $\mathbf{p} \in \mathbb{Z}^m$.

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Still something can be said in the setting of (2).

Theorem (Minkowski?): there exist constants $C_{m,n}$ such that for $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m \exists \infty \text{ many } \mathbf{q} \in \mathbb{Z}^n$ with

$$(\widehat{2})$$
 $\|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \leq rac{C_{m,n}}{\|\mathbf{q}\|^n}$ for some $\mathbf{p} \in \mathbb{Z}^m$,

unless there exists $\mathbf{u} \in \mathbb{Z}^m$ such that $A^T \mathbf{u} \in \mathbb{Z}^n$ but $\mathbf{b}^T \mathbf{u} \notin \mathbb{Z}$.

This is a starting point for inhomogeneous Khintchine-Groshev theory.

Definition: $\widehat{W}(\psi)$ is the set of ψ -approximable pairs (A, \mathbf{b}) ,

that is, those for which $\exists \infty$ many $\mathbf{q} \in \mathbb{Z}^n$ such that

$$(\widehat{2\psi})$$
 $\|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \le \psi(\|\mathbf{q}\|^n)$ for some $\mathbf{p} \in \mathbb{Z}^m$.

The work of Cassels and Schmidt gives precise conditions on ψ such that $\widehat{W}(\psi)$, or even $\{A : (A, \mathbf{b}) \in \widehat{W}(\psi)\}$ for fixed \mathbf{b} , has zero/full measure.

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Let us now try to apply the same approach to the (non-existing) inhomogeneous Dirichlet's theorem.

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let us now try to apply the same approach to the (non-existing) inhomogeneous Dirichlet's theorem.

Definition: $\widehat{DI}(\psi)$ is the set of ψ -Dirichlet-improvable pairs (A, \mathbf{b}) ,

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Let us now try to apply the same approach to the (non-existing) inhomogeneous Dirichlet's theorem.

Definition: $\widehat{Dl}(\psi)$ is the set of ψ -Dirichlet-improvable pairs (A, \mathbf{b}) ,

that is, those for which the system

$$(\widehat{1\psi})$$
 $\|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \le \psi(T)$ and $\|\mathbf{q}\|^n \le T$

has an integer solution for all large enough T.

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Let us now try to apply the same approach to the (non-existing) inhomogeneous Dirichlet's theorem.

Definition: $\widehat{Dl}(\psi)$ is the set of ψ -Dirichlet-improvable pairs (A, \mathbf{b}) ,

that is, those for which the system

$$(\widehat{1\psi})$$
 $\|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \le \psi(T)$ and $\|\mathbf{q}\|^n \le T$

has an integer solution for all large enough T.

Again one can ask: for which (non-increasing) ψ the set $\widehat{Dl}(\psi)$ has zero/full measure?

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Let us now try to apply the same approach to the (non-existing) inhomogeneous Dirichlet's theorem.

Definition: $\widehat{Dl}(\psi)$ is the set of ψ -Dirichlet-improvable pairs (A, \mathbf{b}) ,

that is, those for which the system

$$(\widehat{1\psi})$$
 $\|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \le \psi(T)$ and $\|\mathbf{q}\|^n \le T$

has an integer solution for all large enough T.

Again one can ask: for which (non-increasing) ψ the set $\widehat{Dl}(\psi)$ has zero/full measure? Not clear how to do it using classical methods.

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Let us now try to apply the same approach to the (non-existing) inhomogeneous Dirichlet's theorem.

Definition: $\widehat{Dl}(\psi)$ is the set of ψ -Dirichlet-improvable pairs (A, \mathbf{b}) ,

that is, those for which the system

$$(\widehat{1\psi})$$
 $\|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \le \psi(T)$ and $\|\mathbf{q}\|^n \le T$

has an integer solution for all large enough T.

Again one can ask: for which (non-increasing) ψ the set $\widehat{Dl}(\psi)$ has zero/full measure? Not clear how to do it using classical methods.

However the dynamical approach works and produces a definitive result (so in some sense the inhomogeneous version is easier than its homogeneous counterpart!)

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Here one has to take $\widehat{X} = \text{ASL}_d(\mathbb{R})/\text{ASL}_d(\mathbb{Z})$ (the space of unimodular grids in \mathbb{R}^d), DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Here one has to take $\widehat{X} = \text{ASL}_d(\mathbb{R})/\text{ASL}_d(\mathbb{Z})$ (the space of unimodular grids in \mathbb{R}^d), and, given the pair (A, \mathbf{b}) , consider the trajectory

$$\{g_t \Lambda_{A,\mathbf{b}} : t \ge 0\},\$$

where

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Here one has to take $\widehat{X} = \text{ASL}_d(\mathbb{R})/\text{ASL}_d(\mathbb{Z})$ (the space of unimodular grids in \mathbb{R}^d), and, given the pair (A, \mathbf{b}) , consider the trajectory

$$\{g_t \Lambda_{A,\mathbf{b}} : t \geq 0\},\$$

where

$$\Lambda_{A,\mathbf{b}} = \begin{pmatrix} I_m & A\\ 0 & I_n \end{pmatrix} \mathbb{Z}^d + \begin{pmatrix} \mathbf{b}\\ 0 \end{pmatrix} = \left\{ \begin{pmatrix} A\mathbf{q} + \mathbf{b} - \mathbf{p}\\ \mathbf{q} \end{pmatrix} : \mathbf{p} \in \mathbb{Z}^m, \ \mathbf{q} \in \mathbb{Z}^n \right\}$$

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Here one has to take $\widehat{X} = \text{ASL}_d(\mathbb{R})/\text{ASL}_d(\mathbb{Z})$ (the space of unimodular grids in \mathbb{R}^d), and, given the pair (A, \mathbf{b}) , consider the trajectory

 $\{g_t \Lambda_{A,\mathbf{b}} : t \geq 0\},\$

where

$$\Lambda_{A,\mathbf{b}} = \begin{pmatrix} I_m & A\\ 0 & I_n \end{pmatrix} \mathbb{Z}^d + \begin{pmatrix} \mathbf{b}\\ 0 \end{pmatrix} = \left\{ \begin{pmatrix} A\mathbf{q} + \mathbf{b} - \mathbf{p}\\ \mathbf{q} \end{pmatrix} : \mathbf{p} \in \mathbb{Z}^m, \ \mathbf{q} \in \mathbb{Z}^n \right\}$$

and g_t is as before.

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Here one has to take $\widehat{X} = \text{ASL}_d(\mathbb{R})/\text{ASL}_d(\mathbb{Z})$ (the space of unimodular grids in \mathbb{R}^d), and, given the pair (A, \mathbf{b}) , consider the trajectory

 $\{g_t \Lambda_{A,\mathbf{b}} : t \geq 0\},\$

where

$$\Lambda_{A,\mathbf{b}} = \begin{pmatrix} I_m & A \\ 0 & I_n \end{pmatrix} \mathbb{Z}^d + \begin{pmatrix} \mathbf{b} \\ 0 \end{pmatrix} = \left\{ \begin{pmatrix} A\mathbf{q} + \mathbf{b} - \mathbf{p} \\ \mathbf{q} \end{pmatrix} : \mathbf{p} \in \mathbb{Z}^m, \ \mathbf{q} \in \mathbb{Z}^n \right\}$$

and g_t is as before. Also define $\hat{\delta}: \widehat{X} \to \mathbb{R}_+$ by

 $\hat{\delta}(\Lambda) = \min_{\mathbf{v}\in\Lambda} \|\mathbf{v}\|.$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Here one has to take $\widehat{X} = \text{ASL}_d(\mathbb{R})/\text{ASL}_d(\mathbb{Z})$ (the space of unimodular grids in \mathbb{R}^d), and, given the pair (A, \mathbf{b}) , consider the trajectory

$$\{g_t\Lambda_{A,\mathbf{b}}:t\geq 0\},\$$

where

$$\Lambda_{A,\mathbf{b}} = \begin{pmatrix} I_m & A\\ 0 & I_n \end{pmatrix} \mathbb{Z}^d + \begin{pmatrix} \mathbf{b}\\ 0 \end{pmatrix} = \left\{ \begin{pmatrix} A\mathbf{q} + \mathbf{b} - \mathbf{p}\\ \mathbf{q} \end{pmatrix} : \mathbf{p} \in \mathbb{Z}^m, \ \mathbf{q} \in \mathbb{Z}^n \right\}$$

and g_t is as before. Also define $\hat{\delta}:\widehat{X} o \mathbb{R}_+$ by

 $\hat{\delta}(\Lambda) = \min_{\mathbf{v}\in\Lambda} \|\mathbf{v}\|.$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

The same principle works: good approximation to (A, \mathbf{b}) \uparrow small value of $\hat{\delta}(g_t \Lambda_{A, \mathbf{b}})$. DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Inhomogeneous Dani Correspondence

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Inhomogeneous Dani Correspondence

Specifically, given $\psi(\cdot)$, there exists $r(\cdot)$ such that

-

$$(\widehat{1\psi})$$
 $\|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \le \psi(T)$ and $\|\mathbf{q}\|^n \le T$

has an integer solution for some $T \iff \hat{\delta}(g_t \Lambda_{A,\mathbf{b}}) \le r(t)$ with *t* explicitly depending on *T*. DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Inhomogeneous Dani Correspondence

Specifically, given $\psi(\cdot)$, there exists $r(\cdot)$ such that

-

$$(\widehat{1\psi})$$
 $\|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \le \psi(T)$ and $\|\mathbf{q}\|^n \le T$

has an integer solution for some $T \iff \hat{\delta}(g_t \Lambda_{A,\mathbf{b}}) \le r(t)$ with *t* explicitly depending on *T*.

Corollary:
$$(A, \mathbf{b}) \notin \widehat{Dl}(\psi)$$

 $\hat{\delta}(g_t \Lambda_{A, \mathbf{b}}) > r(t)$ for an unbounded set of t

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks
Inhomogeneous Dani Correspondence

Specifically, given $\psi(\cdot)$, there exists $r(\cdot)$ such that

$$(\widehat{1\psi})$$
 $\|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \le \psi(T)$ and $\|\mathbf{q}\|^n \le T$

has an integer solution for some $T \iff \hat{\delta}(g_t \Lambda_{A,\mathbf{b}}) \le r(t)$ with *t* explicitly depending on *T*.

Corollary: $(A, \mathbf{b}) \notin \widehat{Dl}(\psi)$ $\uparrow \\ \hat{\delta}(g_t \Lambda_{A, \mathbf{b}}) > r(t) \text{ for an unbounded set of } t.$

However the geometry of $\hat{\delta}$ on \hat{X} is different from that of δ on X; for one thing, $\delta(X) = (0, 1]$, while $\hat{\delta}(\hat{X}) = [0, \infty)$.

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Inhomogeneous Dani Correspondence

Specifically, given $\psi(\cdot)$, there exists $r(\cdot)$ such that

$$(\widehat{1\psi})$$
 $\|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \le \psi(T)$ and $\|\mathbf{q}\|^n \le T$

has an integer solution for some $T \iff \hat{\delta}(g_t \Lambda_{A,\mathbf{b}}) \le r(t)$ with *t* explicitly depending on *T*.

Corollary: $(A, \mathbf{b}) \notin \widehat{Dl}(\psi)$ $\widehat{\delta}(g_t \Lambda_{A,\mathbf{b}}) > r(t) \text{ for an unbounded set of } t.$

However the geometry of $\hat{\delta}$ on \hat{X} is different from that of δ on X; for one thing, $\delta(X) = (0, 1]$, while $\hat{\delta}(\hat{X}) = [0, \infty)$.

In particular, for any R > 0 the set $\hat{\delta}^{-1}((R, \infty))$ has positive measure. This (fixed) target $r(t) \equiv R$ corresponds to $\psi_C(T) = \frac{C}{T}$, C > 0.

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Inhomogeneous Dani Correspondence

Specifically, given $\psi(\cdot)$, there exists $r(\cdot)$ such that

$$(\widehat{1\psi})$$
 $\|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \le \psi(T)$ and $\|\mathbf{q}\|^n \le T$

has an integer solution for some $T \iff \hat{\delta}(g_t \Lambda_{A,\mathbf{b}}) \le r(t)$ with t explicitly depending on T.

Corollary: $(A, \mathbf{b}) \notin \widehat{Dl}(\psi)$ $\uparrow \\ \hat{\delta}(g_t \Lambda_{A, \mathbf{b}}) > r(t) \text{ for an unbounded set of } t.$

However the geometry of $\hat{\delta}$ on \hat{X} is different from that of δ on X; for one thing, $\delta(X) = (0, 1]$, while $\hat{\delta}(\hat{X}) = [0, \infty)$.

In particular, for any R > 0 the set $\hat{\delta}^{-1}((R, \infty))$ has positive measure. This (fixed) target $r(t) \equiv R$ corresponds to $\psi_C(T) = \frac{C}{T}$, C > 0. By ergodicity of the g_t -action on \hat{X} , the set

 $\{\Lambda \in \hat{X} : \hat{\delta}(g_t\Lambda) \leq R \text{ for all large enough } t\}$

has measure 0, therefore $\widehat{Dl}(\psi_{\mathcal{C}})$ has measure zero for any $\mathcal{C}>0_{\mathbb{R}}$

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Moreover, because the family $\hat{\delta}^{-1}((R,\infty))$ is well behaving, we can actually prove much more!

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Moreover, because the family $\hat{\delta}^{-1}((R,\infty))$ is well behaving, we can actually prove much more!

Theorem: given a non-increasing ψ , the set $\widehat{DI}(\psi)$ has zero (resp. full) measure iff the series

$$\sum_k rac{1}{k^2 \psi(k)}$$

diverges (resp. converges).

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Moreover, because the family $\hat{\delta}^{-1}((R,\infty))$ is well behaving, we can actually prove much more!

Theorem: given a non-increasing ψ , the set $\widehat{DI}(\psi)$ has zero (resp. full) measure iff the series

$$\sum_{k} \frac{1}{k^2 \psi(k)}$$

diverges (resp. converges).

In particular:

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Moreover, because the family $\hat{\delta}^{-1}((R,\infty))$ is well behaving, we can actually prove much more!

Theorem: given a non-increasing ψ , the set $\widehat{DI}(\psi)$ has zero (resp. full) measure iff the series

$$\sum_k \frac{1}{k^2 \psi(k)}$$

diverges (resp. converges).

In particular:

•
$$\psi(k) = C \frac{\log k}{k} \implies \widehat{DI}(\psi)$$
 has measure zero;

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Moreover, because the family $\hat{\delta}^{-1}((R,\infty))$ is well behaving, we can actually prove much more!

Theorem: given a non-increasing ψ , the set $\widehat{DI}(\psi)$ has zero (resp. full) measure iff the series

$$\sum_k rac{1}{k^2 \psi(k)}$$

diverges (resp. converges).

In particular:

•
$$\psi(k) = C \frac{\log k}{k} \implies \widehat{DI}(\psi)$$
 has measure zero;

•
$$\psi(k) = C \frac{(\log k)^{1+\varepsilon}}{k} \Longrightarrow \widehat{DI}(\psi)$$
 has full measure.

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

Thank you for your attention!

DIRICHLET'S THEOREM FOR INHO-MOGENEOUS APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous approximation

Inhomogeneous approximation

Thanks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで