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Let Xn = SLn(R)/SLn(Z).
I Xn ∼= space of unimodular lattices in Rn.
I Xn is noncompact.
I Xn admits an SLn(R)-invariant probability measure (Haar

measure).
Let

I F = {gt : t ∈ R} be a 1-parameter subgroup of SLn(R) with
noncompact closure,

I F+ := {gt : t ≥ 0} be the corresponding 1-parameter
subsemigroup.

We are interested in the sets

E(F ,Xn) := {x ∈ Xn : Fx is bounded}
and

E(F+,Xn) := {x ∈ Xn : F+x is bounded}.

I Note that E(F ,Xn) ⊂ E(F+,Xn).

2 / 14



I Moore’s Ergodicity Theorem
=⇒ the F -action on Xn is strongly mixing
=⇒ E(F+,Xn) has zero Haar measure.

I If F is quasiunipotent (i.e., all eigenvalues of every gt are of
modulus 1), then

Ratner’s Theorem
=⇒ E(F+,Xn) ⊂ a countable union of proper submanifolds
=⇒ dimH E(F+,Xn) < dim Xn.

We say that
I a subset S ⊂ Xn is thick if dimH S ∩ U = dim Xn for any open

subset U ⊂ Xn.
The following was conjectured by Margulis in 1990.

Theorem (Kleinbock-Margulis, 1996)
If F is non-quasiunipotent, then E(F ,Xn) is thick in Xn.
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We are interested in the following

Question
Given countably many 1-parameter non-quasiunipotent Fk
(k = 1,2, . . .). Are the sets

∞⋂
k=1

E(Fk ,Xn) = {x ∈ Xn : Fkx is bounded for every k}

and
∞⋂

k=1

E(F+
k ,Xn) = {x ∈ Xn : F+

k x is bounded for every k}

thick in Xn?
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Relation to Diophantine approximation

Given d ≥ 1.
I Rd := {(r1, . . . , rd) ∈ Rd : ri ≥ 0,

∑
i ri = 1}.

I For r ∈ Rd , consider the 1-parameter subsemigroup

F+
r := {diag(er1t , . . . ,erd t ,e−t) : t ≥ 0}

of SLd+1(R).
I For a = (a1, . . . ,ad) ∈ Rd , denote

xa =

(
Id aT

0 1

)
SLd+1(Z) ∈ Xd+1.

Theorem (Dani 1985; Kleinbock 1998)
xa ∈ E(F+

r ,Xd+1)⇐⇒ a is r-badly approximable, i.e.,

a ∈ Bad(r) := {(a1, . . . ,ad) ∈ Rd : inf
q∈N

max
1≤i≤d

qri‖qai‖ > 0}.
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Consider the d-dimensional torus

Td := {xa : a ∈ Rd} ⊂ Xd+1.

Theorem (Badziahin-Pollington-Velani (2010) for d = 2;
Beresnevich (2013) for arbitrary d)
Let S ⊂ Rd be a countable subset. Suppose

dist(S r ∂Rd , ∂Rd) > 0. (1)

Then
⋂

r∈S Bad(r) is thick in Rd . Equivalently, the set

Td ∩
⋂
r∈S

E(F+
r ,Xd+1)

is thick in Td .

I d = 2 =⇒ Schmidt’s Conjecture: Bad(1
3 ,

2
3)∩Bad(2

3 ,
1
3) 6= ∅.

I When d = 2, condition (1) can be removed (A., 2012).
I When d > 2, removing (1) is a challenging open problem.
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In the whole space Xn (instead of in Td ), we have

Theorem (Kleinbock-Weiss, 2013)
For any countably many 1-parameter diagonalizable subgroups
Fk of SL2(R), the set

∞⋂
k=1

E(Fk ,X2)

is thick in X2.

Theorem (∗) (A.-Guan-Kleinbock, 2015)

For any countably many 1-parameter diagonalizable subgroups
Fk of SL3(R), the set

∞⋂
k=1

E(Fk ,X3)

is thick in X3.
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HAW subsets in a manifold (Kleinbock-Weiss, 2013)

Essential tool in proving both theorems: hyperplane absolute
winning (HAW) subsets in a C1-manifold M.

I Remark: It is difficult to prove Theorem (∗) using Schmidt’s
(α, β)-game directly.

The definition of HAW subsets in M consists of 2 steps.

Step 1. Define the hyperplane absolute game on an open subset
U ⊂ Rd (generalizing the same game on Rd introduced by
Broderick-Fishman-Kleinbock-Reich-Weiss, 2012):
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I Two players: Alice and Bob.
I Given a target set S ⊂ U and β ∈ (0, 1

3).
I Bob starts by choosing a closed ball B0 in Rd contained in U.
I After Bob chooses a closed ball Bi of radius ρi , Alice

chooses a ρ′i -neighborhood L(ρ′i )

i of an affine hyperplane
Li ⊂ Rd with ρ′i ≤ βρi .

I Then Bob chooses a closed ball Bi+1 ⊂ Bi r L(ρ′i )

i of radius
ρi+1 ≥ βρi .

I Alice wins if
∞⋂

i=0

Bi ∩ S 6= ∅.

I S is HAW on U if Alice has a winning strategy for every
β ∈ (0, 1

3).
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Step 2. A subset S ⊂ M is HAW on M if for any x ∈ M, there is a
C1 diffeomorphism φ from an open neighborhood V of x onto an
open subset U ⊂ Rdim M such that φ(S ∩ V ) is HAW on U.

Lemma
(1) An HAW subset is thick.
(2) A countable intersection of HAW subsets is HAW.
(3) The image of an HAW subset under a C1 diffeomorphism of

C1 manifolds is HAW.

Thus, Theorem (∗)⇐=

Theorem (∗∗)
For any 1-parameter diagonalizable subgroup F of SL3(R), the
set E(F+,X3) is HAW on X3.
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Proof of Theorem (∗∗)

I Let r = (r1, r2) ∈ R2 with r1 > r2 > 0.
I Given b ∈ R, a vector (a1,a2) ∈ R2 is b-twisted r-badly

approximable if

inf
(p1,p2,q)∈Z2×N

max{qr1 |qa1−p1−b(qa2−p2)|,qr2 |qa2−p2|} > 0.

I Let Badb(r) denote the set of such vectors.
I Note that Bad0(r) = Bad(r).
I Recall

F+
r := {diag(er1t ,er2t ,e−t) : t ≥ 0}.

Lemma (Kleinbock, 1998)

F+
r

1 b a1
1 a2

1

−1

SL3(Z) is bounded ⇐⇒ (a1,a2) ∈ Badb(r).
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H :=


1 b a1

1 a2
1

 : a1,a2,b ∈ R

 . Theorem (∗∗)⇐=

Theorem
The set {h ∈ H : F+

r h SL3(Z) is bounded} is HAW on H.
Equivalently, the set

{(a1,a2,b) ∈ R3 : (a1,a2) ∈ Badb(r)}

is HAW on R3.

We also have

Theorem
For any b ∈ R, Badb(r) is HAW on R2.

This generalizes:
I Nesharim-Simmons (2013): Bad(r) is HAW on R2.
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For arbitrary d ≥ 2, we have

Theorem
Suppose r = (r1, . . . , rd) ∈ Rd and

#{i : ri = max
1≤j≤d

rj} ≥ d − 1.

I (Guan-Yu, 2015) Bad(r) is HAW on Rd .

I (Guan-Wu, 2016) E(F+
r ,Xd+1) is HAW on Xd+1.
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Thank You!
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