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Dirichlet L-functions

To χ (mod q) a primitive Dirichlet character of modulus q ≥ 1 is
associated a Dirichlet L-function

L(χ, s) =
∑
n≥1

χ(n)

ns
=
∏
p

(1− χ(p)

ps
)−1

The function L(χ, s) has analytic continuation to C and satisfies
the functional equation

Λ(χ, s) = ε(χ)Λ(χ, s)

Λ(f ⊗ χ, s) = qs/2L∞(χ, s)L(χ, s)

where |ε(χ)| = 1 and L∞(χ, s) is a Gamma-function.



Dirichlet L-functions

The function L(χ, s) is very well understood for <s > 1 (and
therefore for <s < 0 by the fct. eqn.); indeed most fundamental
for applications are the analytic properties and values of L(χ, s) for
<s ∈ [0, 1] (the critical strip):
For instance Dirichlet’s Thm. on primes in arithmetic progressions
follows from

Theorem (Dirichlet)

∀q, ∀χ (mod q), L(χ, 1) 6= 0.

The closer <s gets to 1/2 the harder investigation become.



Moments of Dirichlet L-functions

Besides individual analytic properties, it is also important to
understand the variations of L(χ, s) as χ varies over the characters
of given modulus.
For instance a very challenging problem is to understand the
moments:

1

ϕ∗(q)

∑
χ (mod q)
primitive

|L(χ, 1/2)|k ?
= MTk(q) + O(q−δk )

for some δk > 0 and MTk(q) = (log q)Ok (1).
The moments of order k = 0, 1, 2, 3 (without absolute values in the
odd case) are not too hard. The case k = 4 is much harder.



The fourth moment of Dirichlet L-functions

Theorem (M. Young, 2011)

For q prime, one has

1

q − 2

∑
χ (mod q)
χ 6=1

|L(χ, 1/2)|4 = P4(log q) + O(q−δ)

with δ = 5/513 and P4 has degree 4.

The case q prime is the hardest, although the main term is
more complicated for q composite.

The exponent 5/513 has recently been improved to 1/33
(2015) and to 1/23 (2016) by BFKMM.



Twisted L-functions

M. Young’s proof builds crucially on the following facts

1 L(χ, s)2 =
∑

n≥1
d(n)χ(n)

ns where d(n) is the divisor function

d(n) = 1 ? 1(n) =
∑
ab=n

1

2 The divisor function d(n) is the n-th Hecke eigenvalue of the
Eisenstein series at the central point

∂

∂s
E (z ,

1

2
+ s)|s=0

so that
L(χ, s)2 = L(E ′s=0 ⊗ χ, s)

is the twisted L-function of L(E ′s=0, s) = ζ(s)2 by the
character χ.



Twisted L-function

Given
f (z) =

∑
n∈Z

λf (n)Wf (n, z)

be a modular form for the group SL2(Z)\H: ie.

an holomorphic cusp form of weight k ∈ 2N≥1,

a non-holomorphic Maass cusp form of weight 0,

a non-holomorphic Eisenstein series.

which is also eigenvalue of the (suitably normalized) Hecke
operators (Tn)n≥1 with eigenvalue (λf (n))n≥1.



Twisted L-function

The twisted L-function is

L(f ⊗ χ, s) =
∑
n≥1

λf (n)χ(n)

ns
=
∏
p

(1− λf (p)χ(p)

ps
+
χ(p)

p2s
)−1.

The function L(f ⊗ χ, s) has analytic continuation to C and
satisfies the functional equation

Λ(f ⊗ χ, s) = ε(f ⊗ χ)Λ(f ⊗ χ, s)

Λ(f ⊗ χ, s) = qsL∞(f ⊗ χ, s)L(f ⊗ χ, s)

where |ε(f ⊗ χ)| = 1 and L∞(f ⊗ χ, s) is a product of
Gamma-functions.



Second Moment of twisted L-function

The fourth moment of Dirichlet L-functions is a special case of the
longstanding problem of evaluating asymptotically the second
moment

1

ϕ∗(q)

∑
χ (mod q)
primitive

|L(f ⊗ χ, 1/2)|2 ?
= MT (f , q) + O(q−δ)

for some δ > 0 and MT (f , q) = (log q)O(1). When q is a prime
(hardest case)

MT (f , q) = Pf (log q).



Second Moment of twisted L-function

Young’s proof exploit crucially the fact that the divisor function is
a Dirichlet convolution; nothing like this when f is cuspidal.
Khan-Ricotta-Zhao and Blomer-Milicevic have obtained asymptotic
formula (sometimes with weak error terms) when q is composite:

Theorem (BFKMM + KMS)

Let f , g be cusp forms and q a prime; one has

1

q − 2

∑
χ (mod q)
χ 6=1

L(f ⊗ χ, 1/2)L(g ⊗ χ, 1/2) = Pf ,g (log q) + O(q−δ)

for δ = 1/145 and Pf ,g (X ) of degree 1, 0 or −∞.



Second Moment of twisted L-function: idea of the proof

The problem has a dynamical flavor which will be discussed below;
for now we would like to give an idea of the current proof.
Standard methods reduce to the evaluation of O(log2 q) sums of
the shape

1

q − 1

∑
χ (mod q)

∑∑
m,n

λf (m)λg (n)

m1/2n1/2
W1(

m

M
)W2(

n

N
)χ(m)χ(n)

=
∑

m≡n (mod q)

λf (m)λg (n)

m1/2n1/2
W1(

m

M
)W2(

n

N
)

?
= MT (M,N)+O(q−δ).

where W1,W2 ∈ C∞([1, 2]) and MN ≤ q2. The main case is

MN ≈ q2.



The shifted convolution problem

The method of evaluation differs depending on the relative values
of M,N:
If M,N are not too far apart (eg. M ≈ N ≈ q) we rewrite the
congruence m ≡ n (mod q) as m − n = qh with h� (M + N)/q.

For h = 0 the evaluation is easy, using the Rankin-Selberg
method and yields the main term MT (M,N) plus an
admissible error term.

For h 6= 0 the equality∑
m−n=qh

λf (m)λg (n)

m1/2n1/2
W1(

m

M
)W2(

n

N
)

?
= δf ,g=EisMT + O(q−δ)

is an instance of the Shifted convolution problem.



The shifted convolution problem

The shifted convolution problem may be approached either by
harmonic analysis on PGL2(Z)\PGL2(R) or by a variant of the
circle method:∑

m−n=qh

λf (m)λg (n)

m1/2n1/2
W1(

m

M
)W2(

n

N
)

=

∫ 1

0
Wf (n(x)a(

1

M
))Wg (n(x)a(

1

N
))e(−hx)dx

where Wf and Wg are vectors in (the Whittaker models of) the
automorphic representations generated by f and g and

n(x) =

(
1 x

1

)
, a(y) =

(
y 0

1

)
.



The shifted convolution problem

Decomposing spectrally the inside product before computing the
horocycle integral and taking further advantage of the h averaging,
one has

Theorem (Blomer-Milicevic)

Assume M ≤ N

∑
m−n≡0 (mod q)

λf (m)λg (n)

m1/2n1/2
W1(

m

M
)W2(

n

N
)

= δf ,g=EisMT + (MNq)o(1)[(
N/M

q
)1/4 + (

N/M

q
)1/2].

which is good as long as M ≥ q1/2+η, η > 0.



Bilinear sums of Kloosterman sums

To handle the case where M < N are far apart we apply the
(Voronoi) summation formula to the longest variable (say
N ≥ q3/2−η), the above sum becomes essentially

N1/2

q3/2M1/2

∑∑
m∼M,n�N∗

λf (m)λg (n)Kl2(mn; q)

with N∗ = q2/N ≤ q1/2+η and

n 7→ Kl2(n; q) =
1

q1/2

∑
x∈F×q

eq(x−1 + nx)

is a Kloosterman sum.



Bilinear sums of Kloosterman sums

Kloosterman sums satisfy the bound (Weil)

|Kl2(mn; q)| ≤ 2

which together with the fact that the λf (m) and λg (n) are
essentially bounded on average yields

N1/2

q3/2M1/2

∑∑
m∼M,n�N∗

λf (m)λg (n)Kl2(mn; q)� qo(1)(
qM

N
)1/2.

This bound is ”good” as long as N ≥ q3/2+η or equivalently
M ≤ q1/2−η. It remain to cover the range

q1/2−η ≤ M,N∗ ≤ q1/2+η.



Bilinear sums of Kloosterman sums

We need to bound the bilinear sum∑∑
m∼M,n∼N∗

λf (m)λg (n)Kl2(mn; q)

in the range
q1/2−η ≤ M,N∗ ≤ q1/2+η.

The trivial bound � (MN∗)1+o(1) is ”just” not sufficient and it
would be enough to get the bound � (MN∗)1−δ for some δ > 0:
we have to exploit oscillations of Kloosterman sums and show the
absence of correlations.

Remark

At this point we don’t know how to exploit the automorphic origin
of the coefficients λf (m), λg (n) and we treat these as arbitrary,
essentially bounded, complex numbers.



Bilinear sums of Kloosterman sums

– Oscillations of Kloosterman sums have been studied in depth by
Katz using `-adic cohomology; indeed the Kloosterman sum is the
trace function of `-adic sheaf (the Kloosterman sheaf KL2).
– These oscillations are well understood when the Kloosterman
function n 7→ Kl2(n; q) is considered over the full interval
[0, q − 1] ' A1(Fq); here we have to deal with short intervals and
against arbitrary coefficients.
– There exist completion techniques (Polya-Vinogradov method)
allowing to handle non-trivially bilinear sums like∑

m∼M,n∼N∗
αmβnKl2(mn; q)

but these produce non-trivial bounds only when
max(M,N∗) ≥ q1/2+η.



Bilinear sums of Kloosterman sums

To get beyond we use a more advanced completion method (the
+ab trick of Vinogradov-Karatsuba) which introduce ”additional”
artificial summations points using that an additive translate of an
interval is an interval and that the image of the product of two
intervals is almost an interval.

At the end of the process, we need to bound sums of product of
Kloosterman sums in three variable and there is a high price to pay
in terms of `-adic cohomology:



Bilinear sums of Kloosterman sums

For b = (b1, b2, b2, b4) ∈ Fq
4 and r , h ∈ Fq, set

Rb,h(r ; q) =
1

q1/2

∑
s∈Fq

4∏
i=1

Kl(s(r + bi ); q)eq(hs)

Theorem (KMS)

There exist a codimension 1 subvariety V bad ⊂ A4
Fq

such that for

any b 6∈ V bad(Fq), and any h, h′ ∈ Fq

1

q

∑
r∈Fq

Rb,h(r ; q)Rb,h′(r ; q) = δh=h′ + O(q−1/2).



Bilinear sums of Kloosterman sums

Theorem (KMS)

Given M,N ≤ q − 1 (+ mild additional conditions) and sequences
(αm)m≤M , (βN)n≤N of complex number bounded by 1

∑∑
m≤M,n≤N

αmβnKl2(mn; q)� qεMN(
1

M
+

q11/32

(MN)12/32
)1/2.

Remark

In particular when M = N = q1/2, one gains a factor q1/64 over
the trivial bound MN = q.



An ergodic proof ?

The above proof uses harmonic analysis, analytic number theory
and algebraic geometry. On the other hand the question is very
much dynamic flavored: a twisted central L-value can be
represented as an adelic torus period: for t = O(1)

L(f ⊗ χ, 1/2 + it)

q1/2
≈
∫
Q×\A×

ϕf (a(y)nq(
1

q
))χ(y)|y |itAd×y

where ϕf ∈ πf ⊂ L2(PGL2(Q)\PGL2(A)) is the ” new vector” in
the representation generated by f and

a(y) =

(
y 0
0 1

)
, nq(1/q) =

(
1 1/q
0 1

)
q

.



An ergodic proof ?

Therefore a naive attemp would be to write the second moment as

1

q

∑
χ (mod q)

|L(f ⊗ χ, 1/2)|2 ≈
∑

χ (mod q)

∣∣∫
Q×\A×

ϕf (a(y)nq(
1

q
))χ(y)d×y

∣∣2
and to apply Plancherel formula... but the χ-sum does not include
the characters with non-trivial archimedean component χ.| · |itA! .
This is possible with an extra averaging:

1

q

∫
R

∑
χ (mod q)

|L(f ⊗ χ, 1/2 + it)|2h2(t)dt

for h ∈ C∞([−ε, ε]) with
∫
h2(t)dt = 1.

Problem

Can one let ε→ 0? give a ergodic proof of the second moment
asymptotics ?



A similar problem for closed geodesics

Let Q(
√
d) be a real quadratic field with ideal class group H(d).

For χ ∈ Ĥ(D), let gχ be the theta function associated to χ and for
f (z) a Maass cusp-form let L(f ⊗ gχ, s) be the associated
Rankin-Selberg convolution:

Problem

Assume that h(d) is very large (eg. d = 4n2 + 1, and squarefree);
evaluate asymptotically the first moment:

1

h(d)

∑
χ∈Ĥ(d)

L(f ⊗ gχ, 1/2) as d →∞.



A similar problem for closed geodesics

I don’t know how to solve this problem using analytic number
theory yet; a possible approach could be geometric:
Let Γ(d) the set of closed geodesics (all of length `(d)) indexed by
H(d) attached to (the maximal order of) Q(

√
d).

Theorem (Waldspurger)

For any Hecke character χ of conductor d , the Rankin-Selberg
L-value L(f ⊗ gχ, 1/2) is proportional to

| 1

h(d)

∑
γ

∫
γ
f (t)χ(t)dt|2.



A similar problem for closed geodesics

By Plancherel formula, one can show that a suitably weighted
average of the L(f ⊗ gχ, 1/2) over all Hecke characters of Q(

√
d)

is proportional to

1

h(d)

∑
γ

∫
γ
|f (t)|2dt →

∫
SL2(Z)\H

|f (z)|2dz , d →∞

by Duke’s equidistribution theorem; therefore there exists some
Hecke character χ such that L(f ⊗ gχ, 1/2) 6= 0 and so there exists
γ ∈ Γ(d) and a character χk of γ (identified with S1) such that∫
γ f (t)χk(t)dt 6= 0.

– The problem is to be able to restrict to class group characters.



Algebraic mixing

Theorem (Conrey-Iwaniec)

Let χq be the Legendre symbol and k ≥ 6; one has

1

q

∑
f ∈Sk (q)

L(f ⊗ χq, 1/2)3 � qo(1).

In particular (since L(f ⊗ χq, 1/2) is non-negative) one has the
Weyl type subconvex bound

L(f ⊗ χq, 1/2)� qo(1)+1/3.

It is natural to look for an asymptotic formula with a power saving
error term (this would allow to improve Weyl bounds above). This
was carried out by Ian Petrow.



Algebraic mixing

A vague of his precise result is:

Theorem (Petrow)

A toy model for the main term in the Conrey-Iwaniec cubic
moment is given by the twisted fourth moment

1

q

∑
χ (mod q)

|L(χ, 1/2)|4K̃ (χ)

where K̃ (χ) is the Mellin transform (over F̂×q ) of an explicit trace
function K on A1

Fq
); in particular K̃ (χ)� 1 is absolutely bounded.

Petrow used the trivial bound and Young evaluation of the fourth
moment to replace the qo(1) bound of Conrey-Iwaniec by
O((log q)4). However it would be interesting to look for an
aymptotic formula with power saving error term: this would make
it possible to improve the exponent 1/3.



Algebraic mixing

Averaging over χ one obtain a sum of the shape (f = E ′|s=0)

1

(MN)1/2

∑∑
m∼M,n∼N

λf (m)λf (n)
K (m/n; q)

q1/2

with MN ∼ q2. Observe that the trivial bound � q2/q3/2 = q1/2

is off by a factor q1/2 from what we would like to improve on (in
contrast with non-twisted moment where q−1/2K was replaced by
δm/n≡1 (mod q))!
In contrast to the above, the hardest case is when M ∼ N ∼ q.

Remark

Some recent general large sieve inequality for `-adic sheaves of Xi
Ping allows to save the annoying factor q1/2 but we need more!



Algebraic mixing

Reversing the Fourier expansion process for modular form one find
that the problem of bounding this sums is essnetially equivalent to
the following horocycle algebraic mixing problem

1

q2

∑
a,b∈F×q

f (
a + z0

q
)f (

b + z0
q

)
̂̂
K (b/a)

?
� q−1/2−δ, δ > 0

or changing variables

1

q2

∑
a,λ∈F×q

f (
a + z0

q
)f (

λa + z0
q

)
̂̂
K (λ)

?
� q−1/2−δ, δ > 0

Remark (Distribution of algebraically twisted horocycles, FKM)

For any trace function K on A1(Fq) which is not an additive
character 1

q

∑
a∈F×q f (a+z0

q )K (a)�f q−1/8+o(1).



Algebraic mixing: a variant

One can also study the problem when K (a, b) is the characteristic
function of a curve in A2(Fq): in that case the expectation is that
for C general enough:

1

q

∑
(a,b)∈C(Fq)

f (
a + z0

q
)f (

b + z0
q

)
?
� q−δ, δ > 0.

Remark

The work of Einsiedler-Lindenstrauss on mixing on products of
modular curves gives non trivial results when the equation of C is
of the shape b = ak , k 6= 0, 1,−1.


