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Classical Diophantine Approximation

α ∈ R a real number.

How well can α be approximated by rational numbers ?

Theorem (Dirichlet’s theorem or box principle)

For every N ∈ N there is p, q ∈ Z with 0 < q 6 N such that

|qα− p| 6 1

N
.

in particular: there are infinitely many p, q’s s.t.

|qα− p| 6 1

q
.
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Classical Diophantine Approximation

This naturally leads to the following measure of approximation by
rationals:

Definition (Diophantine exponent)

The Diophantine Exponent of α ∈ R is the supremum β(α) of all
β > 0 s.t. there are infinitely many integers p, q s.t.

|qα− p| < 1

qβ
.

Well known fact: for Lebesgue almost every α ∈ R

β(α) = 1.
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Plan for this talk

In this talk we will discuss several generalizations:

1) approximating points on submanifolds of X (R) by points in
X (Q) ; where X is an algebraic variety over Q.

2) approximating submanifolds {Yλ(R)}λ of X (R) varying in a
family by points in X (Q) ; (we will see that diophantine
approximation on matrices is a special case of this, where
X = Rm+n, {Yλ(R)}λ a family of n-planes).

4) approximating the identity in a Lie group by words in some
group elements;
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Diophantine approximation on Rd

For α := (α1, . . . , αd) ∈ Rd we may define:

I The linear form approximation: i.e. how close
α1q1 + . . .+ αdqd can be to an integer, for qi ’s ∈ Zd ,

I The simultaneous approximation: i.e. how close the vector
(qα1, . . . , qαd), q ∈ Z can be to an integer vector in Zd ?

I The matrix diophantine approximation: i.e. given a matrix
A ∈ Mm,n(R), q ∈ Zn , how close the vectors M · q be to an
integer vector in Zm ?

case m = 1 −→ linear form approximation,

case n = 1 −→ simultaneous approximation.
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Diophantine approximation on matrices

Definition (Diophantine exponent in Rd)

For M ∈ Mm,n(R) we can define the Diophantine exponent
β(M) > 0 as the supremum of all β > 0 such that there are
infinitely many q ∈ Zn, p ∈ Zm such that

||M · q + p|| < 1

||q||β
.

Remarks:

I for Lebesgue almost every M ∈ Mm,n(R) the exponent is
β(M) = n

m (= minimal possible value by Dirichlet’s theorem),

I One says that M ∈ Mm,n(R) is extremal if β(M) = n
m .
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Diophantine approximation on manifolds

Consider first submanifolds of Rn (later we shall look at
submanifolds of Mm,n(R))

In the 1930’s K. Mahler asked whether for Lebesgue almost every
x ∈ R, the point

(x , x2, . . . , xn)

is extremal in Rn ?

A submanifold is called extremal if the diophantine exponent of a
random point in it is the same as that of a random point in the
ambient space.
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Diophantine approximation on manifolds

Mahler’s question was answered affirmatively by Sprindzuk in 1964,
i.e. the Mahler curve is extremal.

This led to the following more general questions:

I under what conditions on M is M extremal ?

I can one compute the exponent β(x) of a random point
x ∈M ? of an algebraic point on M ?

Theorem (Kleinbock-Margulis 1998)

If M⊂ Rn is a real analytic submanifold not contained in a proper
affine subspace, then it is extremal.
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Diophantine approximation on manifolds

This was for submanifolds of Rn. What about submanifolds of
Mm,n(R) ?

Beresnevich, Kleinbock, Margulis and Wang:

I thorny question because the right condition on M seems hard
to pin down.

I they gave examples showing the condition if it exists cannot
be linear in the matrix entries.

I they also gave some sufficient (yet slightly too strong)
conditions for extremality in terms of non planarity of certain
minors of the matrix.



Diophantine approximation in the Grassmannian

It turns out that diophantine approximation on matrices is a
special case of the following diophantine problem about
submanifolds of the Grassmannian:

Consider the Grassmannian G(n,m + n) of n-planes in Rm+n. For
x ∈ G(n,m + n), define its diophantine exponent β(x) to be the
supremum of all β > 0 such that there are infinitely many
q ∈ Zm+n s.t.

d(x , q) <
1

‖q‖β
.

Note that Dirichlet says that β(x) > n
m = n+m

m − 1. For a random
n-plane x in G(n,m + n) this is an equality.



A family of obstructions to extremality

Given a subspace W 6 Rn+m and an integer r ∈ [0,m], consider
the pencil PW ,r

PW ,r := {x ∈ G(n,m + n); dim(x ∩W ) > dim W − r}

Observe: if W is rational, then just by Dirichlet’s box principle any
x ∈ PW ,r will have an exponent

β(x) >
dim W

r
− 1

So if dimW
r − 1 > n

m , any x in the pencil will not be extremal. Call
such a pencil constraining.
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Criterion for extremality in Mm,n(R)

Theorem 1 (ABRS 2014)

If M⊂ G(n,m + n)(R) (or M⊂ Mm,n(R)) is an analytic
submanifold, which is not contained in any constraining pencil,
then M is extremal, i.e. Lebesgue almost every x has β(x) = n

m .

Remark: Beresnevich-Kleinbock-Wang’s non-planarity condition is
slightly (but strictly) stronger...



A converse statement

As usual in metric diophantine approximation the converse does
not hold unless further rationality assumptions are made.

Theorem 2 (converse)

Assume that the Zariski-closure of M⊂ G(n,m + n)(R) (or
M⊂ Mm,n(R)) is defined over Q. Then M is extremal if and only
if it is not contained in any constraining pencil.



Computation of the exponent

Theorem (Kleinbock, 2008)

If M⊂ Rn (i.e. m = 1) is a connected analytic submanifold, then
β(M) is well-defined and

β(M) = β(AffineSpan(M)).

β(M) well-defined means that a.e. β(x) = β(M).



Computation of the exponent

Theorem 3 (exponent)

If M⊂ G(n,m + n)(R) (or M⊂ Mm,n(R)) is a connected analytic
submanifold, then

1.
β(M) = β(PluckerSpan(M)),

2.

max
PW ,r⊃M,Wrational

dim W

r
6 β(M) + 1 6 max

PW ,r⊃M

dim W

r
,

3. equality holds on the LHS if M is defined over Q, or even Q.
In particular, then, β(M) ∈ Q.

Rk: Point 1. has been obtained independently by

Das-Fishman-Simmons-Urbański.
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Speculations

Schubert varieties are certain nice algebraic varieties of the
Grassmannian G(n,m + n).

pencils = “special Schubert varieties”

SchubertSpan(M) :=
⋂

M⊂S⊂G(n,m+n)

S =
⋂

M⊂PW ,r

PW ,r

Conjecture: β(M) = β(SchubertSpan(M))

Further speculations/problems:

I perhaps even ∃ one pencil PW ,r ⊃M such that β(M) = β(PW ,r ).

I then can one compute β(P) only in terms of deterministic
exponents of W ?

... so far only partial answers.
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Homogeneous dynamics and the Dani correspondence

... a view on the proofs: they are based on homogeneous dynamics
and quantitative non-divergence estimates for one-parameter flows
in the space of unimodular lattices in Rm+n:

Ωm+n := SLm+n(R)/ SLm+n(Z)

For ∆ ∈ Ωm+n, let

α1(∆) := inf{||v ||; v ∈ ∆ \ {0}}
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Dani’s correspondence in an example:

As above let x ∈ R, and consider the flow {gt}t∈R and the
unimodular lattice ∆x in the plane

gt :=

(
et 0
0 e−t

)
, ∆x :=

(
1 x
0 1

)
· Z2.

For β > 1 set

γ :=
β − 1

β + 1
∈ [0, 1).

Then the following are equivalent (exercise):

(i) lim inf
q→+∞

qβ · d(qx ,Z) = 0,

(ii) lim inf
t→+∞

eγt · α1(gt∆x) = 0
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The Dani correspondence for the Grassmannian

For us if x ∈ G(n,m + n) is an n-plane, we consider the diagonal
flow {g x

t }t>0 ⊂ SLm+n(R), where g x
t

I contracts vectors in x by a factor e−t/n and,

I dilates vectors in x⊥ (say) by a factor et/m.

Let γ(x) be the supremum of all γ > 0 s.t. the forward {g x
t }-orbit

of ∆ = Zm+n ventures infinitely often in the cusp of Ωm+n at
linear speed γt measured w.r.t α1.

Then

β(x) =
1
m + γ(x)
1
n − γ(x)

.
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Diophantine approximation on Lie groups

We move to another, related, problem. Here is the setting:

G is a connected Lie group.

S = {1, s±1
1 , . . . , s±1

k } ⊂ G is a finite symmetric set and Γ := 〈S〉
is the subgroup of G generated by S .

We are interested in words w in k letters and of length n, and how
close to the identity in G they can be when evaluated on S .

e.g.
k = 2, n = 14, w = s1s3

2 s−2
1 s7

2 s1.
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Diophantine approximation on Lie groups

How does this relate to classical diophantine approximation ?

e.g. take G = (R,+), and S = {0,±1,±α}, α ∈ R.

The subgroup Γ = 〈S〉 is just Z + αZ.

And a word w of length n in two letters x , y becomes a linear form

w(x , y) = px + qy ,

with |p|+ |q| = n.

So asking how close w(1, α) can be to 0 is the same as asking for
the diophantine properties of α.
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Diophantine approximation on Lie groups
Consider the smallest distance to 1 of a word of length n, namely

δn(S) := inf{d(γ, 1); γ ∈ Sn \ {1}}

where d(x , y) is a left-invariant Riemannian metric on the Lie
group G and Sn := S · . . . · S is the n-fold product set.

We will say that Γ is Diophantine if there is β > 0 such that for
all large enough n.

δn(S) >
1

|Sn|β
,

Remarks:

This definition does not depend on the choice of generating
set S in Γ, nor on the choice of metric d(x , y).
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Metric diophantine approximation on Lie groups

Definition (Diophantine Lie group)

The Lie group G is said to be Diophantine on k letters if for almost every

choice (w.r.t Haar measure) of k elements s1, . . . , sk in G , the subgroup

〈s1, . . . , sk〉 is diophantine.

We also say that G is Diophantine if it is diophantine on k letters
for all k .

Sarnak’s conjecture: G = SU(2) is diophantine.
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see related work of Gamburd-Jakobson-Sarnak and
Bourgain-Gamburd in relation with uniform distribution and
spectral gaps.
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Definition (Diophantine Lie group)

The Lie group G is said to be Diophantine on k letters if for almost every

choice (w.r.t Haar measure) of k elements s1, . . . , sk in G , the subgroup

〈s1, . . . , sk〉 is diophantine.

We also say that G is Diophantine if it is diophantine on k letters
for all k .

Sarnak’s conjecture: G = SU(2) is diophantine.

Kaloshin-Rodniansky 2001: for a.e. S , δn(S) > exp(−O(n2)).
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Is every Lie group diophantine ?

Obvious remark: every Lie group is diophantine on 1 letter.

Answer: NO!

Theorem 4 (Existence of non diophantine Lie groups)

For every k > 1 there is a connected Lie group, which is
diophantine on k letters, but not on k + 1 letters.
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Nilpotent Lie groups

The case of G nilpotent is particularly interesting.

Recall: G nilpotent ⇔ G embeds as a closed subgroup of
unipotent upper triangular matrices.

1 ∗ ∗ ∗
0 . ∗ ∗
0 0 . ∗
0 0 0 1


Basic facts:
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Recall: G nilpotent ⇔ G embeds as a closed subgroup of
unipotent upper triangular matrices.
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Basic facts:

• for every finite subset S ⊂ G , |Sn| grows polynomially fast
in n.



Nilpotent Lie groups

The case of G nilpotent is particularly interesting.

Recall: G nilpotent ⇔ G embeds as a closed subgroup of
unipotent upper triangular matrices.

1 ∗ ∗ ∗
0 . ∗ ∗
0 0 . ∗
0 0 0 1


Basic facts:

• G is diffeomorphic to Rd via the exponential map

exp : Lie(G )→ G ,

which is a diffeo.



Nilpotent Lie groups

The case of G nilpotent is particularly interesting.

Recall: G nilpotent ⇔ G embeds as a closed subgroup of
unipotent upper triangular matrices.

1 ∗ ∗ ∗
0 . ∗ ∗
0 0 . ∗
0 0 0 1


Basic facts:

• the Lie product is a polynomial map when pulled back on
Lie(G ).



Nilpotent Lie groups

Let G be a nilpotent Lie group. Every word w on k letters induces

a word map
w : G k → G .

Fact 1: the word map is a polynomial map, when viewed on Lie(G )
via exp.

Fact 2: the family Fk,G of all word maps on G on k letters forms a
group: the relatively-free group on k generators “in the variety of
G ”.

Actually Fk,G is a nilpotent group and is the group of integer
points of a nilpotent Lie group Fk,G (R) (the Malcev closure).
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Nilpotent Lie groups

Using exp one pulls back everything to Lie(G ) and word maps just
become linear combinations with integer coefficients of basic Lie
bracket maps such as:

Lie(G )5 → Lie(G ),

(X1, . . . ,Xk) 7→ [X1, [[X2,X3], [X4,X5]]
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Using exp one pulls back everything to Lie(G ) and word maps just
become linear combinations with integer coefficients of basic Lie
bracket maps such as:

Lie(G )5 → Lie(G ),

(X1, . . . ,Xk) 7→ [X1, [[X2,X3], [X4,X5]]

And the question becomes for a random choice of

X1, . . . ,Xk ∈ Lie(G )

how well integer linear combinations of these brackets
approximate 0 in Lie(G ).



Nilpotent Lie groups

Using exp one pulls back everything to Lie(G ) and word maps just
become linear combinations with integer coefficients of basic Lie
bracket maps such as:

Lie(G )5 → Lie(G ),

(X1, . . . ,Xk) 7→ [X1, [[X2,X3], [X4,X5]]

These brackets form a basis of the Lie algebra Fk,G of Fk,G

and each choice of X1, . . . ,Xk gives rise to a

dim(G )× dimFk,G matrix

varying analytically (in fact polynomially) in the Xi ’s.
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become linear combinations with integer coefficients of basic Lie
bracket maps such as:

Lie(G )5 → Lie(G ),
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So we are precisely in the setting of diophantine
approximation on analytic submanifolds of matrices!



Nilpotent Lie groups

Using exp one pulls back everything to Lie(G ) and word maps just
become linear combinations with integer coefficients of basic Lie
bracket maps such as:

Lie(G )5 → Lie(G ),

(X1, . . . ,Xk) 7→ [X1, [[X2,X3], [X4,X5]]

So we are precisely in the setting of diophantine
approximation on analytic submanifolds of matrices!

Hence we may apply our main theorem.



Nilpotent Lie groups

The right exponent depends on a subtle way on the structure
constants of the Lie algebra Fk,G .

There is a natural Q-structure on the free Lie algebra Fk on k
generators, but not always on Fk,G . This depends on the way the
ideal of laws of G , Lk,G sits in Fk .

Fk,G = Fk/Lk,G

If Lk,G is defined over Q, then G will be diophantine on k letters
and one can compute the exponent.
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Nilpotent Lie groups

Theorem 5 (Diophantine exponent for rational groups)

If G is a nilpotent group with structure constants in Q, then it is
diophantine on k letters for all k and there is a rational fraction
f ∈ Q(X ) such that the diophantine exponent βk is

βk = f (k)

for all large k .

e.g. for the group G = Us(R) of (s + 1)× (s + 1) upper triangular
unipotent matrices,

f (X ) =

∑
d |s µ(d)X s/d − s∑s

i=1 µ(i)(X + . . .+ X [s/i ])
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Non diophantine Lie groups

They don’t exist in nilpotency class 5 or lower. Examples arise in
class 6 and higher.

Main point: in nilpotency class s 6 5, the free Lie algebra on k
generators Fk is multiplicity-free as a GLk -module.

Consequently: every GLk -submodule, and in particular every ideal
of laws, must be defined over Q.

Multiplicity arises starting from class 6 and on (work of Thrall,
Klyachko, Kraskiewicz-Weyman).
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Non diophantine Lie groups

Multiplicity arises starting from class 6 and on (work of Thrall,
Klyachko, Kraskiewicz-Weyman).

Then taking a GLk -submodule Eλ 6 Fk appearing with
multiplicity at least 2, one builds an bad ideal

L := {(x , αx) ∈ Eλ ⊕ Eλ},

where α ∈ R is a Liouville number. Then

Lie(G ) := Fk/L

will be non-diophantine.
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