DIRICHLET'S THEOREM FOR INHOMOGENEOUS APPROXIMATION

Dmitry Kleinbock and Nick Wadlegh

Brandeis University

GOA 2016

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q*

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-81-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

Theorem (Dirichlet): for any $A \in M_{m \times n}(\mathbb{R})$ and any $T > 1$ \exists $p \in \mathbb{Z}^m$, $q \in \mathbb{Z}^n \smallsetminus \{0\}$ such that

(1) kAq − pk ^m ≤ 1 T and kqk ⁿ ≤ T.

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

KORKARYKERKE PROGRAM

Theorem (Dirichlet): for any $A \in M_{m \times n}(\mathbb{R})$ and any $T > 1$ \exists $p \in \mathbb{Z}^m$, $q \in \mathbb{Z}^n \smallsetminus \{0\}$ such that

(1) kAq − pk ^m ≤ 1 T and kqk ⁿ ≤ T.

Corollary (Dirichlet): for any $A \in M_{m \times n}(\mathbb{R})$ $\exists \infty$ many $\mathbf{q} \in \mathbb{Z}^n$ such that

(2)
$$
\|A\mathbf{q}-\mathbf{p}\|^{m}\leq \frac{1}{\|\mathbf{q}\|^{n}}\text{ for some }\mathbf{p}\in\mathbb{Z}^{m}.
$$

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

KORK STRAIN A BAR SHOP

Theorem (Dirichlet): for any $A \in M_{m \times n}(\mathbb{R})$ and any $T > 1$ \exists $p \in \mathbb{Z}^m$, $q \in \mathbb{Z}^n \smallsetminus \{0\}$ such that

$$
(1) \t\t\t ||A\mathbf{q}-\mathbf{p}||^{m}\leq \tfrac{1}{\mathcal{T}} \text{ and } \|\mathbf{q}\|^{n}\leq \mathcal{T}.
$$

Corollary (Dirichlet): for any $A \in M_{m \times n}(\mathbb{R})$ $\exists \infty$ many $\mathbf{q} \in \mathbb{Z}^n$ such that

(2)
$$
\|A\mathbf{q}-\mathbf{p}\|^{m}\leq \frac{1}{\|\mathbf{q}\|^{n}}\text{ for some }\mathbf{p}\in\mathbb{Z}^{m}.
$$

Questions: what happens if in (1) and (2) the RHS is replaced by a faster decreasing function of T and $\|\mathbf{q}\|$ respectively? In particular, what happens for typical A?

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

KORK STRAIN A BAR SHOP

Theorem (Dirichlet): for any $A \in M_{m \times n}(\mathbb{R})$ and any $T > 1$ \exists $p \in \mathbb{Z}^m$, $q \in \mathbb{Z}^n \smallsetminus \{0\}$ such that

$$
(1) \t\t\t ||A\mathbf{q}-\mathbf{p}||^{m}\leq \tfrac{1}{\mathcal{T}} \text{ and } \|\mathbf{q}\|^{n}\leq \mathcal{T}.
$$

Corollary (Dirichlet): for any $A \in M_{m \times n}(\mathbb{R})$ $\exists \infty$ many $\mathbf{q} \in \mathbb{Z}^n$ such that

(2)
$$
\|A\mathbf{q}-\mathbf{p}\|^{m}\leq \frac{1}{\|\mathbf{q}\|^{n}}\text{ for some }\mathbf{p}\in\mathbb{Z}^{m}.
$$

Questions: what happens if in (1) and (2) the RHS is replaced by a faster decreasing function of T and $\|\mathbf{q}\|$ respectively? In particular, what happens for typical A?

Well studied in the setting of (2), not so well for (1).

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

Definition: $W(\psi)$ is the set of ψ -approximable matrices,

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

Definition: $W(\psi)$ is the set of ψ -approximable matrices,

that is, $A \in M_{m \times n}(\mathbb{R})$ for which $\exists \infty$ many $\mathbf{q} \in \mathbb{Z}^n$ such that

 (2ψ) $||A\mathbf{q} - \mathbf{p}||^m \leq \psi(||\mathbf{q}||^n)$ for some $\mathbf{p} \in \mathbb{Z}^m$.

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

KORKARYKERKE PROGRAM

Definition: $W(\psi)$ is the set of ψ -approximable matrices,

that is, $A \in M_{m \times n}(\mathbb{R})$ for which $\exists \infty$ many $\mathbf{q} \in \mathbb{Z}^n$ such that

$$
(2\psi) \t ||A\mathbf{q} - \mathbf{p}||^{m} \leq \psi(||\mathbf{q}||^{n}) \text{ for some } \mathbf{p} \in \mathbb{Z}^{m}.
$$

Khintchine-Groshev Theorem: given a non-increasing ψ , the set $W(\psi)$ has zero (resp. full) measure if and only if the series $\sum_k \psi(k)$ converges (resp. diverges).

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

Definition: $W(\psi)$ is the set of ψ -approximable matrices,

that is, $A \in M_{m \times n}(\mathbb{R})$ for which $\exists \infty$ many $\mathbf{q} \in \mathbb{Z}^n$ such that

$$
(2\psi) \t ||A\mathbf{q} - \mathbf{p}||^{m} \leq \psi(||\mathbf{q}||^{n}) \text{ for some } \mathbf{p} \in \mathbb{Z}^{m}.
$$

Khintchine-Groshev Theorem: given a non-increasing ψ , the set $W(\psi)$ has zero (resp. full) measure if and only if the series $\sum_k \psi(k)$ converges (resp. diverges).

Note: $W(\psi)$ is a limsup set. In fact it is easy to see that $A \in W(\psi)$ if and only if the system

$$
(1\psi) \t ||A\mathbf{q} - \mathbf{p}||^{m} \leq \psi(\mathcal{T}) \text{ and } \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

has a nontrivial integer solution for ∞ many $T \in \mathbb{N}$.

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

Now we see that to improve the original Dirichlet's Theorem, not its corollary, we need to consider a corresponding liminf set!

Definition: $DI(\psi)$ is the set of ψ -Dirichlet-improvable matrices,

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

Now we see that to improve the original Dirichlet's Theorem, not its corollary, we need to consider a corresponding liminf set!

Definition: $DI(\psi)$ is the set of ψ -Dirichlet-improvable matrices,

that is, $A \in M_{m \times n}(\mathbb{R})$ for which the system

$$
(1\psi) \t ||A\mathbf{q} - \mathbf{p}||^{m} \leq \psi(T) \text{ and } \|\mathbf{q}\|^{n} \leq T
$$

has a nontrivial integer solution for all large enough T .

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

Now we see that to improve the original Dirichlet's Theorem, not its corollary, we need to consider a corresponding liminf set!

Definition: $DI(\psi)$ is the set of ψ -Dirichlet-improvable matrices,

that is, $A \in M_{m \times n}(\mathbb{R})$ for which the system

$$
(1\psi) \t ||A\mathbf{q} - \mathbf{p}||^{m} \leq \psi(\mathcal{T}) \text{ and } \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

has a nontrivial integer solution for all large enough T .

Questions:

• What is the necessary and sufficient condition for (non-increasing) ψ so that $DI(\psi)$ has zero/full measure?

KORKA SERKER ORA

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Now we see that to improve the original Dirichlet's Theorem, not its corollary, we need to consider a corresponding liminf set!

Definition: $DI(\psi)$ is the set of ψ -Dirichlet-improvable matrices,

that is, $A \in M_{m \times n}(\mathbb{R})$ for which the system

$$
(1\psi) \t ||A\mathbf{q} - \mathbf{p}||^{m} \leq \psi(\mathcal{T}) \text{ and } \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

has a nontrivial integer solution for all large enough T .

Questions:

• What is the necessary and sufficient condition for (non-increasing) ψ so that $DI(\psi)$ has zero/full measure? (Not known)

KORKA SERKER ORA

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Now we see that to improve the original Dirichlet's Theorem, not its corollary, we need to consider a corresponding liminf set!

Definition: $DI(\psi)$ is the set of ψ -Dirichlet-improvable matrices,

that is, $A \in M_{m \times n}(\mathbb{R})$ for which the system

$$
(1\psi) \t ||A\mathbf{q} - \mathbf{p}||^{m} \leq \psi(\mathcal{T}) \text{ and } \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

has a nontrivial integer solution for all large enough T .

Questions:

- What is the necessary and sufficient condition for (non-increasing) ψ so that $DI(\psi)$ has zero/full measure? (Not known)
- Why is this problem more difficult? after all there is a duality between limsup and liminf sets, lim inf_k $E_k = (\limsup_k E_k^c)^c$..

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Now we see that to improve the original Dirichlet's Theorem, not its corollary, we need to consider a corresponding liminf set!

Definition: $DI(\psi)$ is the set of ψ -Dirichlet-improvable matrices.

that is, $A \in M_{m \times n}(\mathbb{R})$ for which the system

$$
(1\psi) \t ||A\mathbf{q} - \mathbf{p}||^{m} \leq \psi(\mathcal{T}) \text{ and } \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

has a nontrivial integer solution for all large enough T .

Questions:

- What is the necessary and sufficient condition for (non-increasing) ψ so that $DI(\psi)$ has zero/full measure? (Not known)
- Why is this problem more difficult? after all there is a duality between limsup and liminf sets, lim inf_k $E_k = (\limsup_k E_k^c)^c$.. (Yes, but E_k^c are way more complicated and harder to work with...)

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

• The Khintchine-Groshev Theorem can also be proved using dynamics [K-Margulis, 1999]. Can the same approach work here?

Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

KORKARYKERKE PROGRAM

• The Khintchine-Groshev Theorem can also be proved using dynamics [K-Margulis, 1999]. Can the same approach work here? well, let's try..

Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

• The Khintchine-Groshev Theorem can also be proved using dynamics [K-Margulis, 1999]. Can the same approach work here? well, let's try..

Recall: if one takes $d = m + n$ and $X = SL_d(\mathbb{R})/SL_d(\mathbb{Z})$ (the space of unimodular lattices in \mathbb{R}^d), then the Diophantine properties of A can be understood via the trajectory $\{g_t \Lambda_A : t \geq 0\}$, where

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

• The Khintchine-Groshev Theorem can also be proved using dynamics [K-Margulis, 1999]. Can the same approach work here? well, let's try..

Recall: if one takes $d = m + n$ and $X = SL_d(\mathbb{R})/SL_d(\mathbb{Z})$ (the space of unimodular lattices in \mathbb{R}^d), then the Diophantine properties of A can be understood via the trajectory $\{g_t \Lambda_A : t \geq 0\}$, where

$$
\Lambda_A = \begin{pmatrix} I_m & A \\ 0 & I_n \end{pmatrix} \mathbb{Z}^d = \left\{ \begin{pmatrix} A\mathbf{q} - \mathbf{p} \\ \mathbf{q} \end{pmatrix} : \mathbf{p} \in \mathbb{Z}^m, \ \mathbf{q} \in \mathbb{Z}^n \right\}
$$

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

• The Khintchine-Groshev Theorem can also be proved using dynamics [K-Margulis, 1999]. Can the same approach work here? well, let's try..

Recall: if one takes $d = m + n$ and $X = SL_d(\mathbb{R})/SL_d(\mathbb{Z})$ (the space of unimodular lattices in \mathbb{R}^d), then the Diophantine properties of A can be understood via the trajectory $\{g_t \Lambda_A : t \geq 0\}$, where

$$
\Lambda_A = \begin{pmatrix} I_m & A \\ 0 & I_n \end{pmatrix} \mathbb{Z}^d = \left\{ \begin{pmatrix} A\mathbf{q} - \mathbf{p} \\ \mathbf{q} \end{pmatrix} : \mathbf{p} \in \mathbb{Z}^m, \ \mathbf{q} \in \mathbb{Z}^n \right\}
$$

and

$$
g_t = \begin{pmatrix} e^{t/m} I_m & 0 \\ 0 & e^{-t/n} I_n \end{pmatrix}.
$$

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

• The Khintchine-Groshev Theorem can also be proved using dynamics [K-Margulis, 1999]. Can the same approach work here? well, let's try..

Recall: if one takes $d = m + n$ and $X = SL_d(\mathbb{R})/SL_d(\mathbb{Z})$ (the space of unimodular lattices in \mathbb{R}^d), then the Diophantine properties of A can be understood via the trajectory $\{g_t \Lambda_A : t \geq 0\}$, where

$$
\Lambda_A = \begin{pmatrix} I_m & A \\ 0 & I_n \end{pmatrix} \mathbb{Z}^d = \left\{ \begin{pmatrix} A\mathbf{q} - \mathbf{p} \\ \mathbf{q} \end{pmatrix} : \mathbf{p} \in \mathbb{Z}^m, \ \mathbf{q} \in \mathbb{Z}^n \right\}
$$

and

$$
g_t = \begin{pmatrix} e^{t/m} I_m & 0 \\ 0 & e^{-t/n} I_n \end{pmatrix}.
$$

KORKA SERKER ORA

Also define $\delta : X \to \mathbb{R}_+$ by $\delta(\Lambda) := \min_{\mathbf{v} \in \Lambda \setminus \{0\}} ||\mathbf{v}||.$

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

• The Khintchine-Groshev Theorem can also be proved using dynamics [K-Margulis, 1999]. Can the same approach work here? well, let's try..

Recall: if one takes $d = m + n$ and $X = SL_d(\mathbb{R})/SL_d(\mathbb{Z})$ (the space of unimodular lattices in \mathbb{R}^d), then the Diophantine properties of A can be understood via the trajectory $\{g_t \Lambda_A : t \geq 0\}$, where

$$
\Lambda_A = \begin{pmatrix} I_m & A \\ 0 & I_n \end{pmatrix} \mathbb{Z}^d = \left\{ \begin{pmatrix} A\mathbf{q} - \mathbf{p} \\ \mathbf{q} \end{pmatrix} : \mathbf{p} \in \mathbb{Z}^m, \ \mathbf{q} \in \mathbb{Z}^n \right\}
$$

and

$$
g_t = \begin{pmatrix} e^{t/m} I_m & 0 \\ 0 & e^{-t/n} I_n \end{pmatrix}.
$$

Also define $\delta : X \to \mathbb{R}_+$ by $\delta(\Lambda) := \min_{\mathbf{v} \in \Lambda \setminus \{0\}} ||\mathbf{v}||.$

Minkowski's Lemma: $\delta(\Lambda) < 1$ for any $\Lambda \in X$.

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

• The Khintchine-Groshev Theorem can also be proved using dynamics [K-Margulis, 1999]. Can the same approach work here? well, let's try..

Recall: if one takes $d = m + n$ and $X = SL_d(\mathbb{R})/SL_d(\mathbb{Z})$ (the space of unimodular lattices in \mathbb{R}^d), then the Diophantine properties of A can be understood via the trajectory $\{g_t \Lambda_A : t \geq 0\}$, where

$$
\Lambda_A = \begin{pmatrix} I_m & A \\ 0 & I_n \end{pmatrix} \mathbb{Z}^d = \left\{ \begin{pmatrix} A\mathbf{q} - \mathbf{p} \\ \mathbf{q} \end{pmatrix} : \mathbf{p} \in \mathbb{Z}^m, \ \mathbf{q} \in \mathbb{Z}^n \right\}
$$

and

$$
g_t = \begin{pmatrix} e^{t/m} I_m & 0 \\ 0 & e^{-t/n} I_n \end{pmatrix}.
$$

Also define $\delta : X \to \mathbb{R}_+$ by $\delta(\Lambda) := \min_{\mathbf{v} \in \Lambda \setminus \{0\}} ||\mathbf{v}||.$

Minkowski's Lemma: $\delta(\Lambda) < 1$ for any $\Lambda \in X$.

Mahlers's Criterion: $\delta(\Lambda)$ is very small $\leftrightarrow \Lambda$ is far far away in X.

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

Lemma [K-Margulis '99]: given a non-increasing ψ , there exists a function $r : \mathbb{R}_+ \to \mathbb{R}_+$ such that the system

$$
(1\psi) \t ||A\mathbf{q} - \mathbf{p}||^{m} \leq \psi(\mathcal{T}) \text{ and } \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

has a nontrivial integer solution for some $T \iff \delta(g_t \Lambda_A) \leq r(t)$,

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

KORKARYKERKE PROGRAM

Lemma [K-Margulis '99]: given a non-increasing ψ , there exists a function $r : \mathbb{R}_+ \to \mathbb{R}_+$ such that the system

$$
(1\psi) \t ||A\mathbf{q} - \mathbf{p}||^{m} \leq \psi(T) \text{ and } \|\mathbf{q}\|^{n} \leq T
$$

has a nontrivial integer solution for some $T \iff \delta(g_t \Lambda_A) \leq r(t)$, with t explicitly depending on T .

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

KORK STRAIN A BAR SHOP

Lemma [K-Margulis '99]: given a non-increasing ψ , there exists a function $r : \mathbb{R}_+ \to \mathbb{R}_+$ such that the system

$$
(1\psi) \t ||A\mathbf{q} - \mathbf{p}||^{m} \leq \psi(\mathcal{T}) \text{ and } \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

has a nontrivial integer solution for some $\tau \iff \delta(g_t \Lambda_A) \leq r(t)$, with t explicitly depending on T .

So the setting of (2) is about the family of targets

 $\{\Lambda \in X : \delta(\Lambda) \leq r\}$

shrinking to ∞ as $r \to 0$.

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

Lemma [K-Margulis '99]: given a non-increasing ψ , there exists a function $r : \mathbb{R}_+ \to \mathbb{R}_+$ such that the system

$$
(1\psi) \t ||A\mathbf{q} - \mathbf{p}||^{m} \leq \psi(\mathcal{T}) \text{ and } \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

has a nontrivial integer solution for some $\tau \iff \delta(g_t \Lambda_A) \leq r(t)$, with t explicitly depending on T .

So the setting of (2) is about the family of targets

 $\{\Lambda \in X : \delta(\Lambda) \leq r\}$

shrinking to ∞ as $r \to 0$. (easy)

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

Lemma [K-Margulis '99]: given a non-increasing ψ , there exists a function $r : \mathbb{R}_+ \to \mathbb{R}_+$ such that the system

$$
(1\psi) \t ||A\mathbf{q} - \mathbf{p}||^{m} \leq \psi(\mathcal{T}) \text{ and } \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

has a nontrivial integer solution for some $\tau \iff \delta(g_t \Lambda_A) \leq r(t)$, with t explicitly depending on T .

So the setting of (2) is about the family of targets

$$
\{\Lambda \in X : \delta(\Lambda) \leq r\}
$$

shrinking to ∞ as $r \to 0$. (easy)

On the other hand, in the setting of (1) one needs to consider a family of complements to the above sets:

$$
\{\Lambda \in X : \delta(\Lambda) > r\},\
$$

which shrink to a certain compact set as $r \to 1$.

KORKA SERKER ORA

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Lemma [K-Margulis '99]: given a non-increasing ψ , there exists a function $r : \mathbb{R}_+ \to \mathbb{R}_+$ such that the system

$$
(1\psi) \t ||A\mathbf{q} - \mathbf{p}||^{m} \leq \psi(\mathcal{T}) \text{ and } \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

has a nontrivial integer solution for some $\tau \iff \delta(g_t \Lambda_A) \leq r(t)$, with t explicitly depending on T .

So the setting of (2) is about the family of targets

$$
\{\Lambda \in X : \delta(\Lambda) \leq r\}
$$

shrinking to ∞ as $r \to 0$. (easy)

On the other hand, in the setting of (1) one needs to consider a family of complements to the above sets:

$$
\{\Lambda \in X : \delta(\Lambda) > r\},\
$$

which shrink to a certain compact set as $r \to 1$. **KORKA SERKER ORA**

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

Kleinbock and Wadleigh

Corollary: $A \notin DI(\psi) \iff \delta(g_t \Lambda_A) > r(t)$ for an unbounded set of t.

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

KORKARYKERKE PROGRAM

Corollary: $A \notin DI(\psi) \iff \delta(g_t \Lambda_A) > r(t)$ for an unbounded set of t.

But the family of shrinking targets $\{\delta^{-1}((r,1])\}$ is kind of complicated. Some partial results (for slowly decaying functions ψ) can be obtained, not a complete solution yet.

Example: put $\psi_c(T) = \frac{c}{T}$ where $c < 1$. This corresponds to

$$
r(t) \equiv 1 - \varepsilon, \quad \varepsilon > 0.
$$

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)
Dani Correspondence

Corollary: $A \notin DI(\psi) \iff \delta(g_t \Lambda_A) > r(t)$ for an unbounded set of t.

But the family of shrinking targets $\{\delta^{-1}((r,1])\}$ is kind of complicated. Some partial results (for slowly decaying functions ψ) can be obtained, not a complete solution yet.

Example: put $\psi_c(T) = \frac{c}{T}$ where $c < 1$. This corresponds to

$$
r(t) \equiv 1 - \varepsilon, \quad \varepsilon > 0.
$$

By ergodicity of the g_t -action on X,

$$
\{\Lambda \in X : \delta(g_t \Lambda) > 1 - \varepsilon \text{ for all large enough } t\}
$$

KORKA SERKER ORA

has measure 0,

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

Dani Correspondence

Corollary: $A \notin DI(\psi) \iff \delta(g_t \Lambda_A) > r(t)$ for an unbounded set of t.

But the family of shrinking targets $\{\delta^{-1}((r,1])\}$ is kind of complicated. Some partial results (for slowly decaying functions ψ) can be obtained, not a complete solution yet.

Example: put $\psi_c(T) = \frac{c}{T}$ where $c < 1$. This corresponds to

$$
r(t) \equiv 1 - \varepsilon, \quad \varepsilon > 0.
$$

By ergodicity of the g_t -action on X,

$$
\{\Lambda \in X : \delta(g_t \Lambda) > 1 - \varepsilon \text{ for all large enough } t\}
$$

has measure 0, therefore $DI(\psi_c)$ has measure zero (Davenport and Schmidt 1969).

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

Homogeneous [approximation](#page-1-0)

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

The set-up: we now have $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$, and look for the following statement:

for any $\mathcal{T}>1$ (or at least any large enough $\mathcal{T})$ \exists $p \in \mathbb{Z}^m$, $q \in \mathbb{Z}^n$ such that

$$
\text{(1)} \qquad \qquad \|\mathbf{A}\mathbf{q} + \mathbf{b} - \mathbf{p}\|^{m} \leq \text{????} \quad \text{and} \quad \|\mathbf{q}\|^{n} \leq T
$$

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

The set-up: we now have $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$, and look for the following statement:

for any $\mathcal{T}>1$ (or at least any large enough $\mathcal{T})$ \exists $p \in \mathbb{Z}^m$, $q \in \mathbb{Z}^n$ such that

$$
\text{(1)} \qquad \qquad \|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^{m} \leq \text{ ?? ??} \quad \text{and} \quad \|\mathbf{q}\|^{n} \leq T
$$

(there are no reasons to exclude $q = 0$ anymore).

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

The set-up: we now have $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$, and look for the following statement:

for any $T > 1$ (or at least any large enough T) \exists $\mathbf{p} \in \mathbb{Z}^m$, $\mathbf{q} \in \mathbb{Z}^n$ such that

$$
\text{(1)} \qquad \qquad \|\mathbf{A}\mathbf{q} + \mathbf{b} - \mathbf{p}\|^{m} \leq \text{ ????} \quad \text{and} \quad \|\mathbf{q}\|^{n} \leq \text{ } \mathcal{T}
$$

(there are no reasons to exclude $q = 0$ anymore).

And what to put instead of ????

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

The set-up: we now have $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$, and look for the following statement:

for any $T > 1$ (or at least any large enough T) \exists $\mathbf{p} \in \mathbb{Z}^m$, $\mathbf{q} \in \mathbb{Z}^n$ such that

$$
\text{(1)} \qquad \qquad \|\mathbf{A}\mathbf{q} + \mathbf{b} - \mathbf{p}\|^{m} \leq \text{ ?? ??} \quad \text{and} \quad \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

(there are no reasons to exclude $q = 0$ anymore).

And what to put instead of ????

Turns out that no function which goes to 0 as $T \to \infty$ will work!

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

The set-up: we now have $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$, and look for the following statement:

for any $T > 1$ (or at least any large enough T) \exists $\mathbf{p} \in \mathbb{Z}^m$, $\mathbf{q} \in \mathbb{Z}^n$ such that

$$
\text{(1)} \qquad \qquad \|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^{m} \leq \text{ ?? ??} \quad \text{and} \quad \|\mathbf{q}\|^{n} \leq T
$$

(there are no reasons to exclude $q = 0$ anymore).

And what to put instead of ???? Turns out that no function which goes to 0 as $T \to \infty$ will work! Just take $A = 0$ and $\mathbf{b} \in \frac{1}{2}\mathbb{Z}^m \setminus \mathbb{Z}^m$.

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

The set-up: we now have $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$, and look for the following statement:

for any $T > 1$ (or at least any large enough T) \exists $\mathbf{p} \in \mathbb{Z}^m$, $\mathbf{q} \in \mathbb{Z}^n$ such that

$$
\text{(1)} \qquad \qquad \|\mathbf{A}\mathbf{q} + \mathbf{b} - \mathbf{p}\|^{m} \leq \text{ ????} \quad \text{and} \quad \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

(there are no reasons to exclude $q = 0$ anymore).

And what to put instead of ???? Turns out that no function which goes to 0 as $T \rightarrow \infty$ will work! Just take $A = 0$ and $\mathbf{b} \in \frac{1}{2}\mathbb{Z}^m \setminus \mathbb{Z}^m$.

And even we exclude stupid rational cases, there will always be irrational counterexamples (Khintchine).

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

The set-up: we now have $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$, and look for the following statement:

for any $T > 1$ (or at least any large enough T) \exists $\mathbf{p} \in \mathbb{Z}^m$, $\mathbf{q} \in \mathbb{Z}^n$ such that

$$
\text{(1)} \qquad \qquad \|\mathbf{A}\mathbf{q} + \mathbf{b} - \mathbf{p}\|^{m} \leq \text{ ????} \quad \text{and} \quad \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

(there are no reasons to exclude $q = 0$ anymore).

And what to put instead of ???? Turns out that no function which goes to 0 as $T \to \infty$ will work! Just take $A = 0$ and $\mathbf{b} \in \frac{1}{2}\mathbb{Z}^m \setminus \mathbb{Z}^m$.

And even we exclude stupid rational cases, there will always be irrational counterexamples (Khintchine). So the best we could do is: DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

The set-up: we now have $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$, and look for the following statement:

for any $T > 1$ (or at least any large enough T) \exists $\mathbf{p} \in \mathbb{Z}^m$, $\mathbf{q} \in \mathbb{Z}^n$ such that

$$
\text{(1)} \qquad \qquad \|\mathbf{A}\mathbf{q} + \mathbf{b} - \mathbf{p}\|^{m} \leq \text{ ????} \quad \text{and} \quad \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

(there are no reasons to exclude $q = 0$ anymore).

And what to put instead of ???? Turns out that no function which goes to 0 as $T \rightarrow \infty$ will work! Just take $A = 0$ and $\mathbf{b} \in \frac{1}{2}\mathbb{Z}^m \setminus \mathbb{Z}^m$.

And even we exclude stupid rational cases, there will always be irrational counterexamples (Khintchine). So the best we could do is:

for any $T > 1$ $\exists \, \mathbf{p} \in \mathbb{Z}^m$, $\mathbf{q} \in \mathbb{Z}^n$ such that

$$
\text{(1)} \qquad \qquad \|\mathbf{A}\mathbf{q} + \mathbf{b} - \mathbf{p}\|^{m} \leq 2^{-m} \quad \text{and} \quad \|\mathbf{q}\|^{n} \leq T
$$

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

The set-up: we now have $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$, and look for the following statement:

for any $T > 1$ (or at least any large enough T) \exists $\mathbf{p} \in \mathbb{Z}^m$, $\mathbf{q} \in \mathbb{Z}^n$ such that

$$
\text{(1)} \qquad \qquad \|\mathbf{A}\mathbf{q} + \mathbf{b} - \mathbf{p}\|^{m} \leq \text{ ????} \quad \text{and} \quad \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

(there are no reasons to exclude $q = 0$ anymore).

And what to put instead of ???? Turns out that no function which goes to 0 as $T \rightarrow \infty$ will work! Just take $A = 0$ and $\mathbf{b} \in \frac{1}{2}\mathbb{Z}^m \setminus \mathbb{Z}^m$.

And even we exclude stupid rational cases, there will always be irrational counterexamples (Khintchine). So the best we could do is:

for any $T > 1$ $\exists \, \mathbf{p} \in \mathbb{Z}^m$, $\mathbf{q} \in \mathbb{Z}^n$ such that

$$
\text{(1)} \qquad \qquad \|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^{m} \leq 2^{-m} \quad \text{and} \quad \|\mathbf{q}\|^{n} \leq T
$$

(which is not much).

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Still something can be said in the setting of (2).

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Still something can be said in the setting of (2).

Theorem (Minkowski?): there exist constants $C_{m,n}$ such that for $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m \; \; \exists \; \infty \; \text{many} \; \mathbf{q} \in \mathbb{Z}^n$ with

$$
\text{(2)} \quad \|\text{A}\mathbf{q}+\mathbf{b}-\mathbf{p}\|^{m}\leq \frac{C_{m,n}}{\|\mathbf{q}\|^{n}} \text{ for some } \mathbf{p}\in\mathbb{Z}^{m},
$$

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Still something can be said in the setting of (2).

Theorem (Minkowski?): there exist constants $C_{m,n}$ such that for $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m \; \; \exists \; \infty \; \text{many} \; \mathbf{q} \in \mathbb{Z}^n$ with

$$
\text{(2)} \quad \|\text{A}\mathbf{q}+\mathbf{b}-\mathbf{p}\|^{m}\leq \frac{C_{m,n}}{\|\mathbf{q}\|^{n}} \text{ for some } \mathbf{p}\in\mathbb{Z}^{m},
$$

unless there exists $\mathbf{u} \in \mathbb{Z}^m$ such that $A^T \mathbf{u} \in \mathbb{Z}^n$ but $\mathbf{b}^T \mathbf{u} \notin \mathbb{Z}$.

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Still something can be said in the setting of (2).

Theorem (Minkowski?): there exist constants $C_{m,n}$ such that for $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m \; \; \exists \; \infty \; \text{many} \; \mathbf{q} \in \mathbb{Z}^n$ with

$$
\text{(2)} \qquad \qquad \|\mathcal{A}\mathbf{q}+\mathbf{b}-\mathbf{p}\|^m \leq \frac{C_{m,n}}{\|\mathbf{q}\|^n} \text{ for some } \mathbf{p} \in \mathbb{Z}^m,
$$

unless there exists $\mathbf{u} \in \mathbb{Z}^m$ such that $A^T \mathbf{u} \in \mathbb{Z}^n$ but $\mathbf{b}^T \mathbf{u} \notin \mathbb{Z}$.

This is a starting point for inhomogeneous Khintchine-Groshev theory.

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Still something can be said in the setting of (2).

Theorem (Minkowski?): there exist constants $C_{m,n}$ such that for $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m \; \; \exists \; \infty \; \text{many} \; \mathbf{q} \in \mathbb{Z}^n$ with

$$
\text{(2)} \quad \|\mathcal{A}\mathbf{q}+\mathbf{b}-\mathbf{p}\|^{m}\leq \frac{C_{m,n}}{\|\mathbf{q}\|^{n}} \text{ for some } \mathbf{p}\in\mathbb{Z}^{m},
$$

unless there exists $\mathbf{u} \in \mathbb{Z}^m$ such that $A^T \mathbf{u} \in \mathbb{Z}^n$ but $\mathbf{b}^T \mathbf{u} \notin \mathbb{Z}$.

This is a starting point for inhomogeneous Khintchine-Groshev theory.

Definition: $\widehat{W}(\psi)$ is the set of ψ -approximable pairs (A, b) ,

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Still something can be said in the setting of (2).

Theorem (Minkowski?): there exist constants $C_{m,n}$ such that for $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m \; \; \exists \; \infty \; \text{many} \; \mathbf{q} \in \mathbb{Z}^n$ with

$$
\text{(2)} \quad \|\mathcal{A}\mathbf{q}+\mathbf{b}-\mathbf{p}\|^{m}\leq \frac{C_{m,n}}{\|\mathbf{q}\|^{n}} \text{ for some } \mathbf{p}\in\mathbb{Z}^{m},
$$

unless there exists $\mathbf{u} \in \mathbb{Z}^m$ such that $A^T \mathbf{u} \in \mathbb{Z}^n$ but $\mathbf{b}^T \mathbf{u} \notin \mathbb{Z}$.

This is a starting point for inhomogeneous Khintchine-Groshev theory.

Definition: $\widehat{W}(\psi)$ is the set of ψ -approximable pairs (A, \mathbf{b}) ,

that is, those for which $\exists \infty$ many $\mathbf{q} \in \mathbb{Z}^n$ such that

 \sim

$$
(\widehat{2\psi}) \qquad \qquad \|A\mathbf{q}+\mathbf{b}-\mathbf{p}\|^m \leq \psi(\|\mathbf{q}\|^n) \text{ for some } \mathbf{p} \in \mathbb{Z}^m.
$$

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Still something can be said in the setting of (2).

Theorem (Minkowski?): there exist constants $C_{m,n}$ such that for $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m \; \; \exists \; \infty \; \text{many} \; \mathbf{q} \in \mathbb{Z}^n$ with

$$
\text{(2)} \quad \|\mathcal{A}\mathbf{q}+\mathbf{b}-\mathbf{p}\|^{m}\leq \frac{C_{m,n}}{\|\mathbf{q}\|^{n}} \text{ for some } \mathbf{p}\in\mathbb{Z}^{m},
$$

unless there exists $\mathbf{u} \in \mathbb{Z}^m$ such that $A^T \mathbf{u} \in \mathbb{Z}^n$ but $\mathbf{b}^T \mathbf{u} \notin \mathbb{Z}$.

This is a starting point for inhomogeneous Khintchine-Groshev theory.

Definition: $\widehat{W}(\psi)$ is the set of ψ -approximable pairs (A, b) ,

that is, those for which $\exists \infty$ many $\mathbf{q} \in \mathbb{Z}^n$ such that

$$
(\widehat{2\psi}) \qquad \qquad \|A\mathbf{q}+\mathbf{b}-\mathbf{p}\|^m \leq \psi(\|\mathbf{q}\|^n) \text{ for some } \mathbf{p} \in \mathbb{Z}^m.
$$

The work of Cassels and Schmidt gives precise conditions on ψ such that $\widehat{W}(\psi)$, or even $\{A:(A, \mathbf{b})\in \widehat{W}(\psi)\}$ for fixed **b**, has zero/full measure.**KORKAR KERKER EL VOLO**

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Improving (1)

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Let us now try to apply the same approach to the (non-existing) inhomogeneous Dirichlet's theorem.

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Let us now try to apply the same approach to the (non-existing) inhomogeneous Dirichlet's theorem.

Definition: $\widehat{DI}(\psi)$ is the set of ψ -Dirichlet-improvable pairs (A, \mathbf{b}) ,

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

KORKARYKERKE PROGRAM

Let us now try to apply the same approach to the (non-existing) inhomogeneous Dirichlet's theorem.

Definition: $\widehat{D}(\psi)$ is the set of ψ -Dirichlet-improvable pairs (A, \mathbf{b}) ,

that is, those for which the system

$$
(\widehat{1\psi}) \qquad \qquad \|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^{m} \leq \psi(\mathcal{T}) \quad \text{and} \quad \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

has an integer solution for all large enough T.

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Let us now try to apply the same approach to the (non-existing) inhomogeneous Dirichlet's theorem.

Definition: $\widehat{D}(\psi)$ is the set of ψ -Dirichlet-improvable pairs (A, \mathbf{b}) ,

that is, those for which the system

$$
(\widehat{1}\widehat{\psi}) \qquad \qquad \|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^{m} \leq \psi(\mathcal{T}) \quad \text{and} \quad \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

has an integer solution for all large enough T.

Again one can ask: for which (non-increasing) ψ the set $\widehat{D}I(\psi)$ has zero/full measure?

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

KORKAR KERKER EL VOLO

Let us now try to apply the same approach to the (non-existing) inhomogeneous Dirichlet's theorem.

Definition: $\widehat{D}(\psi)$ is the set of ψ -Dirichlet-improvable pairs (A, \mathbf{b}) ,

that is, those for which the system

$$
(\widehat{1}\widehat{\psi}) \qquad \qquad \|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^{m} \leq \psi(\mathcal{T}) \quad \text{and} \quad \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

has an integer solution for all large enough T.

Again one can ask: for which (non-increasing) ψ the set $\widehat{D}I(\psi)$ has zero/full measure? Not clear how to do it using classical methods.

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Let us now try to apply the same approach to the (non-existing) inhomogeneous Dirichlet's theorem.

Definition: $\widehat{D}(\psi)$ is the set of ψ -Dirichlet-improvable pairs (A, \mathbf{b}) ,

that is, those for which the system

$$
(\widehat{1}\widehat{\psi}) \qquad \qquad \|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^{m} \leq \psi(\mathcal{T}) \quad \text{and} \quad \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

has an integer solution for all large enough T.

Again one can ask: for which (non-increasing) ψ the set $\widehat{DI}(\psi)$ has zero/full measure? Not clear how to do it using classical methods.

However the dynamical approach works and produces a definitive result (so in some sense the inhomogeneous version is easier than its homogeneous counterpart!)

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Here one has to take $\widehat{X} = \text{ASL}_d(\mathbb{R})/\text{ASL}_d(\mathbb{Z})$ (the space of unimodular grids in \mathbb{R}^d),

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q*

Here one has to take $\widehat{X} = \text{ASL}_d(\mathbb{R})/\text{ASL}_d(\mathbb{Z})$ (the space of unimodular grids in \mathbb{R}^d), and, given the pair (A, \mathbf{b}) , consider the trajectory

$$
\{g_t\Lambda_{A,\mathbf{b}}:t\geq 0\},\
$$

where

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Here one has to take $\widehat{X} = \mathsf{ASL}_{d}(\mathbb{R})/\mathsf{ASL}_{d}(\mathbb{Z})$ (the space of unimodular grids in \mathbb{R}^d), and, given the pair (A, b) , consider the trajectory

$$
\{g_t\Lambda_{A,\mathbf{b}}:t\geq 0\},\
$$

where

$$
\Lambda_{A,\mathbf{b}} = \begin{pmatrix} I_m & A \\ 0 & I_n \end{pmatrix} \mathbb{Z}^d + \begin{pmatrix} \mathbf{b} \\ 0 \end{pmatrix} \ = \left\{ \begin{pmatrix} A\mathbf{q} + \mathbf{b} - \mathbf{p} \\ \mathbf{q} \end{pmatrix} : \mathbf{p} \in \mathbb{Z}^m, \ \mathbf{q} \in \mathbb{Z}^n \right\}
$$

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Here one has to take $\widehat{X} = \mathsf{ASL}_{d}(\mathbb{R})/\mathsf{ASL}_{d}(\mathbb{Z})$ (the space of unimodular grids in \mathbb{R}^d), and, given the pair (A, b) , consider the trajectory

$$
\{g_t\Lambda_{A,\mathbf{b}}:t\geq 0\},\
$$

where

$$
\Lambda_{A,\mathbf{b}} = \begin{pmatrix} I_m & A \\ 0 & I_n \end{pmatrix} \mathbb{Z}^d + \begin{pmatrix} \mathbf{b} \\ 0 \end{pmatrix} = \left\{ \begin{pmatrix} A\mathbf{q} + \mathbf{b} - \mathbf{p} \\ \mathbf{q} \end{pmatrix} : \mathbf{p} \in \mathbb{Z}^m, \ \mathbf{q} \in \mathbb{Z}^n \right\}
$$

and g_t is as before.

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Here one has to take $\widehat{X} = \mathsf{ASL}_d (\mathbb{R})/\mathsf{ASL}_d (\mathbb{Z})$ (the space of unimodular grids in \mathbb{R}^d), and, given the pair (A, b) , consider the trajectory

$$
\{g_t\Lambda_{A,\mathbf{b}}:t\geq 0\},\
$$

where

$$
\Lambda_{A,\mathbf{b}} = \begin{pmatrix} I_m & A \\ 0 & I_n \end{pmatrix} \mathbb{Z}^d + \begin{pmatrix} \mathbf{b} \\ 0 \end{pmatrix} = \left\{ \begin{pmatrix} A\mathbf{q} + \mathbf{b} - \mathbf{p} \\ \mathbf{q} \end{pmatrix} : \mathbf{p} \in \mathbb{Z}^m, \ \mathbf{q} \in \mathbb{Z}^n \right\}
$$

and g_t is as before. Also define $\hat{\delta} : \hat{X} \to \mathbb{R}_+$ by

$$
\hat{\delta}(\Lambda)=\min_{\mathbf{v}\in\Lambda}\|\mathbf{v}\|.
$$

KORKA SERKER ORA

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Here one has to take $\widehat{X} = \mathsf{ASL}_{d}(\mathbb{R})/\mathsf{ASL}_{d}(\mathbb{Z})$ (the space of unimodular grids in \mathbb{R}^d), and, given the pair (A, b) , consider the trajectory

 ${g_t \Lambda_{A,b} : t > 0},$

where

$$
\Lambda_{A,\mathbf{b}} = \begin{pmatrix} I_m & A \\ 0 & I_n \end{pmatrix} \mathbb{Z}^d + \begin{pmatrix} \mathbf{b} \\ 0 \end{pmatrix} = \left\{ \begin{pmatrix} A\mathbf{q} + \mathbf{b} - \mathbf{p} \\ \mathbf{q} \end{pmatrix} : \mathbf{p} \in \mathbb{Z}^m, \ \mathbf{q} \in \mathbb{Z}^n \right\}
$$

and g_t is as before. Also define $\hat{\delta} : \hat{X} \to \mathbb{R}_+$ by

 $\hat{\delta}(\Lambda) = \min_{\mathbf{v} \in \Lambda} \|\mathbf{v}\|.$

The same principle works: good approximation to (A, b) $\mathbb{1}$ small value of $\hat{\delta}(g_t \Lambda_{A,\mathbf{b}})$.

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Inhomogeneous Dani Correspondence

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Inhomogeneous Dani Correspondence

Specifically, given $\psi(\cdot)$, there exists $r(\cdot)$ such that

$$
(\widehat{1\psi}) \qquad \qquad \|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^{m} \leq \psi(\mathcal{T}) \quad \text{and} \quad \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

has an integer solution for some $\mathcal{T} \Longleftrightarrow \hat{\delta}(g_t \Lambda_{A, \mathbf{b}}) \leq r(t)$ with t explicitly depending on T .

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Inhomogeneous Dani Correspondence

 ${\sf Specifically}$, given $\psi(\cdot)$, there exists $r(\cdot)$ such that

$$
(\widehat{1\psi}) \qquad \qquad \|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^m \le \psi(\mathcal{T}) \quad \text{and} \quad \|\mathbf{q}\|^n \le \mathcal{T}
$$

has an integer solution for some $\mathcal{T} \Longleftrightarrow \hat{\delta} (g_t \Lambda_{A, \mathbf{b}}) \leq r(t)$ with t explicitly depending on $\mathcal T.$

Corollary:
$$
(A, \mathbf{b}) \notin \widehat{DI}(\psi)
$$

\n $\hat{\delta}(g_t \Lambda_{A, \mathbf{b}}) > r(t)$ for an unbounded set of t .

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation
Inhomogeneous Dani Correspondence

Specifically, given $\psi(\cdot)$, there exists $r(\cdot)$ such that

$$
(\widehat{1\psi}) \qquad \qquad \|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^{m} \leq \psi(\mathcal{T}) \quad \text{and} \quad \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

has an integer solution for some $\mathcal{T} \Longleftrightarrow \hat{\delta}(g_t \Lambda_{A, \mathbf{b}}) \leq r(t)$ with t explicitly depending on T .

Corollary: $(A, b) \notin \widehat{DI}(\psi)$ $\mathbb{\hat{I}}$ $\hat{\delta}({\gmb{g}}_t \mathsf{\Lambda}_{\mathsf{A},\mathsf{b}}) > r(t)$ for an unbounded set of $t.$

However the geometry of $\hat{\delta}$ on \hat{X} is different from that of δ on $X;$ for one thing, $\delta(X)=(0,1]$, while $\hat{\delta}(\hat{X})=[0,\infty).$

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Inhomogeneous Dani Correspondence

Specifically, given $\psi(\cdot)$, there exists $r(\cdot)$ such that

$$
(\widehat{1\psi}) \qquad \qquad \|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^{m} \leq \psi(\mathcal{T}) \quad \text{and} \quad \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

has an integer solution for some $\mathcal{T} \Longleftrightarrow \hat{\delta}(g_t \Lambda_{A, \mathbf{b}}) \leq r(t)$ with t explicitly depending on T .

Corollary: $(A, b) \notin \overline{DI}(\psi)$ $\mathbbm{1}$ $\hat{\delta}(g_t \Lambda_{A,\mathbf{b}}) > r(t)$ for an unbounded set of t.

However the geometry of $\hat{\delta}$ on \hat{X} is different from that of δ on $X;$ for one thing, $\delta(X)=(0,1]$, while $\hat{\delta}(\hat{X})=[0,\infty).$

In particular, for any $R>0$ the set $\hat{\delta}^{-1}\big((R,\infty)\big)$ has positive measure. This (fixed) target $r(t) \equiv R$ corresponds to $\psi_C(T) = \frac{C}{T}$, $C > 0$.

KORKA SERKER ORA

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Inhomogeneous Dani Correspondence

Specifically, given $\psi(\cdot)$, there exists $r(\cdot)$ such that

$$
(\widehat{1\psi}) \qquad \qquad \|A\mathbf{q} + \mathbf{b} - \mathbf{p}\|^{m} \leq \psi(\mathcal{T}) \quad \text{and} \quad \|\mathbf{q}\|^{n} \leq \mathcal{T}
$$

has an integer solution for some $\mathcal{T} \Longleftrightarrow \hat{\delta}(g_t \Lambda_{A, \mathbf{b}}) \leq r(t)$ with t explicitly depending on T .

Corollary: $(A, b) \notin \widehat{DI}(\psi)$ \mathbb{U} $\hat{\delta}(g_t \Lambda_{A,\mathbf{b}}) > r(t)$ for an unbounded set of t.

However the geometry of $\hat{\delta}$ on \hat{X} is different from that of δ on $X;$ for one thing, $\delta(X)=(0,1]$, while $\hat{\delta}(\hat{X})=[0,\infty).$

In particular, for any $R>0$ the set $\hat{\delta}^{-1}\big((R,\infty)\big)$ has positive measure. This (fixed) target $r(t) \equiv R$ corresponds to $\psi_C(T) = \frac{C}{T}$, $C > 0$. By ergodicity of the g_t -action on \hat{X} , the set

 $\{\Lambda \in \hat{X}: \hat{\delta}(g_t\Lambda) \leq R$ for all large enough $t\}$

has mea[sur](#page-73-0)[e](#page-68-0) 0, theref[or](#page-37-0)e $\widehat{DI}(\psi_{\mathcal{C}})$ $\widehat{DI}(\psi_{\mathcal{C}})$ $\widehat{DI}(\psi_{\mathcal{C}})$ $\widehat{DI}(\psi_{\mathcal{C}})$ $\widehat{DI}(\psi_{\mathcal{C}})$ has measur[e z](#page-75-0)e[ro](#page-69-0) [f](#page-75-0)or a[ny](#page-81-0) $\mathcal{C} > 0$ $\mathcal{C} > 0$ $\mathcal{C} > 0$ $\mathcal{C} > 0$ [.](#page-81-0)

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-**TION**

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q ·

Moreover, because the family $\hat{\delta}^{-1}((R,\infty))$ is well behaving, we can actually prove much more!

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

KORKARYKERKE PROGRAM

Moreover, because the family $\hat{\delta}^{-1}((R,\infty))$ is well behaving, we can actually prove much more!

Theorem: given a non-increasing ψ , the set $\widehat{DI}(\psi)$ has zero (resp. full) measure iff the series

$$
\sum_{k} \frac{1}{k^2\psi(k)}
$$

diverges (resp. converges).

Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Moreover, because the family $\hat{\delta}^{-1}((R,\infty))$ is well behaving, we can actually prove much more!

Theorem: given a non-increasing ψ , the set $\hat{DI}(\psi)$ has zero (resp. full) measure iff the series

$$
\sum_{k} \frac{1}{k^2\psi(k)}
$$

diverges (resp. converges).

In particular:

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Moreover, because the family $\hat{\delta}^{-1}((R,\infty))$ is well behaving, we can actually prove much more!

Theorem: given a non-increasing ψ , the set $\hat{DI}(\psi)$ has zero (resp. full) measure iff the series

$$
\sum_{k} \frac{1}{k^2 \psi(k)}
$$

diverges (resp. converges).

In particular:

•
$$
\psi(k) = C \frac{\log k}{k} \implies \widehat{DI}(\psi)
$$
 has measure zero;

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Moreover, because the family $\hat{\delta}^{-1}((R,\infty))$ is well behaving, we can actually prove much more!

Theorem: given a non-increasing ψ , the set $\hat{DI}(\psi)$ has zero (resp. full) measure iff the series

$$
\sum_{k} \frac{1}{k^2 \psi(k)}
$$

diverges (resp. converges).

In particular:

•
$$
\psi(k) = C \frac{\log k}{k} \implies \widehat{Dl}(\psi)
$$
 has measure zero;

•
$$
\psi(k) = C \frac{(\log k)^{1+\epsilon}}{k} \implies \widehat{DI}(\psi)
$$
 has full measure.

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Inhomogeneous](#page-38-0) approximation

Thank you for your attention!

DIRICHLET'S THEOREM FOR INHO-**[MOGENEOUS](#page-0-0)** APPROXIMA-TION

> Kleinbock and Wadleigh

[Thanks](#page-81-0)

