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We investigate the sums
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DD P DI pr]
where « and ~ are real parameters and || - || is the distance to the

nearest integer. The sums are related (via partial summation):

R, (a, Ry(a,
Swlee) =2 n(r§+1; * %(4— 17)'

Schmidt (1964): for any 7 € R and for any ¢ > 0
(log N)? < Sy(a,v) < (log N)?+e,

for almost all o € R.
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that the € term in (1) can be removed if « is badly approximable.



The sums of interest

Schmidt (1964): for any v € R and for any € > 0
(log N)? < Sy(a,7) < (log N)>*e, (1)

for almost all & € R. In the homogeneous case (v = 0), easy to see
that the € term in (1) can be removed if « is badly approximable.

We show that when v = 0, the l.h.s. (1) is true for all irrationals
while the r.h.s. (1) is true with € = 0 for a.a. irrationals.

More precisely:



Homogeneous results: Sy(«, 0)

Theorem. Let o € R\ Q. Then for N > N

N
1 ¥ 1
E(|ogN)2 < Swn(a,0) = § < 34 (log N)2.

nl|nal

In fact, the upper bound is valid for any « := [a1, a2, . . .] such that
Ak(a) : Z ai = o(k?).

(Diamond + Vaaler: For a.a. a, for k sufficiently large A, < k1<)
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Theorem. Let « € R\ Q. Then for N > Ny
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The fact that above is valid for any irrational « is crucial for the
applications in mind. (Independently: L& + Vaaler)
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Homogeneous results: Ry(c, 0)

Theorem. Let « € R\ Q. Then for N > Ny

v 1
NlogN < Rpy(a,0):= Z

The fact that above is valid for any irrational « is crucial for the
applications in mind. (Independently: L& + Vaaler)

Hardy + Wright: Ry(c,0) < N log N for badly approximable «.
In general, not even true a.a. Indeed:

N log N loglog N < Rn(«, 0) 2N log N (log log N)*<.

Now to some inhomogeneous statements.



Inhomogeneous results: a taster

Theorem. For each v € R there exists a set A, C R of full
measure such that for all « € A, and all sufficiently large N

Sn(a,y) = Z S . < (log N)?.

2 nllna =]

The result removes the ‘epsilon’ term in Schmidt’s upper bound.



Inhomogeneous results: a taster

Theorem. For each v € R there exists a set A, C R of full
measure such that for all « € A, and all sufficiently large N

._ 1 2

1<n<N

The result removes the ‘epsilon’ term in Schmidt’s upper bound.

Theorem. Let a € R\ (£UQ). Then, for all sufficiently large N
and any v € R
Sw(a,7) > (log N)?.

Schmidt's lower bound is a.a. and depends on «y. The above is for
all irrationals except possibly for Liouville numbers £.



Inhomogeneous results: a taster continued

In the lower bound result for Sy(c, ) we are not sure if we need
to exclude Liouville numbers. However, it is necessary when
dealing with Ry(a, ).

Theorem. Let o € R\ Q. Then, o & £ if and only if for any
7 €ER,

1
Rn(a, ) == Z Tna =~ > NlogN for N > 2.



The counting function: #{1 < n< N: |[na— 7| < €}

Related to the sums, given o,y € R, N € Nand € > 0, we
consider the cardinality of

Ny(o,e) ={neN:|na—~| <e, n<N}.

Observing that in the homogeneous case, when eN > 1,
Minkowski's Theorem for convex bodies, implies that

#N(a,€) := #No(a,e) = |eN|.



The counting function: #{1 < n< N: |[na— 7| < €}

Related to the sums, given o,y € R, N € Nand € > 0, we
consider the cardinality of

Ny(o,e) ={neN:|na—~| <e, n<N}.

Observing that in the homogeneous case, when eN > 1,
Minkowski's Theorem for convex bodies, implies that

#N(a,€) := #No(a,e) = |eN|.

Under which conditions can this bound can be reversed?



The homogeneous counting results

Theorem. Let a € R\ Q and let (qx)k=0 be the sequence of
denominators of the convergents of «. Let N € N and € > 0 such
that 0 < 2e < ||qz||. Suppose that

for some integer k. Then

leN] < #N(a,e) < 32eN. (2)



The homogeneous counting results

Theorem. Let a € R\ Q and let (qx)k=0 be the sequence of
denominators of the convergents of «. Let N € N and € > 0 such
that 0 < 2e < ||qz||. Suppose that

for some integer k. Then

leN] < #N(a,e) < 32eN. (2)

In terms of the Diophantine exponent 7(«): Let « ¢ LU Q and let
v € R satisfy 1
O<v<—.

(@)
Then, 3 g9 = go(a) > 0 such that for any sufficiently large N and
any € with N™" < e < g, estimate (2) is satisfied.



The inhomogeneous counting results

Estimates for #/N,(«, ¢) are obtained from the homogenous results
via the following.

Theorem. For anye > 0 and N € N, we have that
#N,(co,e) < #N(o,2e) + 1.
If N2 (cv, ") # 0, where N’ := IN and &' := ie, then

#N»V(OZ,E) > #N/(aa€/)+1'



The inhomogeneous counting results

Estimates for #/N,(«, ¢) are obtained from the homogenous results
via the following.

Theorem. For anye > 0 and N € N, we have that
#N,(co,e) < #N(o,2e) + 1.
If N2 (cv, ") # 0, where N’ := IN and &' := ie, then
#N’Y(av 5) > #N/(aa 8/) +1.
UPSHOT: If #{1 < n < N/2: ||na — v|| < €/2} > 0, then under
the conditions of the homogeneous results

[3eN] < #Ny(a,e) < 64eN+1.



Main Tools: Ostrowski

@ Ostrowski expansion of real numbers: Let & € R\ Q. Then,
for every n € N there is a unique integer K > 0 such that

g < n < gK41,

and a unique sequence {cxy1}3%2, of integers such that

n= Z Ck+19k; (3)
k=0

0<a<a and 0 1< a1 YVk21,
ck =0 whenever ciy1 = aky1 with k > 1,

k1 =0 Vk>K.



Main Tools: Ostrowski

Let « € [0,1)\ Q, n € N and, let m be the smallest integer such
that ¢py1 # 0 in the Ostrowski expansion of n. If m > 2, then

Inall = > cir1Dr (D == qka — px (k > 0))
k=m

In particular

(cme1 = 1)Dnl < [Inall < (cmer +1)Dnl.  (4)



Main Tools: Ostrowski

Let « € [0,1)\ Q, n € N and, let m be the smallest integer such
that ¢py1 # 0 in the Ostrowski expansion of n. If m > 2, then

[e.9]
> ckiaDx

[nall = (Di := qrer — p (k = 0))
k=m
In particular
(cme1 = 1)IDml < lInall < (cmer+1)Dnl.  (4)

Since % < qr+1|Dk| < 1, it follows that

3(emi1—=1) < qepllne| < (emi1+1).
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@ Why should | or indeed anyone care?



Why should we care?

@ Why should | or indeed anyone care?

@ They have elegant applications to metrical Diophantine
approximation; in particular the multiplicative theory.



Khintchine's Theorem: 1-dimensional

Let I:=[0,1], v : N = R™ be a real positive function and
W(y) :={x €1:|gx|| <(q) for infinitely many q € N}

— the set of y-well approximable numbers.

Khintchine’s Theorem (1924) If ¢ is monotonic, then
0 if 3755 ¥(q) <oo,

m(W(¢)) =
Lot 3252, 9(q) =oo.



Khintchine's Theorem: 1-dimensional

Let I:=[0,1], v : N = R™ be a real positive function and
W(y) :={x €1:|gx|| <(q) for infinitely many q € N}

— the set of y-well approximable numbers.

Khintchine’s Theorem (1924) If ¢ is monotonic, then
0 if 3755 ¥(q) <oo,

1if 372, 9(q) =oc.

@ Divergence part requires monotonicity.

m(W(¢)) =

e Put ¥(q) = qk}gq. Divergent part implies for almost all x 3

infinitely many g > 0 such that q||gx|| < 1/loggq.
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Can we remove the monotonicity assumption in Khintchine?
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the set of x € I such that |gx — p| < ¢(q) for infinitely many

p/q with (p,q) = 1.



The Duffin-Schaeffer Conjecture

Can we remove the monotonicity assumption in Khintchine? No

Duffin & Schaeffer constructed a non-monotonic v such that
2 q=1%(q) = oo but m(W(¢)) = 0.
Idea is to keep using the same rational; i.e. p/q, 2p/2q, ....

Overcome this by insisting that p, g are co-prime: let W'(1)) be
the set of x € I such that |gx — p| < ¢(q) for infinitely many

p/q with (p,q) = 1.

The Duffin-Schaeffer Conjecture (1941) Let ¢y : N — R™ be a
real positive function. Then

m(W () =1 if Yoo, A9 =

o Gallagher (1965): m(W’(¢)) =0or 1

@ Various partial results are know:



The Duffin-Schaeffer Theorem

The Duffin-Schaeffer Theorem (1941) Let ¢ : N — RT be a
real positive function. Then m(W'(¢y)) =1 if

— o(a)y(q)
> T

q=1

N ( N -t
Iimsup( £0a) )) (Zw(q)) > 0. (5)
N—oco g—1 q q=1

Note that (5) implies that the convergence/divergence behavior of

> ae1 (p(a)¥(q))/q and 3°22; ¥(q) are equivalent.

and



The Inhomogeneous Duffin-Schaeffer Conjecture

Let v € R and let W/(1),7) be the set of x € T such that
lgx — p — 7| < 9(q) for infinitely many p/q with (p, q) = 1.
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Let v € R and let W/(1),7) be the set of x € T such that
lgx — p — 7| < 9(q) for infinitely many p/q with (p, q) = 1.

Inhomogeneous D-S Conjecture. Let ¢ : N — R be a real
positive function. Then

m(W () =1 if Yoo, A9 = o0,

@ No inhomogeneous analogue of Gallagher's 0 — 1 law. Ramirez
(2015): 3 integer t > 1 so that m(W’(¢, ty)) = 0 or 1.

@ No inhomogeneous analogue of the Duffin-Schaeffer Theorem.



The Inhomogeneous Duffin-Schaeffer Conjecture

Let v € R and let W/(1),7) be the set of x € T such that
lgx — p — 7| < 9(q) for infinitely many p/q with (p, q) = 1.

Inhomogeneous D-S Conjecture. Let ¢ : N — R be a real
positive function. Then

m(W () =1 if Yoo, A9 = o0,

@ No inhomogeneous analogue of Gallagher's 0 — 1 law. Ramirez
(2015): 3 integer t > 1 so that m(W’(¢, ty)) = 0 or 1.

@ No inhomogeneous analogue of the Duffin-Schaeffer Theorem.
(We show that such a theorem would imply inhomogeneous
Gallagher for multiplicative approximation)



Khintchine in R?: the statement

Let I? = [0,1)? and given 1 : N — R let
W(2,v) = {(a. B) € I+ max{|lqell, [aBll} < ¥(q) fori. m. g € N} .
Throughout, my will denote 2-dimensional Lebesgue measure.

Khintchine in R2. If 1 is monotonic, then

0 if ZZO:I ¢2(q) <00,
ma(W(2,9)) =
1 it Y, 42(q) = oo
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Khintchine in R?: the statement

Let I? = [0,1)? and given 1 : N — R let
W(2,v) = {(a. B) € I+ max{|lqell, [aBll} < ¥(q) fori. m. g € N} .
Throughout, my will denote 2-dimensional Lebesgue measure.

Khintchine in R2. If 1 is monotonic, then

0 if ZZO:I ¢2(q) <00,
ma(W(2,9)) =
1 it Y, 42(q) = oo

@ Gallagher: monotonicity not required.

@ Convergence not true in general for fixed a.



Convergence not true for rational o

Let L, be the line parallel to the y-axis passing through the point
(a,0). Suppose a = 7.
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Let L, be the line parallel to the y-axis passing through the point
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there exists infinitely many g € N such that [|g3|| < g~! and so it
follows that

2 2

b b
bgpl| < —=-— and |[bgall=|aq]|=0< —.
Ibadll < = o and [bgal = Jlag] =0 <



Convergence not true for rational o

Let L, be the line parallel to the y-axis passing through the point
(a,0). Suppose a = 7. Then, by Dirichlet’s theorem, for any j3
there exists infinitely many g € N such that [|g3|| < g~! and so it
follows that

b b2 2

IbgBl < 2 =2 and ||bgal = |laq] =0 < .

q bg bq
The upshot of this is that every point on the rational vertical line
Le is ¥(q) = b?> g - approximable and so

m(W(2,9)NLy) =1 but > (g =b*"> g2 <.
q=1 g=1



Khintchine in R?: the statement

Let 12 =[0,1)? and given ¢ : N — R* let
W(2,9) = {(er, ) € I*: max{||qall, g8} < ¥(q) for i. m. g € N} .

Khintchine in R2. If v is monotonic, then

0 if ZZO:I ¢2(q) <00,
ma(W(2,9)) =
1 it Y, 42(q) = oo

@ Convergence not true in general for fixed a.

@ Is divergence true for fixed a?



Khintchine on fibers

Fix oo € I and let L, be the line parallel to the y-axis passing
through the point («,0) and let ¢ is monotonic. The claim is that

m(W(2,¢) N La) i ZW (6)

Theorem (Ramirez, Simmons, Siiess)
A. If 7(a) < 2, then (6) is true.

B. If 7(«) > 2 and for € > 0, ¥(q) > q_%_e for g large, then
W(2,%)N Ly = 12N Lg. In particular, my(W(2,9)NLy) = 1.

@ (A) requires estimates for #{q < N : ||ga|| < ¥(q)}



Multiplicative approximation: Littlewood's Conjecture

Littlewood Conjecture (c. 1930): For every (a, 3) € 12

liminf ql|gal|||gB]| = 0.
q—o0

@ Khintchine's theorem implies that

Iinl)infq log q||galllgB]l =0 Va € R and for almost all 5 € R.
q—00



Multiplicative approximation: Gallagher's Theorem

Given ¢ : N — R7 let

W*(¢) == {(a, 8) € I*: ||qal| [|gB]| < ¥(q) for i. m. g € N} .



Multiplicative approximation: Gallagher's Theorem

Given ¢ : N — R7 let

W*(¢) == {(a, 8) € I*: ||qal| [|gB]| < ¥(q) for i. m. g € N} .

The following result is the analogue of Khintchine's simultaneous
approximation theorem within the multiplicative setup.

Theorem (Gallagher, 1962)

Let 1) : N — R™ be a monotonic function. Then

0 if Yo7 ¥(q)logg < oo,

mz(WX(TP)) -

1 if 35521 ¥(q)logg= .




Multiplicative approximation: a moments reflection

Gallagher's theorem implies that

Iirlinfq log? q|lqa|||gB| =0 fora.a. a €R and fora.a. B €R.
q—00

(7)
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Multiplicative approximation: a moments reflection

Gallagher's theorem implies that
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q—00
(7)

Khintchine's theorem implies that

Iinlinfq log qllqall|[gB]l =0 VaeR and foraa. f€R. (8)
q—00

The extra log factor from Gallagher comes at a cost of having to
sacrifice a set of measure zero on the « side. Thus, unlike with (8)
which is valid for any «, we are unable to claim that the stronger
‘log squared’ statement (7) is true for say when o = /2.



Multiplicative approximation: a moments reflection

Gallagher's theorem implies that

Iirlinfq log? q|lqa|||gB| =0 fora.a. a €R and fora.a. B €R.
q—00
(7)

Khintchine's theorem implies that

Iinlinfq log qllqall|[gB]l =0 VaeR and foraa. f€R. (8)
q—00

The extra log factor from Gallagher comes at a cost of having to
sacrifice a set of measure zero on the « side. Thus, unlike with (8)
which is valid for any «, we are unable to claim that the stronger
‘log squared’ statement (7) is true for say when o = /2. This
raises the natural question of whether (7) holds for every a.



Divergent Gallagher on fibres

Theorem (Beresnevich-Haynes-V, 2015)
Let « € T and v : N — RT be a monotonic function such that

> (q) logg = oo (9)
qg=1

and
36>0  liminf > %(qn) =1, (10)

where q, denotes the denominators of the convergents of o. Then
for almost every B € 1, there exists infinitely many q € N such that

lqdll laBll < ¢(q)- (11)

Condition (10) holds for all o with Diophantine exponent
7(a) < 3. Note that dim{a e R: 7(a) > 3} = 1/2.




Divergent Gallagher on fibres

Theorem (Beresnevich-Haynes-V, 2015)

Let « € T and v : N — RT be a monotonic function such that
> 4(q) logg = o0 (9)

and g=1

36>0  liminf > %(qn) =1, (10)

where q, denotes the denominators of the convergents of o. Then
for almost every B € 1, there exists infinitely many q € N such that

lqdll laBll < ¢(q)- (11)

Condition (10) holds for all o with Diophantine exponent
7(a) < 3. Note that dim{a e R: 7(a) > 3} =1/2.

It follows that for every o € R
liminf g log® q |lqa|| ||gB]| =0 for almost all 3 € R.
g—00



Pseudo sketch proof of divergent Gallagher on fibres

Given a and monotonic v, consider

llgBl < Wal(q) where W,(q): ¥(q)

~ llgall”
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Given a and monotonic v, consider

¥(q)
lqa]
Suppose Khintchine's Theorem is true for functions ¥, then:
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laBll < Va(q) where WV,(q) :=



Pseudo sketch proof of divergent Gallagher on fibres

Given a and monotonic v, consider

¥(q)
llaBll < Va(q) where W,(q):= ——.
lqa]
Suppose Khintchine's Theorem is true for functions W, then:

my (W (V, i Z W, (
We need to show that

o0
Zw( logg = c0 = Z\Il 0 .
qg=1 qg=1
This follows by partial summation and the fact that for any
irrational o and Q >2

Z > QlogQ .



Covergent Gallagher on fibres

Theorem (Beresnevich-Haynes-V, 2015)

Let v,0 € R and a € 1 be irrational and let ¢ : N — Rt be such
that > 1(q) log q converges. Furthermore, assume either:

(i) n+— ny(n) is decreasing and
Sn(a;y) < (log N)? for all N > 2;

(ii) n+ 1(n) is decreasing and
Rn(c;v) < Nlog N for all N > 2.

Then for almost all B € 1, there exist only finitely many q € N such

that
lga — | laB — 8| < ¥(q)
(i.e. my(W*(,7,8)NLy)=0).

Taking a € Bad and v = 0 works.



Inhomogeneous Divergent Gallagher

Conjecture. Let 7,6 € R and let ¢ : N — R* be monotonic Then
ma(W> (4,7, 6 Zw ) logq = o0

i.e. for almost all (a, 3) € 12, there exist infinitely many g € N

such that
lga =~ llaB = ol < ¥(q).



Inhomogeneous Divergent Gallagher

Conjecture. Let 7,6 € R and let ¢ : N — R* be monotonic Then
ma(W> (4,7, 6 Zw ) logq = o0

i.e. for almost all (a, 3) € 12, there exist infinitely many g € N

such that
lga =~ llaB = ol < ¥(q).

@ Duffin-Schaeffer Theorem implies Conjecture true with 6 = 0.

e Inhomogeneous Duffin-Schaeffer Theorem (2077) implies
Conjecture true in general.



