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Let X = SLh(R)/SLn(Z).
» X, = space of unimodular lattices in R".
» X, is noncompact.

» X, admits an SL,(R)-invariant probability measure (Haar
measure).

» F={g::te R} bea 1-parameter subgroup of SL,(R) with
noncompact closure,

» Ft:={g:;:t> 0} be the corresponding 1-parameter
subsemigroup.

We are interested in the sets

E(F, Xn) := {x € X, : Fx is bounded}
and
E(F™, Xp) := {x € X, : F"x is bounded}.

» Note that E(F, X,) C E(F*, Xp).



> Moore’s Ergodicity Theorem
—> the F-action on X, is strongly mixing
— E(F*, X,) has zero Haar measure.

» If F is quasiunipotent (i.e., all eigenvalues of every g; are of
modulus 1), then
Ratner’s Theorem
= E(F*, X,) C a countable union of proper submanifolds
= dimy E(FT, Xp) < dim X,.

We say that

» asubset S C X, is thick if dimy SN U = dim X, for any open
subset U C X,.

The following was conjectured by Margulis in 1990.

Theorem (Kleinbock-Margulis, 1996)

If F is non-quasiunipotent, then E(F, Xp,) is thick in Xp.




We are interested in the following

Question

Given countably many 1-parameter non-quasiunipotent F
(k=1,2,...). Are the sets

() E(Fk, Xn) = {x € X, : Fxx is bounded for every k}
k=1

and
() E(Fif, Xn) = {x € X, : F;} x is bounded for every k}
k=1

thick in X,?
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Relation to Diophantine approximation

Given d > 1.
» Rg:={(r,...,rg) ERY:;>0,3,r=1}.
» Forr € Ry, consider the 1-parameter subsemigroup
Ft .= {diag(e",...,e" e~ ) : t > 0}
of SLg11(R).

» Fora=(a,...,ay) € RY denote

Iy a'
Xa = (g >3Ld+1( ) € Xdi1-

Theorem (Dani 1985; Kleinbock 1998)

Xa € E(F;*, Xy.1) <= a is r-badly approximable, i.e.,

o d. ri
acBad(r) .= {(ay,...,aq4) € R : (;211;]1rr<1fa<x q"||ga;|| > 0}.




Consider the d-dimensional torus
Tqg = {Xa rac Rd} C Xd+1-

Theorem (Badziahin-Pollington-Velani (2010) for d = 2;

Beresnevich (2013) for arbitrary d)
LetS C Ry be a countable subset. Suppose

dist(S ~ ORy4,0Ryg) > 0. (1)
Then (.5 Bad(r) is thick in R9. Equivalently, the set

TaN () E(RT, Xas1)

res

is thick in Ty.

» d = 2 = Schmidt's Conjecture: Bad(3,5)nBad(3, ) # 2.
» When d = 2, condition (1) can be removed (A., 2012).
» When d > 2, removing (1) is a challenging open problem.



In the whole space X, (instead of in T,), we have

Theorem (Kleinbock-Weiss, 2013)

For any countably many 1-parameter diagonalizable subgroups
Fx of SL»(R), the set

() E(Fk, X2)
k=1

is thick in X5.

A\

Theorem (x) (A.-Guan-Kleinbock, 2015)

For any countably many 1-parameter diagonalizable subgroups
Fx of SL3(R), the set

o
() E(Fk, X3)
k=1

is thick in Xj.

A\
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HAW subsets in a manifold (Kleinbock-Weiss, 2013)

Essential tool in proving both theorems: hyperplane absolute
winning (HAW) subsets in a C'-manifold M.

» Remark: It is difficult to prove Theorem (x) using Schmidt’s
(a, B)-game directly.

The definition of HAW subsets in M consists of 2 steps.

Step 1. Define the hyperplane absolute game on an open subset
U c RY (generalizing the same game on R introduced by
Broderick-Fishman-Kleinbock-Reich-Weiss, 2012):



» Two players: Alice and Bob.
» Given a target set S C Uand 3 € (0, }).
» Bob starts by choosing a closed ball By in R? contained in U.
» After Bob chooses a closed ball B; of radius p;, Alice
chooses a pj-neighborhood pr;) of an affine hyperplane
L; C RY with p; < Bpj.

) of radius

» Then Bob chooses a closed ball Bi; 1 C B; L,(.p;
pi+1 = Bpi.
» Alice wins if -
(B8NS #0.
i=0
» Sis HAW on U if Alice has a winning strategy for every

B€(0,3).



Step 2. A subset S ¢ M is HAW on M if for any x € M, there is a
C' diffeomorphism ¢ from an open neighborhood V of x onto an
open subset U ¢ RIMM gych that ¢(S N V) is HAW on U.

(1) An HAW subset is thick.

(2) A countable intersection of HAW subsets is HAW.

(3) The image of an HAW subset under a C' diffeomorphism of
C' manifolds is HAW.

Thus, Theorem (x) <

For any 1-parameter diagonalizable subgroup F of SL3(R), the
set E(F*, X3) is HAW on Xj.
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Proof of Theorem (sxx)

» Letr=(r,rn) € Rywithry >rn > 0.
» Given b € R, a vector (a1, &) € R? is b-twisted r-badly
approximabile if

inf_ max{q"|qai—p1—b(qaz—pz2)|, g?|qaz—p2|} > 0.
(p1 7p2>q)€Z2 xN
» Let Bad®(r) denote the set of such vectors.
» Note that Bad’(r) = Bad(r).

» Recall
F." .= {diag(e"!, e”!, e !): t > 0}.

Lemma (Kleinbock, 1998)

—1

1 b &

Fﬁ( 1 ag) SL3(Z) is bounded < (ay,az) € Bad®(r).
1
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1 b a4
H:= 1 a | :a1,a,beR . Theorem (xx) <—
1

The set {h € H : F;"h SL3(7Z) is bounded} is HAW on H.
Equivalently, the set

{(ay,a,b) € R®: (ay, ax) € Bad®(r)}

is HAW on RS3.

We also have

For any b € R, Bad®(r) is HAW on R2.

This generalizes:
» Nesharim-Simmons (2013): Bad(r) is HAW on R?.

12/14



For arbitrary d > 2, we have

Theorem
Supposer = (ry,...,rq) € Rg and

': pp— 1> —1.
#{i:r 1n;jagxdrj}_d 1

» (Guan-Yu, 2015) Bad(r) is HAW on RY.
» (Guan-Wu, 2016) E(F;", Xq.1) is HAW on Xy.1.
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Thank You!
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