
Sums of reciprocals:

applications to Diophantine approximation

Victor Beresnevich

(University of York)
victor.beresnevich@york.ac.uk

GOA - Feb 2016



The theorem to be discussed

B., Haynes, Velani (2015, preprint): Given any α ∈ R with the
Diophantine exponent w(α) < 3, i.e.

lim sup
n→∞

− log ‖nα‖

log n
< 3 ,

where ‖ · ‖ is the distance to the nearest integer, and given any monotonic
ψ : N → (0,+∞) such that

∞∑

n=1

ψ(n) log n = ∞ ,

we have that for almost every β ∈ R

‖nα‖·‖nβ‖ < ψ(n) for infinitely many n ∈ N .

Note: With a slight restriction on ψ, i.e. requiring that n 7→ nψ(n) is
decreasing, the above becomes true for all α.
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Convergence

Fact: Let n 7→ nψ(n) be decreasing and
∞∑

n=1

ψ(n) log n <∞ .

Let α ∈ R be any irrational real number such that

N∑

n=1

1

n‖nα‖
≪ (logN)2 for all N ≥ 2 . (1)

Then for almost all β ∈ R, there exist only finitely many n ∈ N such that

‖nα‖ ‖nβ‖ < ψ(n) .

Note, (1) is true for Lebesgue almost all α, and in particular, for all badly
approximable α.
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Convergence

Proof. By the Borel-Cantelli lemma, it is enough to verify that
∞∑

n=1

ψ(n)

‖nα‖
<∞.

By partial summation
∑

n≤N

nψ(n)

n‖nα‖
=
∑

n≤N

(
nψ(n)− (n + 1)ψ(n + 1)

)∑

m≤n

1

m‖mα‖

+ (N + 1)ψ(N + 1)
∑

m≤N

1

m‖mα‖

≍
N∑

n=1

(nψ(n)− (n + 1)ψ(n + 1))(log n)2 + (N + 1)ψ(N + 1)(logN)2

≍
N∑

n=1

(nψ(n)− (n + 1)ψ(n + 1))
n∑

m=1

logm

m
+ (N + 1)ψ(N + 1)

N∑

m=1

logm

m

≍
∑

n≤N

ψ(n) log n ≪ 1 for all N as required.
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Khintchine, Gallagher or Duffin and Schaeffer?

What we deal with: α is fixed, β is random and ‖nα‖·‖nβ‖ < ψ(n) for
infinitely many n ∈ N. Consider the following three collections of sets:

K (n,Ψ) :=
{

β ∈ [0, 1) : |nα− s| < Ψ(n) for some s ∈ Z

}

D(n,Ψ) :=
{

β ∈ [0, 1) : |nα− s| < Ψ(n) for some (s, n) = 1
}

,

G (n, ψ) :=
{

(α, β) ∈ [0, 1)2 : ‖nα‖ · ‖nβ‖ < ψ(n)
}

,

where n ∈ N, and let

K(Ψ) := lim sup
n→∞

K (n,Ψ) ,

D(Ψ) := lim sup
n→∞

D(n,Ψ) ,

G(ψ) := lim sup
n→∞

G (n, ψ) .
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Khintchine, Gallagher or Duffin and Schaeffer?

Khintchine (1924): Let Ψ : N → [0,+∞) be decreasing. Then

λ(K(Ψ)) =

{

0, if
∑∞

n=1 Ψ(n) <∞ ,

1, if
∑∞

n=1 Ψ(n) = ∞ .

Duffin-Schaeffer (1941): Let Ψ : N → [0,+∞) satisfy the condition

N∑

n=1

ϕ(n)Ψ(n)

n
≥ Const×

N∑

n=1

Ψ(n) (2)

for i.m. N ∈ N. Then

λ(D(Ψ)) =







0, if

∞∑

n=1

ϕ(n)Ψ(n)

n
<∞ ,

1, if

∞∑

n=1

ϕ(n)Ψ(n)

n
= ∞ .

(3)

Here λ is Lebesgue measure, ϕ is the Euler function.
Note: D(Ψ) ⊂ K(Ψ), hence the D-S theorem is a stronger statement!
Duffin-Schaeffer conjecture (1941): (3) holds without assuming (2).
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Khintchine, Gallagher or Duffin and Schaeffer?

Gallagher (1962): Let ψ : N → [0,+∞) be decreasing and tending to
zero at infinity. Then

λ2(G(ψ)) =

{

0, if
∑∞

n=1 ψ(n) log n <∞ ,

1, if
∑∞

n=1 ψ(n) log n = ∞ .

Q: Gα(ψ) = G(ψ) ∩ {(x , y) ∈ R2 : x = α} Given a fixed α ∈ [0, 1) what
is the size of the set Gα(ψ) of β ∈ [0, 1) such that

‖nα‖ · ‖nβ‖ < ψ(n) for i.m. n ∈ N ???

E.g., given any α ∈ [0, 1) is it true that for almost every β ∈ [0, 1)

lim inf
n→∞

(log n)2 ‖nα‖ · ‖nβ‖ = 0 ??? (4)

Badziahin (2013): For any badly approximable α the set of β ∈ [0, 1)
such that

lim inf
n→∞

log n log log n ‖nα‖ · ‖nβ‖ > 0

has Hausdorff dimension 1.
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Khintchine, Gallagher, Duffin and Schaeffer

Can the Duffin-Schaeffer conjecture be useful? Let Ψ(n) :=
ψ(n)

‖nα‖
.

Then
Gα(ψ) = K(Ψ) ⊃ D(Ψ) .

One may try to use the DS theorem, but verifying (2) for specific α does
not seem easy (if feasible at all). If we had a proof to the DS conjecture,
then we could ‘eliminate’ ϕ by using the inequality

ϕ(n) ≫
n

log log n

and then we could at least prove that λ(Gα(ψ)) = λ(D(Ψ)) = 1 when

ψ(n) =
1

n(log n)2 log log log n

Hence we would be able to conclude (4). But... D-S is still a conjecture!
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The theorem: ideas

B., Haynes, Velani (2015, preprint): Given any α ∈ R with the
Diophantine exponent w(α) < 3 and any monotonic ψ : N → (0,+∞)
such that

∞∑

n=1

ψ(n) log n = ∞ ,

we have that λ(Gα(ψ)) = 1, e.i. for almost every β

‖nα‖ · ‖nβ‖ < ψ(n) for i.m. n ∈ N .

Some ideas:

1. Zero-one law (Cassles, Gallagher):
λ(K(ψ)) ∈ {0, 1}, λ(D(Ψ)) ∈ {0, 1} for any ψ and Ψ.
All we need:

λ(Gα(ψ)) > 0
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The theorem: ideas

2. Borell-Cantelli Lemma (a version of): For any sequence of intervals
Ei ⊂ [0, 1] such that

N∑

i ,j=1

λ(Ei ∩ Ej ) ≤ Const×

(
N∑

i=1

λ(Ei )

)2

(5)

for infinitely many N ∈ N we have that

λ(lim sup
i→∞

Ei) ≥
1

Const
> 0 .

Condition (5) — Quasi Independence on Average (QIA).
Is there a better way to prove positive measure? Almost No:
B.-Velani (yet unpublished): For any sequence of intervals Ei ⊂ [0, 1]
we have that

λ(lim sup
i→∞

Ei ) > 0

if and only if (Ei )i∈N contains a subsequence satisfying QIA.
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A proof of Khintchine’s theorem

Proposition 1: Let R = 6. Then for all sufficiently large t ∈ N

λ




⋃

Rt−1<q≤Rt

⋃

p∈Z

B
(
p
q
, R
R2t

)



 ≥
1

2
.

For sufficiently large t choose a maximal subcollection of rationals
p1
q1
, . . . ,

pm
qm

∈ [0, 1], m = mt

such that R t−1 < qi ≤ R t and
∣
∣
∣
∣

pi
qi

−
pj
qj

∣
∣
∣
∣
≥

1

R2t
(i 6= j) .

By its maximality and Proposition 1 we have that

λ

(
m⋃

i=1

B

(
pi
qi
,
R + 1

R2t

))

≥
1

2
.

Hence m = mt ≥
1

4(R + 1)
R2t .
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A proof of Khintchine

Define

Et

(
pi
qi

)

= B

(
pi
qi
,
Ψ(R t)

R t

)

and Et =
mt⋃

i=1

Et

(
pi
qi

)

Then
lim sup
t→∞

Et ⊂ K(Ψ) ∪Q

and enough to show that λ(lim supt→∞ Et) > 0. Next

λ(Et) ≍ R tΨ(R t) . (6)

And so
∞∑

t=t0

λ(Et) ≍
∞∑

t=t0

R tΨ(R t) ≍
∞∑

n=1

Ψ(n) = ∞.

Next, let t, ℓ are sufficiently large, assume and w.l.o.g. t > ℓ. Then for
any i ≤ mℓ the interval Eℓ(pi/qi ) intersects at most

|Eℓ(pi/qi )|

R−2t
+ 3 ≤ R−ℓ+2t+1Ψ(Rℓ) + 3 intervals Et(p

′
j/q

′
j ).
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A proof of Khintchine

Hence,
λ(Eℓ(pi/qi ) ∩ Et) ≪

(

R−ℓ+2tΨ(Rℓ) + 1
)

× R−tΨ(R t)

and
λ(Eℓ ∩ Et) ≪

(

R−ℓ+2tΨ(Rℓ) + 1
)

× R−tΨ(R t)R2ℓ ≤

≪ R tΨ(R t)RℓΨ(Rℓ) + R tΨ(R t)R−2(t−ℓ) ≤

≤ λ(Et)λ(Eℓ) + λ(Et)R
−2(t−ℓ) .

Summing over t, ℓ ≤ N gives
∑

t≤N

∑

ℓ≤N

λ(Et ∩ Eℓ) ≪




∑

t≤N

λ(Et)





2

+

+
∑

t≤N

λ(Et)
∑

ℓ<t

R−2(t−ℓ)

︸ ︷︷ ︸

bounded

≪




∑

t≤N

λ(Et)





2

and so we are done!
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Proof of BHV

WE SHALL TRY A SIMILAR APPROACH TO PROVE

BHV: Given α ..., and

∞∑

n=1

ψ(n) log n = ∞ ,

we have that for almost every β

‖nα‖·‖nβ‖ < ψ(n) for infinitely many n ∈ N .

For simplicity I will assume α is badly approximable.
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Proof of BHV: Setting up a limsup set

Proposition 2: Let R be sufficiently large and fixed. Then for any
sufficiently large integers t > k there is Ωt,k ⊂ [0, 1] with λ(Ωt,k) ≥

1
2

such that for any β ∈ Ωt,k there exists a triple (n, r , s) ∈ N× Z2 of
coprime integers such that







R−k−1 ≤ |nα− r | < R−k ,

|nβ − s| < R−t+k ,

R t−1 < n ≤ R t .

(7)

Define the set N(t, k) of (n, r , s) ∈ N× Z2 such that







R t−1 < n ≤ R t ,
R−k−1 < |nα− r | < R−k ,
0 ≤ s ≤ n,
gcd(n, r , s) = 1

(8)
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Proof of BHV: Setting up a limsup set

Proposition 2 ⇒

λ




⋃

(n,r ,s)∈N(t,k)

{

β ∈ R : |β − s/n| < R−2t+k+1
}



 ≥
1

2
.

Recall from the proof of Khintchine: Proposition 1 ⇒

λ




⋃

Rt−1<q≤Rt

⋃

p∈Z

B
(
p
q
, R
R2t

)



 ≥
1

2
.

Let Z (t, k) be a maximal subcollection of N(t, k) such that
∣
∣
∣
∣

s1
n1

−
s2
n2

∣
∣
∣
∣
> R−2t+k

for (n1, r1, s1) 6= (n2, r2, s2). By the maximality of Z (t, k) and
Proposition 2,

#Z (t, k) ≍ R2t−k .
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Proof of BHV

Now, given ξ ∈ R, let

Et,k(ξ) = {β ∈ R : |β − ξ| < ψ(R t)R−t+k} . (9)

Furthermore, define
Et,k :=

⋃

(n,r ,s)∈Z(t,k)

Et,k(s/n) (10)

and let E∞ = lim supEt,k . Observe E∞ ⊂ Gα(ψ) and so we only need to

prove λ(E∞) > 0 . Important, we have

∞∑

t=1

tR tψ(R t) = ∞ .

We shall restrict k to lie in ν1t ≤ k ≤ ν2t for some suitably chosen
ν1 < ν2. Then

∑

t≤T

∑

k

λ(Et,k) ≍
∑

t≤T

tR tψ(R t) → ∞ as T → ∞.
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Proof of BHV

Overlaps estimates for Et,k

For different (t, k) and (t ′, k ′)

λ(Et,k ∩ Et′,k′) ≪

(

1 +
ψ(R t′)R−t′+k′

R−2t+k

)

R2t′−k′ ψ(R t)R−t+k

which is

λ(Et,k ∩ Et′,k′) ≪ λ(Et,k)λ(Et′,k′) (excellent!!)

provided that
ψ(R t′)R−t′+k′

R−2t+k
≥ 1

or equivalently when
ψ(R t)R−t+k

R−2t′+k′
≥ 1 .

In Khintchine, summation over the remaining terms still gives the required
bound. This is not the case here.
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Proof of BHV

Overlaps: another technique

Et,k(s/n) ∩ Et′,k′(s
′/n′) 6= ∅

implies that

∣
∣
∣
∣

s

n
−

s ′

n′

∣
∣
∣
∣
≤ 2max{ψ(R t)R−t+k , ψ(R t′)R−t′+k′} .

Then, for any fixed pair (n, n′) the number of different (s, s ′) is ≪ ∆
provided that

n′s − ns ′ 6= 0 .

Then

∑

n′s−ns′ 6=0

|Et,k(s/n) ∩ Et′,k′(s
′/n′)| ≪ ψ(R t)R t ψ(R t′)R t′ ,
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Proof of BHV

The remaining case

ψ(R t′)R−t′+k′

R−2t+k
≤ 1 ,

ψ(R t)R−t+k

R−2t′+k′
≤ 1 (11)

λ

(
⋃

n′s−ns′=0

Et,k(s/n) ∩ Et′,k′(s
′/n′)

)

≪???? (12)

For
(A,B ,C ) := (n, r , s) × (n′, r ′, s ′) 6= 0 ,

we have that
B = −ns ′ + n′s = 0.

and
|A|, |C | ≪

(

R−k+t′ + R−k′+t
)

and
|Cβ + A| = |(1, α, β) · (A,B ,C )| ≪ R−ν1t R−ν1t

′

.
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Proof of BHV

Eventually we obtain

∣
∣
∣

⋃

n′s−ns′=0

Et,k(s/n) ∩ Et′,k′(s
′/n′)

∣
∣
∣ ≤ R−η(t+t′) (13)

in the remaining case and thus altogether we get that

|Et,k ∩ Et′,k′ | ≪ ψ(R t)R t ψ(R t′)R t′ + R−η(t+t′) .

This is now enough to finish the proof.
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Curves

BHV: Given a fixed α..., we have that for almost every β

‖nα‖·‖nβ‖ < ψ(n)

holds for infinitely/finitely many n ∈ N depending on
convergence/divergence of

∞∑

n=1

ψ(n) log n .

Problem: Find an analogue of Gallagher on curves and lines in R2 (or
even more general manifolds in higher dimensions). That is given a
‘reasonable’ curve C in R2 of length 1 prove that

λC(G(ψ) ∩ C) =

{

0, if
∑∞

n=1 ψ(n) log n <∞ ,

1, if
∑∞

n=1 ψ(n) log n = ∞ .

For non-degenerate curves the convergence case was proven in 2007
(B.-Velani), the divergence is open!

V. Beresnevich (York) Diophantine approximation Feb 2016 22 / 22


