Sums of reciprocals of fractional parts and applications to Diophantine approximation: Part 1

Sanju Velani

Department of Mathematics University of York

Goa: 1 February 2016

KORKA SERKER ORA

Joint work with Victor Beresnevich and Alan Haynes (York)

The sums of interest

We investigate the sums

$$
\mathcal{S}_{N}(\alpha,\gamma) := \sum_{n=1}^{N} \frac{1}{n\|n\alpha-\gamma\|} \quad \text{ and } \quad R_{N}(\alpha,\gamma) := \sum_{n=1}^{N} \frac{1}{\|n\alpha-\gamma\|},
$$

where α and γ are real parameters and $\|\cdot\|$ is the distance to the nearest integer. The sums are related (via partial summation):

$$
S_N(\alpha,\gamma)=\sum_{n=1}^N\frac{R_n(\alpha,\gamma)}{n(n+1)}+\frac{R_N(\alpha,\gamma)}{N+1}.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

The sums of interest

We investigate the sums

$$
\mathcal{S}_{N}(\alpha,\gamma) := \sum_{n=1}^{N} \frac{1}{n\|n\alpha-\gamma\|} \quad \text{ and } \quad R_{N}(\alpha,\gamma) := \sum_{n=1}^{N} \frac{1}{\|n\alpha-\gamma\|},
$$

where α and γ are real parameters and $\|\cdot\|$ is the distance to the nearest integer. The sums are related (via partial summation):

$$
S_N(\alpha,\gamma)=\sum_{n=1}^N\frac{R_n(\alpha,\gamma)}{n(n+1)}+\frac{R_N(\alpha,\gamma)}{N+1}.
$$

Schmidt (1964): for any $\gamma \in \mathbb{R}$ and for any $\varepsilon > 0$

$$
(\log N)^2 \ll S_N(\alpha, \gamma) \ll (\log N)^{2+\varepsilon},
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

for almost all $\alpha \in \mathbb{R}$.

Schmidt (1964): for any $\gamma \in \mathbb{R}$ and for any $\varepsilon > 0$

$$
(\log N)^2 \ll S_N(\alpha, \gamma) \ll (\log N)^{2+\varepsilon}, \tag{1}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

for almost all $\alpha \in \mathbb{R}$. In the homogeneous case $(\gamma = 0)$, easy to see that the ε term in [\(1\)](#page-2-0) can be removed if α is badly approximable.

Schmidt (1964): for any $\gamma \in \mathbb{R}$ and for any $\varepsilon > 0$

$$
(\log N)^2 \ll S_N(\alpha, \gamma) \ll (\log N)^{2+\varepsilon}, \tag{1}
$$

for almost all $\alpha \in \mathbb{R}$. In the homogeneous case $(\gamma = 0)$, easy to see that the ε term in [\(1\)](#page-2-0) can be removed if α is badly approximable.

We show that when $\gamma = 0$, the l.h.s. [\(1\)](#page-2-0) is true for all irrationals while the r.h.s. [\(1\)](#page-2-0) is true with $\varepsilon = 0$ for a.a. irrationals.

More precisely:

Theorem. Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Then for $N \geq N_0$

$$
\frac{1}{2}(\log N)^2 \stackrel{\forall}{\leq} S_N(\alpha, 0) := \sum_{n=1}^N \frac{1}{n||n\alpha||} \stackrel{a.a}{\leq} 34 (\log N)^2.
$$

In fact, the upper bound is valid for any $\alpha := [a_1, a_2, \ldots]$ such that

$$
A_k(\alpha) := \sum_{i=1}^k a_i = o(k^2).
$$

(Diamond $+$ Vaaler: For a.a. α , for k sufficiently large $A_k \leqslant k^{1+\varepsilon}.$)

Homogeneous results: $R_N(\alpha, 0)$

Theorem. Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Then for $N \geq N_0$

$$
N \log N \stackrel{\forall}{\ll} R_N(\alpha, 0) := \sum_{n=1}^N \frac{1}{\|n\alpha\|}.
$$

The fact that above is valid for any irrational α is crucial for the applications in mind. (Independently: $Lê + Vaaler$)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Theorem. Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Then for $N \geq N_0$

$$
N \log N \stackrel{\forall}{\ll} R_N(\alpha, 0) := \sum_{n=1}^N \frac{1}{\|n\alpha\|}.
$$

The fact that above is valid for any irrational α is crucial for the applications in mind. (Independently: $Lê + Vaaler$)

Hardy + Wright: $R_N(\alpha, 0) \ll N$ log N for badly approximable α . In general, not even true a.a. Indeed:

$$
N \log N \log \log N \stackrel{a.a.}{\ll} R_N(\alpha, 0) \stackrel{a.a.}{\ll} N \log N (\log \log N)^{1+\epsilon}.
$$

Theorem. Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Then for $N \geq N_0$

$$
N \log N \stackrel{\forall}{\ll} R_N(\alpha, 0) := \sum_{n=1}^N \frac{1}{\|n\alpha\|}.
$$

The fact that above is valid for any irrational α is crucial for the applications in mind. (Independently: $Lê + Vaaler$)

Hardy + Wright: $R_N(\alpha, 0) \ll N$ log N for badly approximable α . In general, not even true a.a. Indeed:

$$
N \log N \log \log N \stackrel{a.a.}{\ll} R_N(\alpha, 0) \stackrel{a.a.}{\ll} N \log N (\log \log N)^{1+\epsilon}.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Now to some inhomogeneous statements.

Theorem. For each $\gamma \in \mathbb{R}$ there exists a set $\mathcal{A}_{\gamma} \subset \mathbb{R}$ of full measure such that for all $\alpha \in A_{\gamma}$ and all sufficiently large N

$$
\mathcal{S}_{\sf N}(\alpha,\gamma) := \sum_{1\leqslant n\leqslant {\sf N}} \frac{1}{n\|n\alpha-\gamma\|}\;\ll\; (\log{\sf N})^2\,.
$$

The result removes the 'epsilon' term in Schmidt's upper bound.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Theorem. For each $\gamma \in \mathbb{R}$ there exists a set $\mathcal{A}_{\gamma} \subset \mathbb{R}$ of full measure such that for all $\alpha \in A_{\gamma}$ and all sufficiently large N

$$
\mathcal{S}_{\sf N}(\alpha,\gamma) := \sum_{1\leqslant n\leqslant {\sf N}} \frac{1}{n\|n\alpha-\gamma\|}\;\ll\; (\log{\sf N})^2\,.
$$

The result removes the 'epsilon' term in Schmidt's upper bound.

Theorem. Let $\alpha \in \mathbb{R} \setminus (\mathfrak{L} \cup \mathbb{Q})$. Then, for all sufficiently large N and any $\gamma \in \mathbb{R}$ $S_N(\alpha, \gamma) \gg (\log N)^2$.

Schmidt's lower bound is a.a. and depends on γ . The above is for all irrationals except possibly for Liouville numbers \mathfrak{L} .

4 D > 4 P + 4 B + 4 B + B + 9 Q O

In the lower bound result for $S_N(\alpha, \gamma)$ we are not sure if we need to exclude Liouville numbers. However, it is necessary when dealing with $R_N(\alpha, \gamma)$.

Theorem. Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Then, $\alpha \notin \mathcal{L}$ if and only if for any $\gamma \in \mathbb{R}$,

$$
R_N(\alpha,\gamma):=\sum_{1\leqslant n\leqslant N}\frac{1}{\|n\alpha-\gamma\|}\gg N\log N\quad\text{for }N\geqslant 2.
$$

Related to the sums, given $\alpha, \gamma \in \mathbb{R}$, $N \in \mathbb{N}$ and $\varepsilon > 0$, we consider the cardinality of

$$
N_{\gamma}(\alpha,\varepsilon):=\left\{n\in\mathbb{N}:\|n\alpha-\gamma\|<\varepsilon,\ n\leqslant N\right\}.
$$

Observing that in the homogeneous case, when $\epsilon N \geq 1$, Minkowski's Theorem for convex bodies, implies that

$$
\#N(\alpha,\varepsilon):=\#N_0(\alpha,\varepsilon)\geqslant \lfloor \varepsilon N\rfloor\,.
$$

KORKA SERKER ORA

Related to the sums, given $\alpha, \gamma \in \mathbb{R}$, $N \in \mathbb{N}$ and $\varepsilon > 0$, we consider the cardinality of

$$
N_{\gamma}(\alpha,\varepsilon):=\left\{n\in\mathbb{N}:\|n\alpha-\gamma\|<\varepsilon,\ n\leqslant N\right\}.
$$

Observing that in the homogeneous case, when $\epsilon N \geq 1$. Minkowski's Theorem for convex bodies, implies that

$$
\#N(\alpha,\varepsilon):=\#N_0(\alpha,\varepsilon)\geqslant \lfloor \varepsilon N\rfloor\,.
$$

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Under which conditions can this bound can be reversed?

The homogeneous counting results

Theorem. Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and let $(q_k)_{k \geq 0}$ be the sequence of denominators of the convergents of α . Let $N \in \mathbb{N}$ and $\varepsilon > 0$ such that $0 < 2\varepsilon < ||q_2\alpha||$. Suppose that

$$
\tfrac{1}{2\varepsilon}\leqslant q_k\leqslant N
$$

for some integer k. Then

$$
\lfloor \varepsilon N \rfloor \leqslant \#N(\alpha, \varepsilon) \leqslant 32 \varepsilon N. \tag{2}
$$

KORK ERKER ADE YOUR

Theorem. Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and let $(q_k)_{k \geq 0}$ be the sequence of denominators of the convergents of α . Let $N \in \mathbb{N}$ and $\varepsilon > 0$ such that $0 < 2\varepsilon < ||q_2\alpha||$. Suppose that

 $\frac{1}{2\varepsilon} \leqslant q_k \leqslant N$

for some integer k. Then

$$
\lfloor \varepsilon N \rfloor \leqslant \#N(\alpha, \varepsilon) \leqslant 32 \varepsilon N. \tag{2}
$$

In terms of the Diophantine exponent $\tau(\alpha)$: Let $\alpha \notin \mathcal{L} \cup \mathbb{Q}$ and let $\nu \in \mathbb{R}$ satisfy 1

$$
0<\nu<\frac{1}{\tau(\alpha)}.
$$

Then, $\exists \varepsilon_0 = \varepsilon_0(\alpha) > 0$ such that for any sufficiently large N and any ε with $\mathcal{N}^{-\nu}<\varepsilon<\varepsilon_0$, estimate [\(2\)](#page-15-1) is sa[tis](#page-15-0)[fie](#page-17-0)[d](#page-14-0)[.](#page-15-0)

The inhomogeneous counting results

Estimates for $\#N_{\gamma}(\alpha,\varepsilon)$ are obtained from the homogenous results via the following.

Theorem. For any $\varepsilon > 0$ and $N \in \mathbb{N}$, we have that

 $\#N_{\gamma}(\alpha,\varepsilon) \leq \#N(\alpha,2\varepsilon) + 1.$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

If $N'_{\gamma}(\alpha,\varepsilon')\neq\emptyset$, where $N':=\frac{1}{2}N$ and $\varepsilon':=\frac{1}{2}\varepsilon$, then $\#N_\gamma(\alpha,\varepsilon) \ \geqslant \ \#N'(\alpha,\varepsilon') + 1 \, .$

The inhomogeneous counting results

Estimates for $\#N_{\gamma}(\alpha,\varepsilon)$ are obtained from the homogenous results via the following.

Theorem. For any $\varepsilon > 0$ and $N \in \mathbb{N}$, we have that

 $\#N_{\gamma}(\alpha,\varepsilon) \leq \#N(\alpha,2\varepsilon) + 1.$

If $N'_{\gamma}(\alpha,\varepsilon')\neq\emptyset$, where $N':=\frac{1}{2}N$ and $\varepsilon':=\frac{1}{2}\varepsilon$, then $\#N_\gamma(\alpha,\varepsilon) \ \geqslant \ \#N'(\alpha,\varepsilon') + 1 \, .$

UPSHOT: If $\#\{1 \leq n \leq N/2 : ||n\alpha - \gamma|| < \epsilon/2\} > 0$, then under the conditions of the homogeneous results

$$
\lfloor\tfrac{1}{4}\varepsilon N\rfloor\ \leqslant\ \#\mathsf{N}_\gamma(\alpha,\varepsilon)\ \leqslant\ 64\,\varepsilon N+1\,.
$$

• Ostrowski expansion of real numbers: Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Then, for every $n \in \mathbb{N}$ there is a unique integer $K \geq 0$ such that

$$
q_K\leqslant n< q_{K+1},
$$

and a unique sequence $\{c_{k+1}\}_{k=0}^\infty$ of integers such that

$$
n=\sum_{k=0}^{\infty}c_{k+1}q_k,\qquad \qquad (3)
$$

 $0 \leqslant c_1 < a_1$ and $0 \leqslant c_{k+1} \leqslant a_{k+1}$ $\forall k \geqslant 1$,

 $c_k = 0$ whenever $c_{k+1} = a_{k+1}$ with $k \ge 1$,

 $c_{k+1} = 0 \quad \forall k > K.$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Let $\alpha \in [0,1) \setminus \mathbb{Q}$, $n \in \mathbb{N}$ and, let m be the smallest integer such that $c_{m+1} \neq 0$ in the Ostrowski expansion of n. If $m \geq 2$, then

$$
\|n\alpha\| = \left|\sum_{k=m}^{\infty} c_{k+1}D_k\right| \qquad (D_k := q_k\alpha - p_k (k \geqslant 0))
$$

In particular

 $(c_{m+1}-1)|D_m| \leq ||n\alpha|| \leq (c_{m+1}+1)|D_m|.$ (4)

KORK ERKER ADE YOUR

Let $\alpha \in [0,1) \setminus \mathbb{Q}$, $n \in \mathbb{N}$ and, let m be the smallest integer such that $c_{m+1} \neq 0$ in the Ostrowski expansion of n. If $m \geq 2$, then

$$
\|n\alpha\| = \left|\sum_{k=m}^{\infty} c_{k+1}D_k\right| \qquad (D_k := q_k\alpha - p_k (k \geqslant 0))
$$

In particular

$$
(c_{m+1}-1)|D_m| \leq ||n\alpha|| \leq (c_{m+1}+1)|D_m|.
$$
 (4)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Since $\frac{1}{2} \leqslant q_{k+1}|D_k| \leqslant 1$, it follows that

$$
\frac{1}{2}(c_{m+1}-1) \leqslant q_{k+1}||n\alpha|| \leqslant (c_{m+1}+1).
$$

Why should we care?

• Why should I or indeed anyone care?

- Why should I or indeed anyone care?
- They have elegant applications to metrical Diophantine approximation; in particular the multiplicative theory.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Khintchine's Theorem: 1-dimensional

Let $\mathrm{I}:=[0,1],\, \psi:\mathbb{N}\to\mathbb{R}^+$ be a real positive function and

 $W(\psi) := \{x \in I : ||qx|| \leq \psi(q) \text{ for infinitely many } q \in \mathbb{N}\}\$

– the set of ψ -well approximable numbers.

Khintchine's Theorem (1924) If ψ is monotonic, then

$$
m(W(\psi)) = \begin{cases} 0 & \text{if } \sum_{q=1}^{\infty} \psi(q) < \infty, \\ 1 & \text{if } \sum_{q=1}^{\infty} \psi(q) = \infty. \end{cases}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Khintchine's Theorem: 1-dimensional

Let $\mathrm{I}:=[0,1],\, \psi:\mathbb{N}\to\mathbb{R}^+$ be a real positive function and

 $W(\psi) := \{x \in I : ||qx|| \leq \psi(q) \text{ for infinitely many } q \in \mathbb{N}\}\$

– the set of ψ -well approximable numbers.

Khintchine's Theorem (1924) If ψ is monotonic, then

$$
m(W(\psi)) = \begin{cases} 0 & \text{if } \sum_{q=1}^{\infty} \psi(q) < \infty, \\ 1 & \text{if } \sum_{q=1}^{\infty} \psi(q) = \infty. \end{cases}
$$

• Divergence part requires monotonicity.

 \bullet Put $\psi(q)=\frac{1}{q\log q}$. Divergent part implies for almost all $\mathrm{\mathsf{x}}\ \exists$ infinitely many $q > 0$ such that $q ||qx|| < 1/ \log q$.

KID KA KERKER KID KO

The Duffin-Schaeffer Conjecture

Can we remove the monotonicity assumption in Khintchine?

K □ ▶ K @ ▶ K 할 X K 할 X T 할 X 1 9 Q Q *

Can we remove the monotonicity assumption in Khintchine? No

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Duffin & Schaeffer constructed a non-monotonic ψ such that $\sum_{q=1}^{\infty} \psi(q) = \infty$ but $m(W(\psi)) = 0$.

Idea is to keep using the same rational; i.e. p/q , $2p/2q$,

Can we remove the monotonicity assumption in Khintchine? No

Duffin & Schaeffer constructed a non-monotonic ψ such that $\sum_{q=1}^{\infty} \psi(q) = \infty$ but $m(W(\psi)) = 0$.

Idea is to keep using the same rational; i.e. p/q , $2p/2q$,

Overcome this by insisting that p, q are co-prime: let $W'(\psi)$ be the set of $x \in I$ such that $|qx - p| \leq \psi(q)$ for infinitely many p/q with $(p, q) = 1$.

KORKAR KERKER EL VOLO

Can we remove the monotonicity assumption in Khintchine? No

Duffin & Schaeffer constructed a non-monotonic ψ such that $\sum_{q=1}^{\infty} \psi(q) = \infty$ but $m(W(\psi)) = 0$.

Idea is to keep using the same rational; i.e. p/q , $2p/2q$,

Overcome this by insisting that p, q are co-prime: let $W'(\psi)$ be the set of $x \in I$ such that $|qx - p| \leq \psi(q)$ for infinitely many p/q with $(p, q) = 1$.

The Duffin-Schaeffer Conjecture (1941) Let $\psi: \mathbb{N} \rightarrow \mathbb{R}^+$ be a real positive function. Then

$$
m(W'(\psi))=1 \quad \text{if} \quad \sum_{q=1}^{\infty} \frac{\varphi(q)\psi(q)}{q}=\infty\,.
$$

KID KA KERKER KID KO

- Gallagher (1965): $m(W'(\psi)) = 0$ or 1
- Various partial results are know:

The Duffin-Schaeffer Theorem (1941) Let $\psi: \mathbb{N} \rightarrow \mathbb{R}^+$ be a real positive function. Then $m(W'(\psi)) = 1$ if

$$
\sum_{q=1}^{\infty} \frac{\varphi(q)\psi(q)}{q} = \infty
$$

and

$$
\limsup_{N\to\infty}\left(\sum_{q=1}^N\frac{\varphi(q)}{q}\psi(q)\right)\left(\sum_{q=1}^N\psi(q)\right)^{-1}>0.
$$
 (5)

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Note that [\(5\)](#page-30-0) implies that the convergence/divergence behavior of $\sum_{q=1}^{\infty}{\left(\varphi(q)\psi(q)\right)}/q$ and $\sum_{q=1}^{\infty}{\psi(q)}$ are equivalent.

The Inhomogeneous Duffin-Schaeffer Conjecture

Let $\gamma \in \mathbb{R}$ and let $W'(\psi, \gamma)$ be the set of $x \in I$ such that $|qx - p - \gamma| \leq \psi(q)$ for infinitely many p/q with $(p, q) = 1$.

Inhomogeneous D-S Conjecture. Let $\psi : \mathbb{N} \to \mathbb{R}^+$ be a real positive function. Then

$$
m(W'(\psi,\gamma))=1 \quad \text{if} \quad \sum_{q=1}^{\infty} \frac{\varphi(q)\psi(q)}{q}=\infty\,.
$$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

The Inhomogeneous Duffin-Schaeffer Conjecture

Let $\gamma \in \mathbb{R}$ and let $W'(\psi, \gamma)$ be the set of $x \in I$ such that $|qx - p - \gamma| < \psi(q)$ for infinitely many p/q with $(p, q) = 1$.

Inhomogeneous D-S Conjecture. Let $\psi : \mathbb{N} \to \mathbb{R}^+$ be a real positive function. Then

$$
m(W'(\psi,\gamma))=1 \quad \text{if} \quad \sum_{q=1}^{\infty} \frac{\varphi(q)\psi(q)}{q}=\infty\,.
$$

- No inhomogeneous analogue of Gallagher's $0 1$ law. Ramírez (2015): \exists integer $t \geq 1$ so that $m(W'(\psi, t\gamma)) = 0$ or 1.
- No inhomogeneous analogue of the Duffin-Schaeffer Theorem.

KORKAR KERKER EL VOLO

The Inhomogeneous Duffin-Schaeffer Conjecture

Let $\gamma \in \mathbb{R}$ and let $W'(\psi, \gamma)$ be the set of $x \in I$ such that $|qx - p - \gamma| < \psi(q)$ for infinitely many p/q with $(p, q) = 1$.

Inhomogeneous D-S Conjecture. Let $\psi : \mathbb{N} \to \mathbb{R}^+$ be a real positive function. Then

$$
m(W'(\psi,\gamma))=1 \quad \text{if} \quad \sum_{q=1}^{\infty} \frac{\varphi(q)\psi(q)}{q}=\infty\,.
$$

- No inhomogeneous analogue of Gallagher's $0 1$ law. Ramírez (2015): \exists integer $t \geq 1$ so that $m(W'(\psi, t\gamma)) = 0$ or 1.
- No inhomogeneous analogue of the Duffin-Schaeffer Theorem. (We show that such a theorem would imply inhomogeneous Gallagher for multiplicative approximation)

Khintchine in \mathbb{R}^2 : the statement

Let
$$
I^2 = [0, 1)^2
$$
 and given $\psi : \mathbb{N} \to \mathbb{R}^+$ let

 $W(2,\psi) := \{(\alpha,\beta) \in I^2 \colon \max\{\|q\alpha\|,\|q\beta\|\} < \psi(q) \text{ for i. m. } q \in \mathbb{N}\}\.$

Throughout, m_2 will denote 2-dimensional Lebesgue measure.

Khintchine in \mathbb{R}^2 . If ψ is monotonic, then

$$
m_2(W(2,\psi)) = \left\{ \begin{array}{ll} 0 & \text{if} \quad \sum_{q=1}^{\infty} \psi^2(q) < \infty \,, \\ 1 & \text{if} \quad \sum_{q=1}^{\infty} \psi^2(q) = \infty \,. \end{array} \right.
$$

KID KA KERKER KID KO

Khintchine in \mathbb{R}^2 : the statement

Let
$$
I^2 = [0, 1)^2
$$
 and given $\psi : \mathbb{N} \to \mathbb{R}^+$ let

 $W(2,\psi) := \{(\alpha,\beta) \in I^2 \colon \max\{\|q\alpha\|,\|q\beta\|\} < \psi(q) \text{ for i. m. } q \in \mathbb{N}\}\.$

Throughout, m_2 will denote 2-dimensional Lebesgue measure.

Khintchine in \mathbb{R}^2 . If ψ is monotonic, then

$$
m_2(W(2,\psi)) = \begin{cases} 0 & \text{if } \sum_{q=1}^{\infty} \psi^2(q) < \infty, \\ 1 & \text{if } \sum_{q=1}^{\infty} \psi^2(q) = \infty. \end{cases}
$$

KORKAR KERKER E VOOR

• Gallagher: monotonicity not required.

Khintchine in \mathbb{R}^2 : the statement

Let
$$
I^2 = [0, 1)^2
$$
 and given $\psi : \mathbb{N} \to \mathbb{R}^+$ let

 $W(2,\psi) := \{(\alpha,\beta) \in I^2 \colon \max\{\|q\alpha\|,\|q\beta\|\} < \psi(q) \text{ for i. m. } q \in \mathbb{N}\}\.$

Throughout, m_2 will denote 2-dimensional Lebesgue measure.

Khintchine in \mathbb{R}^2 . If ψ is monotonic, then

$$
m_2(W(2,\psi)) = \begin{cases} 0 & \text{if } \sum_{q=1}^{\infty} \psi^2(q) < \infty, \\ 1 & \text{if } \sum_{q=1}^{\infty} \psi^2(q) = \infty. \end{cases}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

- **•** Gallagher: monotonicity not required.
- Convergence not true in general for fixed α .

Let L_{α} be the line parallel to the y-axis passing through the point $(\alpha, 0)$. Suppose $\alpha = \frac{a}{b}$ $\frac{a}{b}$.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Let L_{α} be the line parallel to the y-axis passing through the point $(\alpha, 0)$. Suppose $\alpha = \frac{a}{b}$ $\frac{a}{b}$. Then, by Dirichlet's theorem, for any β there exists infinitely many $q\in\mathbb{N}$ such that $\|q\beta\|< q^{-1}$ and so it follows that

$$
||bq\beta|| < \frac{b}{q} = \frac{b^2}{bq}
$$
 and $||bq\alpha|| = ||aq|| = 0 < \frac{b^2}{bq}$.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Let L_{α} be the line parallel to the y-axis passing through the point $(\alpha, 0)$. Suppose $\alpha = \frac{a}{b}$ $\frac{a}{b}$. Then, by Dirichlet's theorem, for any β there exists infinitely many $q\in\mathbb{N}$ such that $\|q\beta\|< q^{-1}$ and so it follows that

$$
||bq\beta|| < \frac{b}{q} = \frac{b^2}{bq}
$$
 and $||bq\alpha|| = ||aq|| = 0 < \frac{b^2}{bq}$.

The upshot of this is that every point on the rational vertical line L_{α} is $\psi(q)=b^2\;q^{-1}$ - approximable and so

$$
m_1(W(2,\psi) \cap \mathrm{L}_{\alpha}) = 1
$$
 but $\sum_{q=1}^{\infty} \psi(q)^2 = b^4 \sum_{q=1}^{\infty} q^{-2} < \infty$.

KORKAR KERKER EL VOLO

Let
$$
I^2 = [0, 1)^2
$$
 and given $\psi : \mathbb{N} \to \mathbb{R}^+$ let

 $W(2,\psi) := \{(\alpha,\beta) \in I^2 \colon \max\{\|q\alpha\|,\|q\beta\|\} < \psi(q) \text{ for i. m. } q \in \mathbb{N}\}\.$

Khintchine in \mathbb{R}^2 . If ψ is monotonic, then

$$
m_2(W(2,\psi)) = \left\{ \begin{array}{ll} 0 & \text{if} \quad \sum_{q=1}^{\infty} \psi^2(q) < \infty \,, \\ \\ 1 & \text{if} \quad \sum_{q=1}^{\infty} \psi^2(q) = \infty \,. \end{array} \right.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

- Convergence not true in general for fixed α .
- Is divergence true for fixed α ?

Fix $\alpha \in I$ and let L_{α} be the line parallel to the y-axis passing through the point $(\alpha, 0)$ and let ψ is monotonic. The claim is that

$$
m_1(W(2,\psi) \cap \mathcal{L}_{\alpha}) = 1
$$
 if $\sum_{q=1}^{\infty} \psi^2(q) = \infty$. (6)

KORKAR KERKER EL VOLO

Theorem (Ramírez, Simmons, Süess)

- **A.** If $\tau(\alpha) < 2$, then [\(6\)](#page-41-0) is true.
- $\textbf{B.}$ If $\tau(\alpha)>$ 2 and for $\epsilon>$ 0, $\psi(q)>$ $q^{-\frac{1}{2}-\epsilon}$ for q large, then $W(2, \psi) \cap L_{\alpha} = I^2 \cap L_{\alpha}$. In particular, $m_1(W(2, \psi) \cap L_{\alpha}) = 1$.
	- (A) requires estimates for $\#\{q \leqslant N : ||q\alpha|| \leqslant \psi(q)\}\$

Littlewood Conjecture (c. 1930): For every $(\alpha,\beta)\in\mathrm{I}^2$

 $\liminf_{q\to\infty}q\|q\alpha\|\|q\beta\|=0.$

• Khintchine's theorem implies that

lim inf q log q $||q\alpha|| ||q\beta|| = 0 \quad \forall \alpha \in \mathbb{R}$ and for almost all $\beta \in \mathbb{R}$. $\overline{a\rightarrow\infty}$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Multiplicative approximation: Gallagher's Theorem

Given $\psi : \mathbb{N} \to \mathbb{R}^+$ let

 $W^{\times}(\psi) := \{(\alpha, \beta) \in I^2 \colon ||q\alpha|| \, ||q\beta|| < \psi(q) \text{ for } i. \text{ m. } q \in \mathbb{N}\}\.$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Multiplicative approximation: Gallagher's Theorem

Given $\psi : \mathbb{N} \to \mathbb{R}^+$ let

 $W^{\times}(\psi) := \{(\alpha, \beta) \in I^2 \colon ||q\alpha|| \, ||q\beta|| < \psi(q) \text{ for } i. \text{ m. } q \in \mathbb{N}\}\.$

The following result is the analogue of Khintchine's simultaneous approximation theorem within the multiplicative setup.

Theorem (Gallagher, 1962)

Let $\psi : \mathbb{N} \to \mathbb{R}^+$ be a monotonic function. Then

$$
m_2(W^\times(\psi)) = \begin{cases} 0 & \text{if } \sum_{q=1}^\infty \psi(q) \log q < \infty, \\ 1 & \text{if } \sum_{q=1}^\infty \psi(q) \log q = \infty. \end{cases}
$$

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Multiplicative approximation: a moments reflection

Gallagher's theorem implies that

 $\liminf_{q\to\infty}q\,\log^2 q\,\|q\alpha\|\|q\beta\|=0\quad$ for a.a. $\alpha\in\mathbb{R}$ and for a.a. $\beta\in\mathbb{R}$. (7)

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Multiplicative approximation: a moments reflection

Gallagher's theorem implies that

lim inf q log² q $\|q\alpha\|\|q\beta\|=0$ for a.a. $\alpha\in\mathbb{R}$ and for a.a. $\beta\in\mathbb{R}$. q→∞ (7)

Khintchine's theorem implies that

 $\liminf_{q \to \infty} q \log q ||q\alpha|| ||q\beta|| = 0 \quad \forall \alpha \in \mathbb{R}$ and for a.a. $\beta \in \mathbb{R}$. (8)

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Multiplicative approximation: a moments reflection

Gallagher's theorem implies that

lim inf q log² q $\|q\alpha\|\|q\beta\|=0$ for a.a. $\alpha\in\mathbb{R}$ and for a.a. $\beta\in\mathbb{R}$. q→∞ (7)

Khintchine's theorem implies that

 $\liminf_{q \to \infty} q \log q ||q\alpha|| ||q\beta|| = 0 \quad \forall \alpha \in \mathbb{R}$ and for a.a. $\beta \in \mathbb{R}$. (8)

The extra log factor from Gallagher comes at a cost of having to sacrifice a set of measure zero on the α side. Thus, unlike with [\(8\)](#page-45-0) which is valid for any α , we are unable to claim that the stronger 'log squared' statement [\(7\)](#page-45-1) is true for say when $\alpha=\surd 2.$

KORKAR KERKER E VOOR

Gallagher's theorem implies that

lim inf q log² q $\|q\alpha\|\|q\beta\|=0$ for a.a. $\alpha\in\mathbb{R}$ and for a.a. $\beta\in\mathbb{R}$. q→∞ (7)

Khintchine's theorem implies that

 $\liminf_{q \to \infty} q \log q ||q\alpha|| ||q\beta|| = 0 \quad \forall \alpha \in \mathbb{R}$ and for a.a. $\beta \in \mathbb{R}$. (8)

The extra log factor from Gallagher comes at a cost of having to sacrifice a set of measure zero on the α side. Thus, unlike with [\(8\)](#page-45-0) which is valid for any α , we are unable to claim that the stronger 'log squared' statement [\(7\)](#page-45-1) is true for say when $\alpha=\surd 2.$ This raises the natural question of whether [\(7\)](#page-45-1) holds for every α .

Divergent Gallagher on fibres

Theorem (Beresnevich-Haynes-V, 2015)

Let $\alpha \in I$ and $\psi : \mathbb{N} \to \mathbb{R}^+$ be a monotonic function such that $\sum_{i=1}^{\infty} \psi(q) \log q = \infty$ (9) $n=1$ and

$$
\exists \delta > 0 \qquad \liminf_{n \to \infty} q_n^{3-\delta} \psi(q_n) \geqslant 1, \qquad (10)
$$

KORKAR KERKER EL VOLO

where q_n denotes the denominators of the convergents of α . Then for almost every $\beta \in I$, there exists infinitely many $q \in \mathbb{N}$ such that $\|q\alpha\| \|q\beta\| < \psi(q).$ (11)

Condition [\(10\)](#page-49-0) holds for all α with Diophantine exponent $\tau(\alpha)$ < 3. Note that dim $\{\alpha \in \mathbb{R} : \tau(\alpha) \geqslant 3\} = 1/2$.

Divergent Gallagher on fibres

Theorem (Beresnevich-Haynes-V, 2015)

Let $\alpha \in I$ and $\psi : \mathbb{N} \to \mathbb{R}^+$ be a monotonic function such that $\sum_{i=1}^{\infty} \psi(q) \log q = \infty$ (9) $q=1$

and

$$
\exists \delta > 0 \qquad \liminf_{n \to \infty} q_n^{3-\delta} \psi(q_n) \geq 1, \qquad (10)
$$

where q_n denotes the denominators of the convergents of α . Then for almost every $\beta \in I$, there exists infinitely many $q \in \mathbb{N}$ such that $\|q\alpha\| \|q\beta\| < \psi(q).$ (11)

Condition [\(10\)](#page-49-0) holds for all α with Diophantine exponent $\tau(\alpha)$ < 3. Note that dim $\{\alpha \in \mathbb{R} : \tau(\alpha) \geqslant 3\} = 1/2$.

It follows that for every $\alpha \in \mathbb{R}$ $\liminf_{q \to \infty} q \log^2 q ||q\alpha|| ||q\beta|| = 0$ $\liminf_{q \to \infty} q \log^2 q ||q\alpha|| ||q\beta|| = 0$ $\liminf_{q \to \infty} q \log^2 q ||q\alpha|| ||q\beta|| = 0$ for al[mo](#page-49-1)[st](#page-51-0) [a](#page-48-0)ll $\beta \in \mathbb{R}$ [.](#page-0-0)

Pseudo sketch proof of divergent Gallagher on fibres

Given α and monotonic ψ , consider

$$
\|q\beta\| < \Psi_{\alpha}(q) \quad \text{where} \quad \Psi_{\alpha}(q) := \frac{\psi(q)}{\|q\alpha\|}.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Pseudo sketch proof of divergent Gallagher on fibres

Given α and monotonic ψ , consider

$$
\|q\beta\| < \Psi_\alpha(q) \quad \text{ where } \quad \Psi_\alpha(q) := \frac{\psi(q)}{\|q\alpha\|}.
$$

Suppose Khintchine's Theorem is true for functions Ψ_{α} , then:

$$
m_1(W(\Psi_\alpha)) = 1
$$
 if $\sum_{q=1}^{\infty} \Psi_\alpha(q) = \infty$.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Pseudo sketch proof of divergent Gallagher on fibres

Given α and monotonic ψ , consider

$$
\|\mathfrak{q}\beta\| < \Psi_{\alpha}(\mathfrak{q}) \quad \text{where} \quad \Psi_{\alpha}(\mathfrak{q}) := \frac{\psi(\mathfrak{q})}{\|\mathfrak{q}\alpha\|}.
$$

Suppose Khintchine's Theorem is true for functions Ψ_{α} , then:

$$
m_1(W(\Psi_\alpha)) = 1
$$
 if $\sum_{q=1}^{\infty} \Psi_\alpha(q) = \infty$.

We need to show that

$$
\sum_{q=1}^{\infty} \psi(q) \log q = \infty \quad \Longrightarrow \quad \sum_{q=1}^{\infty} \Psi_{\alpha}(q) = \infty.
$$

This follows by partial summation and the fact that for any irrational α and $Q \geqslant 2$ Ω

$$
R_Q(\alpha;0):=\sum_{q=1}^{\infty}\frac{1}{\|q\alpha\|}\gg Q\log Q.
$$

Theorem (Beresnevich-Haynes-V, 2015)

Let $\gamma, \delta \in \mathbb{R}$ and $\alpha \in I$ be irrational and let $\psi : \mathbb{N} \to \mathbb{R}^+$ be such that $\sum \psi(q)$ log q converges. Furthermore, assume either: (i) $n \mapsto n\psi(n)$ is decreasing and $\mathcal{S}_{\mathcal{N}}(\alpha;\gamma) \ll (\log \mathcal{N})^2$ for all $\mathcal{N} \geqslant 2$;

(ii) $n \mapsto \psi(n)$ is decreasing and $R_N(\alpha; \gamma) \ll N \log N$ for all $N \geq 2$.

Then for almost all $\beta \in I$, there exist only finitely many $q \in \mathbb{N}$ such that

$$
\|q\alpha-\gamma\|\|q\beta-\delta\|<\psi(q)
$$

(i.e.
$$
m_1(W^{\times}(\psi, \gamma, \delta) \cap L_{\alpha}) = 0
$$
).

KORKAR KERKER EL VOLO

Taking $\alpha \in \mathbf{Bad}$ and $\gamma = 0$ works.

Conjecture. Let $\gamma, \delta \in \mathbb{R}$ and let $\psi : \mathbb{N} \to \mathbb{R}^+$ be monotonic Then

$$
m_2(W^{\times}(\psi,\gamma,\delta)) = 1
$$
 if $\sum_{q=1}^{\infty} \psi(q) \log q = \infty$

i.e. for almost all $(\alpha,\beta)\in\mathrm{I}^2$, there exist infinitely many $\textit{\textbf{q}}\in\mathbb{N}$ such that $\|q\alpha - \gamma\| \|q\beta - \delta\| < \psi(q).$

Conjecture. Let $\gamma, \delta \in \mathbb{R}$ and let $\psi : \mathbb{N} \to \mathbb{R}^+$ be monotonic Then

$$
m_2(W^{\times}(\psi,\gamma,\delta)) = 1
$$
 if $\sum_{q=1}^{\infty} \psi(q) \log q = \infty$

i.e. for almost all $(\alpha,\beta)\in\mathrm{I}^2$, there exist infinitely many $\textit{\textbf{q}}\in\mathbb{N}$ such that $\|q\alpha - \gamma\| \|q\beta - \delta\| < \psi(q).$

• Duffin-Schaeffer Theorem implies Conjecture true with
$$
\delta = 0
$$
.

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

• Inhomogeneous Duffin-Schaeffer Theorem (20??) implies Conjecture true in general.