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Five lectures:

1. Dirac operatorX

2. Atiyah-Singer revisited

3. What is K-homology?

4. Beyond ellipticity

5. The Riemann-Roch theorem



ATIYAH-SINGER REVISITED

This is an expository talk about the Atiyah-Singer index theorem.

1 Dirac operator of Rn will be defined.X

2 Some low dimensional examples of the theorem will be
considered.

3 A special case of the theorem will be proved, with the proof
based on Bott periodicity.

4 The proof will be outlined that the special case implies the full
theorem.



Atiyah-Singer Index theorem

M compact C∞ manifold without boundary

D an elliptic differential (or elliptic pseudo-differential) operator on
M

E0, E1, C∞ C vector bundles on M

C∞(M,Ej) denotes the C vector space of all C∞ sections of Ej .

D : C∞(M,E0) −→ C∞(M,E1)

D is a linear transformation of C vector spaces.



Atiyah-Singer Index theorem

M compact C∞ manifold without boundary

D an elliptic differential (or elliptic pseudo-differential) operator on
M

Index(D) := dimC (Kernel D)− dimC (Cokernel D)

Theorem (M.Atiyah and I.Singer)

Index (D) = (a topological formula)



Example

M = S1 = {(t1, t2) ∈ R2 | t21 + t22 = 1}

Df : L2(S1) −→ L2(S1) is

0

Tf

I

0

where L2(S1) = L2
+(S1)⊕ L2

−(S1).

L2
+(S1) has as orthonormal basis einθ with n = 0, 1, 2, . . .

L2
−(S1) has as orthonormal basis einθ with n = −1,−2,−3, . . ..



Example

f : S1 −→ R2 − {0} is a C∞ map.

S1 R2 − {(0, 0)}
f

Tf : L2
+(S1) −→ L2

+(S1) is the composition

L2
+(S1)

Mf−→ L2(S1) −→ L2
+(S1)

Tf : L2
+(S1) −→ L2

+(S1) is the Toeplitz operator associated to f



Example

Thus Tf is the composition

Tf : L2
+(S1)

Mf−→ L2(S1)
P−→ L2

+(S1)

where L2
+(S1)

Mf−→ L2(S1) is v 7→ fv
fv(t1, t2) := f(t1, t2)v(t1, t2) ∀(t1, t2) ∈ S1 R2 = C

and L2(S1)
P−→ L2

+(S1) is the Hilbert space projection.

Df (v + w) := Tf (v) + w v ∈ L2
+(S1), w ∈ L2

−(S1)

Index(Df ) = -winding number (f).



RIEMANN - ROCH

M compact connected Riemann surface

genus of M = # of holes

=
1

2
[rankH1(M ;Z)]



D a divisor of M

D consists of a finite set of points of M p1, p2, . . . , pl and an
integer assigned to each point n1, n2, . . . , nl

Equivalently

D is a function D : M → Z with finite support

Support(D) = {p ∈M | D(p) 6= 0}

Support(D) is a finite subset of M



D a divisor on M

deg(D) :=
∑

p∈M D(p)

Remark

D1, D2 two divisors

D1 = D2 iff ∀p ∈M,D1(p) = D2(p)

Remark

D a divisor, −D is
(−D)(p) = −D(p)



Example

Let f : M → C ∪ {∞} be a meromorphic function.

Define a divisor δ(f) by:

δ(f)(p) =


0 if p is neither a zero nor a pole of f

order of the zero if f(p) = 0

−(order of the pole) if p is a pole of f



Example

Let w be a meromorphic 1-form on M . Locally w is f(z)dz where
f is a (locally defined) meromorphic function. Define a divisor
δ(w) by:

δ(w)(p) =


0 if p is neither a zero nor a pole of w

order of the zero if w(p) = 0

−(order of the pole) if p is a pole of w



D a divisor on M

H0(M,D) :=

{
meromorphic functions

f : M → C ∪ {∞}

∣∣∣∣∣ δ(f) = −D

}

H1(M,D) :=

{
meromorphic 1-forms

w on M

∣∣∣∣∣ δ(w) = D

}

Lemma

H0(M,D) and H1(M,D) are finite dimensional C vector spaces

dimCH
0(M,D) <∞

dimCH
1(M,D) <∞



Theorem (R. R.)

Let M be a compact connected Riemann surface and let D be a
divisor on M . Then:

dimCH
0(M,D)− dimCH

1(M,D) = d− g + 1

d = degree (D)

g = genus (M)



HIRZEBRUCH-RIEMANN-ROCH

M non-singular projective algebraic variety / C
E an algebraic vector bundle on M

E = sheaf of germs of algebraic sections of E

Hj(M,E) := j-th cohomology of M using E,
j = 0, 1, 2, 3, . . .

Equivalently, Hj(M,E) is the j-th homology of the
Dolbeault complex of E.



LEMMA
For all j = 0, 1, 2, . . . dimCH

j(M,E) <∞.

For all j > dimC(M), Hj(M,E) = 0.

χ(M,E) :=

n∑
j=0

(−1)j dimCH
j(M,E)

n = dimC(M)

THEOREM[HRR] Let M be a non-singular projective algebraic
variety / C and let E be an algebraic vector bundle on M . Then

χ(M,E) = (ch(E) ∪ Td(M))[M ]



Hirzebruch-Riemann-Roch

Theorem (HRR)

Let M be a non-singular projective algebraic variety / C and let E
be an algebraic vector bundle on M . Then

χ(M,E) = (ch(E) ∪ Td(M))[M ]





SPECIAL CASE OF ATIYAH-SINGER
Let M be a compact even-dimensional Spinc manifold
without boundary. Let E be a C vector bundle on M .

DE denotes the Dirac operator of M tensored with E.

DE : C∞(M,S+ ⊗ E) −→ C∞(M,S− ⊗ E)

S+, S− are the positive (negative) spinor bundles on M .

THEOREM Index(DE) = (ch(E) ∪ Td(M))[M ].



K0(·)

Definition

Define an abelian group denoted K0(·) by considering pairs (M,E)
such that:

1 M is a compact even-dimensional Spinc manifold without
boundary.

2 E is a C vector bundle on M .



Set K0(·) = {(M,E)}/ ∼ where the the equivalence relation ∼
is generated by the three elementary steps

Bordism

Direct sum - disjoint union

Vector bundle modification

Addition in K0(·) is disjoint union.

(M,E) + (M ′, E′) = (M tM ′, E t E′)

In K0(·) the additive inverse of (M,E) is (−M,E) where −M
denotes M with the Spinc structure reversed.

−(M,E) = (−M,E)



Isomorphism (M,E) is isomorphic to (M ′, E′) iff ∃ a
diffeomorphism

ψ : M →M ′

preserving the Spinc-structures on M,M ′ and with

ψ∗(E′) ∼= E.



Bordism (M0, E0) is bordant to (M1, E1) iff ∃ (Ω, E) such that:

1 Ω is a compact odd-dimensional Spinc manifold with
boundary.

2 E is a C vector bundle on Ω.

3 (∂Ω, E|∂Ω) ∼= (M0, E0) t (−M1, E1, )

−M1 is M1 with the Spinc structure reversed.



(M0, E0) (−M1, E1)



Direct sum - disjoint union

Let E,E′ be two C vector bundles on M

(M,E) t (M,E′) ∼ (M,E ⊕ E′)



Vector bundle modification

(M,E)

Let F be a Spinc vector bundle on M

Assume that
dimR(Fp) ≡ 0 mod 2 p ∈M

for every fiber Fp of F

1R = M × R

S(F ⊕ 1R) := unit sphere bundle of F ⊕ 1R

(M,E) ∼ (S(F ⊕ 1R), β ⊗ π∗E)



S(F ⊕ 1R)

M

π

This is a fibration with even-dimensional spheres as fibers.

F ⊕ 1R is a Spinc vector bundle on M with odd-dimensional fibers.

The Spinc structure for F causes there to appear on S(F ⊕ 1R) a
C-vector bundle β whose restriction to each fiber of π is the Bott
generator vector bundle of that oriented even-dimensional sphere.

(M,E) ∼ (S(F ⊕ 1R), β ⊗ π∗E)



Addition in K0(·) is disjoint union.

(M,E) + (M ′, E′) = (M tM ′, E t E′)

In K0(·) the additive inverse of (M,E) is (−M,E) where −M
denotes M with the Spinc structure reversed.

−(M,E) = (−M,E)



DEFINITION. (M,E) bounds ⇐⇒ ∃ (Ω, Ẽ) with :

1 Ω is a compact odd-dimensional Spinc manifold with
boundary.

2 Ẽ is a C vector bundle on Ω.

3 (∂Ω, Ẽ|∂Ω) ∼= (M,E)

REMARK. (M,E) = 0 in K0(·)⇐⇒ (M,E) ∼ (M ′, E′) where
(M ′, E′) bounds.



Consider the homomorphism of abelian groups

K0(·) −→ Z
(M,E) 7−→ Index(DE)

Notation

DE is the Dirac operator of M tensored with E.



K0(·) −→ Z
(M,E) 7−→ Index(DE)



It is a corollary of Bott periodicity that this homomorphism of
abelian groups is an isomorphism.

Equivalently, Index(DE) is a complete invariant for the equivalence
relation generated by the three elementary steps; i.e.
(M,E) ∼ (M ′, E′) if and only if Index(DE) = Index(D′E′).



Have three problems for :

K0(·) −→ Z
(M,E) 7−→ Index(DE)

(i) well-defined

(ii) surjective

(iii) injective



In order to prove that the homomorphism of abelian groups

K0(·) −→ Z
(M,E) 7−→ Index(DE)

is well-defined, the three elementary moves (bordism, direct sum -
disjoint union, vector bundle modification) must be proved to be
index-preserving.



Proof that K0(·) −→ Z is well-defined.

For bordism-invariance of the index have three proofs :

1 Proof in R. Palais book Seminar on the Atiyah-Singer Index
Theorem (1965).

2 Proof by M. S. Raghunathan in paper “The Atiyah-Singer
Index Theorem”, Contemporary Mathematics (2008).
Uses Morse theory to decompose any given bordism into
elementary bordisms. Uses existence of the index density.

3 Proof using Atiyah-Kasparov K-homology.
Atiyah-Kasparov K-homology will be defined in the next
lecture.



Proof that K0(·) −→ Z is well-defined.

For vector bundle modification :
Start with (M,E). Given a Spinc vector bundle F on M with
fiber dimensionR(F ) even, — form (S(F ⊕ 1R), β ⊗ π∗E)

S(F ⊕ 1R)

M

π

π is a fibration with oriented even-dimensional spheres as fibers.
Restriction of β to each fiber of π is the Bott generator vector
bundle of that oriented even-dimensional sphere.



S(F ⊕ 1R)

M

π

For each fiber of π can form the elliptic operator
(Dirac of the fiber)⊗(β restricted to the fiber).
Thus for each point p ∈M have an elliptic operator.
Hence have a family of elliptic operators over M .
Key point is that the index of this family is the trivial line bundle
on M — i.e. is M × C.



This proof that vector bundle modification is index-preserving is in
essence the same as :

Proof by Atiyah and Singer of compatibility of index and
Thom isomorphism.

Proof by M. S. Raghunathan that reduces Atiyah-Singer to
the special case when the manifold is stably parallelizable.



BOTT PERIODICITY

πjGL(n,C) =


Z j odd

0 j even

j = 0, 1, 2, . . . , 2n− 1



Why does Bott periodicity imply that

K0(·) −→ Z
(M,E) 7−→ Index(DE)

is an isomorphism?



To prove surjectivity must find an (M,E) with Index(DE) = 1.

e.g. Let M = CPn, and let E
be the trivial (complex) line bundle on CPn
E=1C = CPn × C
Index(CPn, 1C) = 1

Thus Bott periodicity is not used in the proof of surjectivity.



Lemma used in the Proof of Injectivity

Given any (M,E) there exists an even-dimensional sphere S2n and
a C-vector bundle F on S2n with (M,E) ∼ (S2n, F ).

Bott periodicity is not used in the proof of this lemma.
The lemma is proved by a direct argument using the definition of
the equivalence relation on the pairs (M,E).



Let r be a positive integer, and let VectC(S2n, r)
be the set of isomorphism classes of C vector bundles on S2n

of rank r, i.e. of fiber dimension r.

VectC(S2n, r)←→ π2n−1GL(r,C)



PROOF OF INJECTIVITY
Let (M,E) have Index(M,E) = 0.
By the above lemma, we may assume that (M,E) = (S2n, F ).
Using Bott periodicity plus the bijection

VectC(S2n, r)←→ π2n−1GL(r,C)

we may assume that F is of the form

F = θp ⊕ qβ

θp = S2n ×Cp and β is the Bott generator vector bundle on S2n.
Convention. If q < 0, then qβ = |q|β∗.



Index(S2n, β) = 1 Index(S2n, θp) = 0
Therefore

Index(S2n, F ) = 0 =⇒ q = 0

Hence (S2n, F ) = (S2n, θp). This bounds

(S2n, θp) = ∂(B2n+1, B2n+1 × Cp)

and so is zero in K0(·).
QED



Define a homomorphism of abelian groups

K0(·) −→ Q
(M,E) 7−→

(
ch(E) ∪ Td(M)

)
[M ]

where ch(E) is the Chern character of E and Td(M) is the Todd
class of M .

ch(E) ∈ H∗(M,Q) and Td(M) ∈ H∗(M,Q).

[M ] is the orientation cycle of M . [M ] ∈ H∗(M,Z).



Granted that

K0(·) −→ Z
(M,E) 7−→ Index(DE)

is an isomorphism, to prove that these two homomorphisms are
equal, it suffices to check one example (M,E) with
Index(DE) = 1.



Reference. P. F. Baum and E. van Erp, K-homology and Fredholm
Operators I : Dirac Operators, to appear.



Symbol of a differential operator

Let Y be a C∞ manifold (possibly with boundary).
Y is not required to be oriented.
Y is not required to be even dimensional.
On Y let

δ : C∞(Y,E0) −→ C∞(Y,E1)

be a differential operator of order k .
Denote by π : T ∗Y → Y the projection T ∗Y → Y .
The symbol (or principal symbol) of δ is for each ξ ∈ T ∗Y a
C-linear map

σ(ξ) : E0
π(ξ) −→ E1

π(ξ)

defined as follows :



Symbol of a differential operator

δ : C∞(Y,E0) −→ C∞(Y,E1) k = order (δ)

Given ξ ∈ T ∗Y and u ∈ E0
π(ξ), set p = π(ξ), and choose :

(i) s ∈ C∞(Y,E0) with s(p) = u.
(ii) a C∞ function f : Y → R with f(p) = 0 and df(p) = ξ.

Then:

σ(ξ)(u) := (
1

k !
)δ(fks)(p)

σ(ξ) : E0
p → E1

p does not depend on the choices (i) (ii).



Symbol of a differential operator

δ : C∞(Y,E0) −→ C∞(Y,E1)

The differential operator δ is elliptic if for every non-zero ξ ∈ T ∗Y

σ(ξ) : E0
π(ξ) → E1

π(ξ)

is an isomorphism.
The symbol σ of δ can be viewed as a vector bundle map

σ : π∗E0 → π∗E1

This basic theory (i.e. symbol, elliptic etc.) extends to
pseudo-differential operators.



Let X be a compact C∞ manifold without boundary.
X is not required to be oriented.
X is not required to be even dimensional.
On X let

δ : C∞(X,E0) −→ C∞(X,E1)

be an elliptic differential (or elliptic pseudo-differential) operator.

(S(T ∗X ⊕ 1R), Eσ) ∈ K0(·), and

Index(DEσ) = Index(δ).



(S(T ∗X ⊕ 1R), Eσ)ww�
Index(δ) = (ch(Eσ) ∪ Td((S(T ∗X ⊕ 1R)))[(S(T ∗X ⊕ 1R)]

and this is the general Atiyah-Singer formula.

S(T ∗X ⊕ 1R) is the unit sphere bundle of T ∗X ⊕ 1R.
S(T ∗X ⊕ 1R) is even dimensional and is — in a natural way — a
Spinc manifold.

Eσ is the C vector bundle on S(T ∗X ⊕ 1R) obtained by doing a
clutching construction using the symbol σ of δ.



Construction of Eσ

upper hemisphere lower hemisphere

S(T ∗X ⊕ 1R) = B+(T ∗X ⊕ 1R) ∪S(T ∗X) B−(T ∗X ⊕ 1R)

Eσ := π∗(E0) ∪σ π∗(E1)



(S(T ∗X ⊕ 1R), Eσ) ∈ K0(·)

Index(DEσ) = Index(δ)

Proof. Show that can go from δ to DEσ by an explicit finite
sequence of index-preserving moves. This uses pseudo-differential
operators.

Reference. P. F. Baum and E. van Erp, K-homology and Fredholm
Operators II : Elliptic Operators, to appear.



Next lecture : Tomorrow (i.e. Wednesday, 5 August).


