Bounded Orbits in the Space of Unimodular Lattices

(Joint work with Lifan Guan and Dmitry Kleinbock)

Jinpeng An

Peking University, China

Goa, February 1, 2016

Let $X_n = SL_n(\mathbb{R})/SL_n(\mathbb{Z})$.

- $X_n \cong$ space of unimodular lattices in \mathbb{R}^n .
- X_n is noncompact.
- ➤ X_n admits an SL_n(ℝ)-invariant probability measure (Haar measure).

Let

- F = {g_t : t ∈ ℝ} be a 1-parameter subgroup of SL_n(ℝ) with noncompact closure,
- F⁺ := {g_t : t ≥ 0} be the corresponding 1-parameter subsemigroup.

We are interested in the sets

$$E(F, X_n) := \{x \in X_n : Fx \text{ is bounded}\}$$

and

$$E(F^+, X_n) := \{x \in X_n : F^+x \text{ is bounded}\}.$$

• Note that $E(F, X_n) \subset E(F^+, X_n)$.

- Moore's Ergodicity Theorem
 - \implies the *F*-action on *X_n* is strongly mixing
 - $\implies E(F^+, X_n)$ has zero Haar measure.
- If F is quasiunipotent (i.e., all eigenvalues of every g_t are of modulus 1), then

Ratner's Theorem

- \implies $E(F^+, X_n) \subset$ a countable union of proper submanifolds
- $\implies \dim_H E(F^+, X_n) < \dim X_n.$

We say that

a subset S ⊂ X_n is thick if dim_H S ∩ U = dim X_n for any open subset U ⊂ X_n.

The following was conjectured by Margulis in 1990.

Theorem (Kleinbock-Margulis, 1996)

If F is non-quasiunipotent, then $E(F, X_n)$ is thick in X_n .

We are interested in the following

Question

Given countably many 1-parameter non-quasiunipotent F_k (k = 1, 2, ...). Are the sets

$$\bigcap_{k=1}^{\infty} E(F_k, X_n) = \{x \in X_n : F_k x \text{ is bounded for every } k\}$$

and

$$\bigcap_{k=1}^{\infty} E(F_k^+, X_n) = \{x \in X_n : F_k^+ x \text{ is bounded for every } k\}$$

thick in X_n ?

Relation to Diophantine approximation

Given $d \ge 1$.

of

►
$$\mathcal{R}_d := \{(r_1, \ldots, r_d) \in \mathbb{R}^d : r_i \ge 0, \sum_i r_i = 1\}.$$

▶ For $\mathbf{r} \in \mathcal{R}_d$, consider the 1-parameter subsemigroup

$$egin{aligned} \mathcal{F}^+_{\mathbf{r}} &:= \{ ext{diag}(m{e}^{r_1t},\ldots,m{e}^{r_dt},m{e}^{-t}):t\geq 0 \} \ \mathcal{SL}_{d+1}(\mathbb{R}). \end{aligned}$$

► For
$$\mathbf{a} = (a_1, \dots, a_d) \in \mathbb{R}^d$$
, denote
 $x_{\mathbf{a}} = \begin{pmatrix} I_d & \mathbf{a}^T \\ 0 & 1 \end{pmatrix} SL_{d+1}(\mathbb{Z}) \in X_{d+1}.$

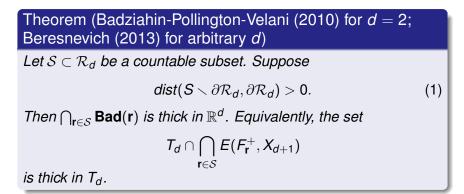
Theorem (Dani 1985; Kleinbock 1998)

 $x_{\mathbf{a}} \in E(F_{\mathbf{r}}^+, X_{d+1}) \iff \mathbf{a} \text{ is } \mathbf{r} \text{-badly approximable, i.e.,}$

$$\textbf{a} \in \textbf{Bad}(\textbf{r}) := \{(a_1,\ldots,a_d) \in \mathbb{R}^d: \inf_{q \in \mathbb{N}} \max_{1 \leq i \leq d} q^{r_i} \| qa_i \| > 0\}.$$

Consider the *d*-dimensional torus

$$T_d := \{x_a : a \in \mathbb{R}^d\} \subset X_{d+1}.$$



- ▶ $d = 2 \implies$ Schmidt's Conjecture: **Bad** $(\frac{1}{3}, \frac{2}{3}) \cap$ **Bad** $(\frac{2}{3}, \frac{1}{3}) \neq \emptyset$.
- When d = 2, condition (1) can be removed (A., 2012).
- When d > 2, removing (1) is a challenging open problem.

In the whole space X_n (instead of in T_d), we have

Theorem (Kleinbock-Weiss, 2013)

For any countably many 1-parameter diagonalizable subgroups F_k of $SL_2(\mathbb{R})$, the set

$$\bigcap_{k=1}^{\infty} E(F_k, X_2)$$

is thick in X_2 .

Theorem (*) (A.-Guan-Kleinbock, 2015)

For any countably many 1-parameter diagonalizable subgroups F_k of $SL_3(\mathbb{R})$, the set

$$\bigcap_{k=1}^{\infty} E(F_k, X_3)$$

is thick in X_3 .

Essential tool in proving both theorems: hyperplane absolute winning (HAW) subsets in a C^1 -manifold M.

Remark: It is difficult to prove Theorem (*) using Schmidt's (α, β)-game directly.

The definition of HAW subsets in *M* consists of 2 steps.

Step 1. Define the hyperplane absolute game on an open subset $U \subset \mathbb{R}^d$ (generalizing the same game on \mathbb{R}^d introduced by Broderick-Fishman-Kleinbock-Reich-Weiss, 2012):

- Two players: Alice and Bob.
- Given a target set $S \subset U$ and $\beta \in (0, \frac{1}{3})$.
- ▶ Bob starts by choosing a closed ball B_0 in \mathbb{R}^d contained in U.
- After Bob chooses a closed ball B_i of radius ρ_i, Alice chooses a ρ'_i-neighborhood L^(ρ'_i) of an affine hyperplane L_i ⊂ ℝ^d with ρ'_i ≤ βρ_i.
- Then Bob chooses a closed ball $B_{i+1} \subset B_i \setminus L_i^{(\rho'_i)}$ of radius $\rho_{i+1} \ge \beta \rho_i$.
- Alice wins if

$$\bigcap_{i=0}^{\infty} B_i \cap S \neq \emptyset.$$

► S is HAW on U if Alice has a winning strategy for every $\beta \in (0, \frac{1}{3})$.

Step 2. A subset $S \subset M$ is HAW on M if for any $x \in M$, there is a C^1 diffeomorphism ϕ from an open neighborhood V of x onto an open subset $U \subset \mathbb{R}^{\dim M}$ such that $\phi(S \cap V)$ is HAW on U.

Lemma

- (1) An HAW subset is thick.
- (2) A countable intersection of HAW subsets is HAW.
- (3) The image of an HAW subset under a C¹ diffeomorphism of C¹ manifolds is HAW.

Thus, Theorem $(*) \Leftarrow$

Theorem (**)

For any 1-parameter diagonalizable subgroup F of $SL_3(\mathbb{R})$, the set $E(F^+, X_3)$ is HAW on X_3 .

Proof of Theorem (**)

- Let $\mathbf{r} = (r_1, r_2) \in \mathcal{R}_2$ with $r_1 > r_2 > 0$.
- Given b ∈ ℝ, a vector (a₁, a₂) ∈ ℝ² is b-twisted r-badly approximable if

 $\inf_{(p_1,p_2,q)\in\mathbb{Z}^2\times\mathbb{N}}\max\{q^{r_1}|qa_1-p_1-b(qa_2-p_2)|,q^{r_2}|qa_2-p_2|\}>0.$

- ► Let **Bad**^b(**r**) denote the set of such vectors.
- Note that $Bad^{0}(\mathbf{r}) = Bad(\mathbf{r})$.
- Recall

$$\mathcal{F}_{\mathbf{r}}^{+} := \{ \operatorname{diag}(\boldsymbol{e}^{r_{1}t}, \boldsymbol{e}^{r_{2}t}, \boldsymbol{e}^{-t}) : t \geq 0 \}.$$

Lemma (Kleinbock, 1998)

$$F^+_{\mathbf{r}} egin{pmatrix} 1 & b & a_1 \ & 1 & a_2 \ & & 1 \end{pmatrix}^{-1} SL_3(\mathbb{Z}) \text{ is bounded } \Longleftrightarrow (a_1,a_2) \in \mathbf{Bad}^b(\mathbf{r}).$$

$$H := \left\{ \begin{pmatrix} 1 & b & a_1 \\ & 1 & a_2 \\ & & 1 \end{pmatrix} : a_1, a_2, b \in \mathbb{R} \right\}.$$
 Theorem (**) \Leftarrow

Theorem

The set $\{h \in H : F_r^+ h SL_3(\mathbb{Z}) \text{ is bounded}\}$ is HAW on H. Equivalently, the set

$$\{(a_1,a_2,b)\in\mathbb{R}^3:(a_1,a_2)\in \textbf{Bad}^b(\textbf{r})\}$$

is HAW on \mathbb{R}^3 .

We also have

Theorem

For any $b \in \mathbb{R}$, **Bad**^b(**r**) is HAW on \mathbb{R}^2 .

This generalizes:

▶ Nesharim-Simmons (2013): **Bad**(\mathbf{r}) is HAW on \mathbb{R}^2 .

For arbitrary $d \ge 2$, we have

Theorem

Suppose $\mathbf{r} = (r_1, \ldots, r_d) \in \mathcal{R}_d$ and

$$\#\{i: r_i = \max_{1 \le j \le d} r_j\} \ge d-1.$$

- ▶ (Guan-Yu, 2015) Bad(r) is HAW on \mathbb{R}^d .
- (Guan-Wu, 2016) $E(F_{\mathbf{r}}^+, X_{d+1})$ is HAW on X_{d+1} .

Thank You!