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The sums of interest

We investigate the sums

SN(α, γ) :=
N∑

n=1

1

n‖nα− γ‖
and RN(α, γ) :=

N∑
n=1

1

‖nα− γ‖
,

where α and γ are real parameters and ‖ · ‖ is the distance to the
nearest integer. The sums are related (via partial summation):

SN(α, γ) =
N∑

n=1

Rn(α, γ)

n(n + 1)
+

RN(α, γ)

N + 1
.

Schmidt (1964): for any γ ∈ R and for any ε > 0

(logN)2 � SN(α, γ)� (logN)2+ε,

for almost all α ∈ R.
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The sums of interest

Schmidt (1964): for any γ ∈ R and for any ε > 0

(logN)2 � SN(α, γ)� (logN)2+ε, (1)

for almost all α ∈ R. In the homogeneous case (γ = 0), easy to see
that the ε term in (1) can be removed if α is badly approximable.

We show that when γ = 0, the l.h.s. (1) is true for all irrationals
while the r.h.s. (1) is true with ε = 0 for a.a. irrationals.

More precisely:
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Homogeneous results: SN(α, 0)

Theorem. Let α ∈ R \Q. Then for N > N0

1

2
(logN)2

∀
6 SN(α, 0) :=

N∑
n=1

1

n‖nα‖
a.a
6 34 (logN)2.

In fact, the upper bound is valid for any α := [a1, a2, . . .] such that

Ak(α) :=
k∑

i=1

ai = o(k2) .

(Diamond + Vaaler: For a.a. α, for k sufficiently large Ak 6 k1+ε.)



Homogeneous results: RN(α, 0)

Theorem. Let α ∈ R \Q. Then for N > N0

N logN
∀
� RN(α, 0) :=

N∑
n=1

1

‖nα‖
.

The fact that above is valid for any irrational α is crucial for the
applications in mind. (Independently: Lê + Vaaler)

Hardy + Wright: RN(α, 0)� N logN for badly approximable α.
In general, not even true a.a. Indeed:

N logN log logN
a.a.
� RN(α, 0)

a.a.
� N logN (log logN)1+ε .

Now to some inhomogeneous statements.
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Inhomogeneous results: a taster

Theorem. For each γ ∈ R there exists a set Aγ ⊂ R of full
measure such that for all α ∈ Aγ and all sufficiently large N

SN(α, γ) :=
∑

16n6N

1

n‖nα− γ‖
� (logN)2 .

The result removes the ‘epsilon’ term in Schmidt’s upper bound.

Theorem. Let α ∈ R \ (L ∪Q). Then, for all sufficiently large N
and any γ ∈ R

SN(α, γ)� (logN)2 .

Schmidt’s lower bound is a.a. and depends on γ. The above is for
all irrationals except possibly for Liouville numbers L.
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Inhomogeneous results: a taster continued

In the lower bound result for SN(α, γ) we are not sure if we need
to exclude Liouville numbers. However, it is necessary when
dealing with RN(α, γ).

Theorem. Let α ∈ R \Q. Then, α 6∈ L if and only if for any
γ ∈ R,

RN(α, γ) :=
∑

16n6N

1

‖nα− γ‖
� N logN for N > 2.



The counting function: #{1 6 n 6 N : ‖nα− γ‖ < ε}

Related to the sums, given α, γ ∈ R, N ∈ N and ε > 0, we
consider the cardinality of

Nγ(α, ε) := {n ∈ N : ‖nα− γ‖ < ε, n 6 N} .

Observing that in the homogeneous case, when εN > 1,
Minkowski’s Theorem for convex bodies, implies that

#N(α, ε) := #N0(α, ε) > bεNc .

Under which conditions can this bound can be reversed?
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The homogeneous counting results

Theorem. Let α ∈ R \Q and let (qk)k>0 be the sequence of
denominators of the convergents of α. Let N ∈ N and ε > 0 such
that 0 < 2ε < ‖q2α‖. Suppose that

1
2ε 6 qk 6 N

for some integer k. Then

bεNc 6 #N(α, ε) 6 32 εN . (2)

In terms of the Diophantine exponent τ(α): Let α 6∈ L ∪Q and let
ν ∈ R satisfy

0 < ν <
1

τ(α)
.

Then, ∃ ε0 = ε0(α) > 0 such that for any sufficiently large N and
any ε with N−ν < ε < ε0, estimate (2) is satisfied.
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The inhomogeneous counting results

Estimates for #Nγ(α, ε) are obtained from the homogenous results
via the following.

Theorem. For any ε > 0 and N ∈ N, we have that

#Nγ(α, ε) 6 #N(α, 2ε) + 1.

If N ′γ(α, ε′) 6= ∅, where N ′ := 1
2N and ε′ := 1

2ε, then

#Nγ(α, ε) > #N ′(α, ε′) + 1 .

UPSHOT: If #{1 6 n 6 N/2 : ‖nα− γ‖ < ε/2} > 0, then under
the conditions of the homogeneous results

b14εNc 6 #Nγ(α, ε) 6 64 εN + 1 .
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Main Tools: Ostrowski

Ostrowski expansion of real numbers: Let α ∈ R \Q. Then,
for every n ∈ N there is a unique integer K > 0 such that

qK 6 n < qK+1,

and a unique sequence {ck+1}∞k=0 of integers such that

n =
∞∑
k=0

ck+1qk , (3)

0 6 c1 < a1 and 0 6 ck+1 6 ak+1 ∀ k > 1,

ck = 0 whenever ck+1 = ak+1 with k > 1,

ck+1 = 0 ∀ k > K .



Main Tools: Ostrowski

Let α ∈ [0, 1) \Q, n ∈ N and, let m be the smallest integer such
that cm+1 6= 0 in the Ostrowski expansion of n. If m > 2, then

‖nα‖ =

∣∣∣∣∣
∞∑

k=m

ck+1Dk

∣∣∣∣∣ (Dk := qkα− pk (k > 0))

In particular

(cm+1 − 1)|Dm| 6 ‖nα‖ 6 (cm+1 + 1)|Dm|. (4)

Since 1
2 6 qk+1|Dk | 6 1, it follows that

1
2(cm+1 − 1) 6 qk+1‖nα‖ 6 (cm+1 + 1).
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Why should I or indeed anyone care?

They have elegant applications to metrical Diophantine
approximation; in particular the multiplicative theory.
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Khintchine’s Theorem: 1-dimensional

Let I := [0, 1], ψ : N→ R+ be a real positive function and

W (ψ) := {x ∈ I : ‖qx‖ ≤ ψ(q) for infinitely many q ∈ N}

– the set of ψ-well approximable numbers.

Khintchine’s Theorem (1924) If ψ is monotonic, then

m(W (ψ)) =


0 if

∑∞
q=1 ψ(q) <∞ ,

1 if
∑∞

q=1 ψ(q) =∞ .

Divergence part requires monotonicity.

• Put ψ(q) = 1
q log q . Divergent part implies for almost all x ∃

infinitely many q > 0 such that q ‖qx‖ ≤ 1/ log q.
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The Duffin-Schaeffer Conjecture

Can we remove the monotonicity assumption in Khintchine?

No

Duffin & Schaeffer constructed a non-monotonic ψ such that∑∞
q=1ψ(q) =∞ but m(W (ψ)) = 0.

Idea is to keep using the same rational; i.e. p/q, 2p/2q, ....

Overcome this by insisting that p, q are co-prime: let W ′(ψ) be
the set of x ∈ I such that |qx − p| ≤ ψ(q) for infinitely many
p/q with (p, q) = 1.

The Duffin-Schaeffer Conjecture (1941) Let ψ : N→ R+ be a
real positive function. Then

m(W ′(ψ)) = 1 if
∑∞

q=1
ϕ(q)ψ(q)

q =∞ .

Gallagher (1965): m(W ′(ψ)) = 0 or 1

Various partial results are know:
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The Duffin-Schaeffer Theorem

The Duffin-Schaeffer Theorem (1941) Let ψ : N→ R+ be a
real positive function. Then m(W ′(ψ)) = 1 if

∞∑
q=1

ϕ(q)ψ(q)

q
=∞

and

lim sup
N→∞

 N∑
q=1

ϕ(q)

q
ψ(q)

 N∑
q=1

ψ(q)

−1 > 0 . (5)

Note that (5) implies that the convergence/divergence behavior of∑∞
q=1 (ϕ(q)ψ(q))/q and

∑∞
q=1 ψ(q) are equivalent.



The Inhomogeneous Duffin-Schaeffer Conjecture

Let γ ∈ R and let W ′(ψ, γ) be the set of x ∈ I such that
|qx − p − γ| ≤ ψ(q) for infinitely many p/q with (p, q) = 1.

Inhomogeneous D-S Conjecture. Let ψ : N→ R+ be a real
positive function. Then

m(W ′(ψ, γ)) = 1 if
∑∞

q=1
ϕ(q)ψ(q)

q =∞ .

No inhomogeneous analogue of Gallagher’s 0− 1 law. Raḿırez
(2015): ∃ integer t > 1 so that m(W ′(ψ, tγ)) = 0 or 1.

No inhomogeneous analogue of the Duffin-Schaeffer Theorem.
(We show that such a theorem would imply inhomogeneous
Gallagher for multiplicative approximation)
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Khintchine in R2: the statement

Let I2 = [0, 1)2 and given ψ : N→ R+ let

W (2, ψ) := {(α, β) ∈ I2 : max{‖qα‖, ‖qβ‖} < ψ(q) for i. m. q ∈ N} .

Throughout, m2 will denote 2-dimensional Lebesgue measure.

Khintchine in R2. If ψ is monotonic, then

m2(W (2, ψ)) =


0 if

∑∞
q=1 ψ

2(q) <∞ ,

1 if
∑∞

q=1 ψ
2(q) =∞ .

Gallagher: monotonicity not required.

Convergence not true in general for fixed α.
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Convergence not true for rational α

Let Lα be the line parallel to the y -axis passing through the point
(α, 0). Suppose α = a

b .

Then, by Dirichlet’s theorem, for any β
there exists infinitely many q ∈ N such that ‖qβ‖ < q−1 and so it
follows that

‖bqβ‖ < b

q
=

b2

bq
and ‖bqα‖ = ‖aq‖ = 0 <

b2

bq
.

The upshot of this is that every point on the rational vertical line
Lα is ψ(q) = b2 q−1 - approximable and so

m1(W (2, ψ) ∩ Lα) = 1 but
∞∑
q=1

ψ(q)2 = b4
∞∑
q=1

q−2 <∞ .
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Khintchine in R2: the statement

Let I2 = [0, 1)2 and given ψ : N→ R+ let

W (2, ψ) := {(α, β) ∈ I2 : max{‖qα‖, ‖qβ‖} < ψ(q) for i. m. q ∈ N} .

Khintchine in R2. If ψ is monotonic, then

m2(W (2, ψ)) =


0 if

∑∞
q=1 ψ

2(q) <∞ ,

1 if
∑∞

q=1 ψ
2(q) =∞ .

Convergence not true in general for fixed α.

Is divergence true for fixed α?



Khintchine on fibers

Fix α ∈ I and let Lα be the line parallel to the y -axis passing
through the point (α, 0) and let ψ is monotonic. The claim is that

m1(W (2, ψ) ∩ Lα) = 1 if

∞∑
q=1

ψ2(q) =∞ . (6)

Theorem (Raḿırez, Simmons, Süess)

A. If τ(α) < 2, then (6) is true.

B. If τ(α) > 2 and for ε > 0, ψ(q) > q−
1
2
−ε for q large, then

W (2, ψ)∩Lα = I2 ∩Lα. In particular, m1(W (2, ψ)∩Lα) = 1.

(A) requires estimates for #{q 6 N : ‖qα‖ 6 ψ(q)}



Multiplicative approximation: Littlewood’s Conjecture

Littlewood Conjecture (c. 1930): For every (α, β) ∈ I2

lim inf
q→∞

q‖qα‖‖qβ‖ = 0.

Khintchine’s theorem implies that

lim inf
q→∞

q log q ‖qα‖‖qβ‖ = 0 ∀ α ∈ R and for almost all β ∈ R .



Multiplicative approximation: Gallagher’s Theorem

Given ψ : N→ R+ let

W×(ψ) := {(α, β) ∈ I2 : ‖qα‖ ‖qβ‖ < ψ(q) for i. m. q ∈ N} .

The following result is the analogue of Khintchine’s simultaneous
approximation theorem within the multiplicative setup.

Theorem (Gallagher, 1962)

Let ψ : N→ R+ be a monotonic function. Then

m2(W×(ψ)) =


0 if

∑∞
q=1 ψ(q) log q <∞ ,

1 if
∑∞

q=1 ψ(q) log q =∞ .
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Multiplicative approximation: a moments reflection

Gallagher’s theorem implies that

lim inf
q→∞

q log2 q ‖qα‖‖qβ‖ = 0 for a.a. α ∈ R and for a.a. β ∈ R .

(7)

Khintchine’s theorem implies that

lim inf
q→∞

q log q ‖qα‖‖qβ‖ = 0 ∀ α ∈ R and for a.a. β ∈ R . (8)

The extra log factor from Gallagher comes at a cost of having to
sacrifice a set of measure zero on the α side. Thus, unlike with (8)
which is valid for any α, we are unable to claim that the stronger
‘log squared’ statement (7) is true for say when α =

√
2. This

raises the natural question of whether (7) holds for every α.
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Divergent Gallagher on fibres

Theorem (Beresnevich-Haynes-V, 2015)

Let α ∈ I and ψ : N→ R+ be a monotonic function such that
∞∑
q=1

ψ(q) log q = ∞ (9)

and

∃ δ > 0 lim inf
n→∞

q3−δn ψ(qn) > 1 , (10)

where qn denotes the denominators of the convergents of α. Then
for almost every β ∈ I, there exists infinitely many q ∈ N such that

‖qα‖ ‖qβ‖ < ψ(q) . (11)

Condition (10) holds for all α with Diophantine exponent
τ(α) < 3. Note that dim{α ∈ R : τ(α) > 3} = 1/2 .

It follows that for every α ∈ R
lim inf
q→∞

q log2 q ‖qα‖ ‖qβ‖ = 0 for almost all β ∈ R .
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Pseudo sketch proof of divergent Gallagher on fibres

Given α and monotonic ψ, consider

‖qβ‖ < Ψα(q) where Ψα(q) :=
ψ(q)

‖qα‖
.

Suppose Khintchine’s Theorem is true for functions Ψα, then:

m1(W (Ψα)) = 1 if

∞∑
q=1

Ψα(q) = ∞ .

We need to show that
∞∑
q=1

ψ(q) log q = ∞ =⇒
∞∑
q=1

Ψα(q) = ∞ .

This follows by partial summation and the fact that for any
irrational α and Q > 2

RQ(α; 0) :=
Q∑

q=1

1

‖qα‖
� Q logQ .
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Covergent Gallagher on fibres

Theorem (Beresnevich-Haynes-V, 2015)

Let γ, δ ∈ R and α ∈ I be irrational and let ψ : N→ R+ be such
that

∑
ψ(q) log q converges. Furthermore, assume either:

(i) n 7→ nψ(n) is decreasing and

SN(α; γ)� (logN)2 for all N > 2 ;

(ii) n 7→ ψ(n) is decreasing and

RN(α; γ)� N logN for all N > 2 .

Then for almost all β ∈ I, there exist only finitely many q ∈ N such
that

‖qα− γ‖ ‖qβ − δ‖ < ψ(q)

(i .e. m1(W×(ψ, γ, δ) ∩ Lα) = 0 ).

Taking α ∈ Bad and γ = 0 works.



Inhomogeneous Divergent Gallagher

Conjecture. Let γ, δ ∈ R and let ψ : N→ R+ be monotonic Then

m2(W×(ψ, γ, δ)) = 1 if

∞∑
q=1

ψ(q) log q = ∞

i.e. for almost all (α, β) ∈ I2, there exist infinitely many q ∈ N
such that

‖qα− γ‖ ‖qβ − δ‖ < ψ(q) .

Duffin-Schaeffer Theorem implies Conjecture true with δ = 0.

Inhomogeneous Duffin-Schaeffer Theorem (20??) implies
Conjecture true in general.
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