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The theorem to be discussed

B., Haynes, Velani (2015, preprint): Given any o € R with the
Diophantine exponent w(«) < 3, i.e.

— log|[naf

lim sup <3,
n—o0 log n
where || - || is the distance to the nearest integer, and given any monotonic

¥ : N — (0,+00) such that

Zw(n)logn =00,
n=1

we have that for almost every € R

|nc||-||nB]| < ¥(n) for infinitely many n € N.

Note: With a slight restriction on 1), i.e. requiring that n— ni(n) is
decreasing, the above becomes true for ALL a.
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Convergence

Fact: Let n+— m)(n) be decreasing and
e}
Zw(n) logn < oco.
n=1

Let a € R be any irrational real number such that

N

1
E < (log N)? for all N > 2. (1)
e nllnal]

Then for almost all € R, there exist only finitely many n € N such that

[[nad| [InB] < 9(n).

Note, (1) is true for Lebesgue almost all «, and in particular, for all badly
approximable a.
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Convergence

Proof. By the Borel-Cantelli Iemma |t is enough to verify that

Z ||na||

By partial summation

3 mp(n) _ > (mp(n) — (n+ 1)(n + 1)) Z 1

2 allnall T 2 < m]mal

+ (N + 1)y(N + 1) Z

ml!maH

(mp(n) — (n+ 1)(n +1))(log n)% + (N + 1)p(N + 1)(log N)?

Mz

[
i

N n N
=3 (i) — (4 D0+ 1) S B (W (v 1) Y BT
n=1 m=1 m=1

= Z 1(n)logn < 1 for all N as required.

n<N
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Khintchine, Gallagher or Duffin and Schaeffer?

What we deal with: « is fixed, 8 is random and ||nal|-||nS|| < ¢(n) for
infinitely many n € N.  Consider the following three collections of sets:

K(n, W) = {5 €[0,1) : [na — s| < W(n) for some s € Z}
D(n,V) = {ﬁ €[0,1) : [na — s| < W(n) for some (s, n) = 1},

G(nv) = {(a,8) € 10,12 : [Inall - In8ll < v(n) },

where n € N, and let
K(V) :=limsup K(n, V),
n—o0

D(V) := limsup D(n, V),

n—o0

G(¢) ;= limsup G(n, ).

n—o0
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Khintchine, Gallagher or Duffin and Schaeffer?

Khintchine (1924): Let W : N — [0, +00) be decreasing. Then
0, if S0, W(n) < oo,

AK(W)) :{ 1, if S0, W(n) = .

Duffin-Schaeffer (1941): Let V : N — [0, +00) satisfy the condition

N N
Z M > Const x Z V(n) (2)
n=1 n=1

forim. N € N. Then i ,-fi o(MW(n) 1o
i n=1 n
o=y S v _ ()

Here )\ is Lebesgue measure, ¢ is the Euler function.
Note: D(W) C (W), hence the D-S theorem is a stronger statement!
Duffin-Schaeffer conjecture (1941): (3) holds without assuming (2).
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Khintchine, Gallagher or Duffin and Schaeffer?

Gallagher (1962): Let ¢y : N — [0, +00) be decreasing and tending to
zero at infinity. Then 0. i T ()]
A 21 ¥(n)logn < oo,
(@) =1 T
1, if > 2 ¢(n)logn=cc.

Q: G.(¥) =G(W)N{(x,y) €ER?: x =a}  Given a fixed a € [0,1) what
is the size of the set G, () of 3 € [0,1) such that

lnc|| - |nB|| < 1(n) forim. ne€ N?77
E.g., given any a € [0, 1) is it true that for almost every 8 € [0,1)
imi 2 . - 777
iminf (log n)? [nal] - 8| =0 777 (4)

Badziahin (2013): For any badly approximable « the set of 5 € [0,1)

h that
N liminf log n loglog n ||nc| - |[nB]| >0
n—o0

has Hausdorff dimension 1.
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Khintchine, Gallagher, Duffin and Schaeffer

Can the Duffin-Schaeffer conjecture be useful? Let W(n) := ¥(n)

~ lnall
Then

Ga(¢) = K(V) D D(V).

One may try to use the DS theorem, but verifying (2) for specific o does
not seem easy (if feasible at all). If we had a proof to the DS conjecture,
then we could ‘eliminate’ ¢ by using the inequality

wlh) 2 log log n

and then we could at least prove that A(G,(v)) = A(D(W)) = 1 when

1
(log n)? log log log n

o =~

Hence we would be able to conclude (4). But... D-S is still a conjecture!
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The theorem: ideas

B., Haynes, Velani (2015, preprint): Given any o € R with the
Diophantine exponent w(c«) < 3 and any monotonic 1) : N — (0, 400)
such that

o0
Zw(n) logn = o0,
n=1

we have that A\(G,(v))) = 1, e.i. for almost every /3

lnc|| - ||nB|| < (n) forim. ne N.

Some ideas:

1. Zero-one law (Cassles, Gallagher):
A(K(y)) € {0,1}, A(D(W)) € {0,1} for any ) and V.
All we need:

A(Ga(¥)) >0
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The theorem: ideas

2. Borell-Cantelli Lemma (a version of): For any sequence of intervals
E; C [0,1] such that

2
Z AM(Ei N Ej) < CONST X (Z)\ ) (5)

ij=1

for infinitely many N € N we have that

Al E;
(I?lilip )2 CONST

Condition (5) — QUASI INDEPENDENCE ON AVERAGE (QIA).
Is there a better way to prove positive measure? Almost No:
B.-Velani (yet unpublished): For any sequence of intervals E; C [0, 1]
we have that
A(limsup E;) >0
1—00

if and only if (E;)ien contains a subsequence satisfying QIA.
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A proof of Khintchine's theorem

Proposition 1: Let R = 6. Then for all sufficiently large t € N

MoU Us@EE)] =g

Rt-1<q<Rt pEZ

For sufficiently large t choose a maximal subcollection of rationals

ﬂ,...,p—me[o,l], m= m;
q1 dm
such that Rf! < g; < Rt and

pi  Pj 1 .
aia S =1 (i .
‘q; 0| =’ (i #J)

By its maximality and Proposition 1 we have that

T pi R+1 1
A(U B(a, i )) > 5
i=1

1
Hence m = m; > m

2t
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A proof of Khintchine

Define
pi pi V(RY) " (P
E, B d | E =1 |E/|lLT
t<‘71> (q, RF ™ f I:L'Jl y qi
Then
limsup E; C K(V)UQ
t—00
and enough to show that A(limsup,_, ., E) > 0. Next
AE:) < R'W(RY). (6)
And so

Z/\ Et)vZR\U(Rt)vZ\IJ

Next, let t, ¢ are sufficiently large, assume and W.I.o.g. t > . Then for
any i < my the interval E;(pi/q;) intersects at most

Eo(pi/qi il :
% +3 < RTFHHY(RY) + 3 intervals E(pj/q]).
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A proof of Khintchine

H
N NEdpi/a) N E) < (R™F2W(RY) +1) x R™W(RY)

and
MENE) < (R—”QW(RE) v 1) x RTW(RYRY <
< RW(RHRW(RY) + RUW(RHR™2(H <
< MEDNE) + ME)R™HED

YD MENE)<

Summing over t, ¢ < N gives
t<N <N (

2
ZA(Et)) +

t<N

+ Y OME)) R « (Z )\(Et))

t<N <t t<N
bounded

and so we are done!
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Proof of BHV

WE SHALL TRY A SIMILAR APPROACH TO PROVE
BHV: Given « ..., and

> 4(n)logn = o0,
n=1

we have that for almost every (3

||na||-||nB]| < (n) for infinitely many n € N.

For simplicity | will assume « is badly approximable.

V. Beresnevich (York) Diophantine approximation Feb 2016



Proof of BHV: Setting up a limsup set

Proposition 2: Let R be sufficiently large and fixed. Then for any
sufficiently large integers t > k there is Q¢ C [0,1] with A(Q¢ ) > 2
such that for any 3 € Q. there exists a triple (n,r,s) € N x Z? of
coprime integers such that

R 1 < |na—rl < R,
|nB—s| < Rtk (7)
Rt™! < n < Rt.

Define the set N(t, k) of (n,r,s) € N x Z? such that

Rt=! < n < RY,

R™% 1 < |na—r| < R7K,

0<s<n, (8)
ged(n,r,s) =1
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Proof of BHV: Setting up a limsup set

Proposition 2 =

A U {5€R:|5—s/n|<R_2t+k+1} >
(n,r,s)eN(t,k)

I\Jll—‘

Recall from the proof of Khintchine: Proposition 1 =

MU UeEa)zs

Rt-1<q<Rt pEZ
Let Z(t, k) be a maximal subcollection of N(t, k) such that

51 52

ny n2

> R—2t+k

for (n1,r,s1) # (n2, r2, 52). By the maximality of Z(t, k) and
Proposition 2,
#2Z(t, k) < R¥ k.
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Proof of BHV

Now, given £ € R, let

Erx(§) = {B€R:|B—¢| <9(RR™F}. (9)

Furthermore, define
t,k = U
(n,r,s)€Z(t,k)

E: k(s/n) (10)

and let Eo, = limsup E; 4. Observe Eo, C G4(?) and so we only need to

prove | A(Ex) > 0| Important, we have

o0

> tR'Y(RY) = .

t=1

We shall restrict k to lie in 1t < k < vot for some suitably chosen
V1 < vy. Then

S Y MEw) < ) tRW(RY) s o0 as T — oo,

t<T k t<T
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Proof of BHV

Overlaps estimates for E;
For different (¢, k) and (¢, k')

Rt’ R—t’+k’ L B
AMEex N Ep ) < <1 o %) Rt =K p(RY)R™EHK

which is
MEtk N Ep i) < MEg k) MEp 1) (excellent!!)

provided that
w(Rt’)R—t’—i-k’

R—2t+k =1
or equivalently when
w(Rt)R_H—k
—poarie 21

In Khintchine, summation over the remaining terms still gives the required
bound. This is not the case here.
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Proof of BHV

Overlaps: another technique

Et,k(s/n) N Etlyk/(s'/n') 75 0
implies that

s /
n n

< 2max{y(R")R™THH, (RY)R™HTH} .

Then, for any fixed pair (n, n') the number of different (s,s) is < A
provided that

n's—ns' #0.

Then

Y |Ek(s/n) N Evw(s'/n)| < &(RORTY(RY)RY,

n’s—ns’#0
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Proof of BHV

The remaining case

77b(/:\)l"),.?—l"—l-k’ f(/}(Rt)R_H_k
T pome B | |“popae =1 (11)
A < U Et,k(s/n) ] Et/7k/(s’/n’)> K7 (12)
n’s—ns’=0

For
(A,B,C):=(n,r,s) x (n,r',s") #0,

we have that
B=—ns'+n's=0.
and
Al lC| < (R—k“’ 4 R—k’+f)

and
ICB+ Al =]|(1,a,8) - (A B, C)| < Rt Rt
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Proof of BHV

Eventually we obtain

U  Eew(s/n) N Evi(s'/n)| < R7IEHE) (13)

n’s—ns'=0

in the remaining case and thus altogether we get that
|Et,k N Et’,k’| < 'l,b(Rt)Rt w(Rt/)Rtl I R_U(t+t/) '

This is now enough to finish the proof.
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Curves

BHV: Given a fixed «..., we have that for almost every 3

[[nad|-[[nB] < ¥ (n)
holds for infinitely/finitely many n € N depending on
convergence/divergence of

Z ¥(n)logn.
n=1

Problem: Find an analogue of Gallagher on curves and lines in R? (or
even more general manifolds in higher dimensions). That is given a
‘reasonable’ curve C in R? of length 1 prove that

0, if Y02, ¥(n)logn < o0,
1, if Y02 (n)logn=occ.

For non-degenerate curves the convergence case was proven in 2007
(B.-Velani), the divergence is open!

Ae(G(¥)NC) = {
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