Atiyah-Singer Revisited

TIFR Mumbai, India

Paul Baum Penn State

4 August, 2015

Five lectures:

- 1. Dirac operator \checkmark
- 2. Atiyah-Singer revisited
- 3. What is K-homology?
- 4. Beyond ellipticity
- 5. The Riemann-Roch theorem

ATIYAH-SINGER REVISITED

This is an expository talk about the Atiyah-Singer index theorem.

- **1** Dirac operator of \mathbb{R}^n will be defined.
- 2 Some low dimensional examples of the theorem will be considered.
- 3 A special case of the theorem will be proved, with the proof based on Bott periodicity.
- 4 The proof will be outlined that the special case implies the full theorem.

Atiyah-Singer Index theorem

M compact C^∞ manifold without boundary

 ${\cal D}$ an elliptic differential (or elliptic pseudo-differential) operator on ${\cal M}$

 $E^0, E^1, \quad C^{\infty} \quad \mathbb{C}$ vector bundles on M

 $C^{\infty}(M, E^j)$ denotes the $\mathbb C$ vector space of all C^{∞} sections of E^j .

 $D\colon C^{\infty}(M, E^0) \longrightarrow C^{\infty}(M, E^1)$

D is a linear transformation of $\mathbb C$ vector spaces.

Atiyah-Singer Index theorem

M compact C^∞ manifold without boundary

 ${\cal D}$ an elliptic differential (or elliptic pseudo-differential) operator on ${\cal M}$

 $Index(D) := \dim_{\mathbb{C}} (Kernel D) - \dim_{\mathbb{C}} (Cokernel D)$

Theorem (M.Atiyah and I.Singer)

 $Index (D) = (a \ topological \ formula)$

$$M = S^1 = \{(t_1, t_2) \in \mathbb{R}^2 \mid t_1^2 + t_2^2 = 1\}$$

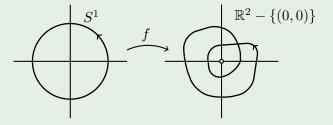
 $D_f \colon L^2(S^1) \longrightarrow L^2(S^1)$ is

T_{f}	0
0	Ι

where $L^2(S^1) = L^2_+(S^1) \oplus L^2_-(S^1)$.

 $L^2_+(S^1)$ has as orthonormal basis $e^{in\theta}$ with $n = 0, 1, 2, \ldots$ $L^2_-(S^1)$ has as orthonormal basis $e^{in\theta}$ with $n = -1, -2, -3, \ldots$

$$f: S^1 \longrightarrow \mathbb{R}^2 - \{0\}$$
 is a C^{∞} map.



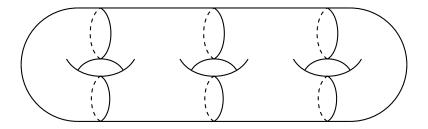
$$\begin{split} T_f \colon L^2_+(S^1) &\longrightarrow L^2_+(S^1) \text{ is the composition} \\ L^2_+(S^1) & \stackrel{\mathcal{M}_f}{\longrightarrow} L^2(S^1) &\longrightarrow L^2_+(S^1) \end{split}$$

 $T_f\colon L^2_+(S^1) \longrightarrow L^2_+(S^1)$ is the Toeplitz operator associated to f

Thus
$$T_f$$
 is the composition
 $T_f: L^2_+(S^1) \xrightarrow{\mathcal{M}_f} L^2(S^1) \xrightarrow{P} L^2_+(S^1)$
where $L^2_+(S^1) \xrightarrow{\mathcal{M}_f} L^2(S^1)$ is $v \mapsto fv$
 $fv(t_1, t_2) := f(t_1, t_2)v(t_1, t_2) \quad \forall (t_1, t_2) \in S^1 \qquad \mathbb{R}^2 = \mathbb{C}$
and $L^2(S^1) \xrightarrow{P} L^2_+(S^1)$ is the Hilbert space projection.
 $D_f(v+w) := T_f(v) + w \qquad v \in L^2_+(S^1), \quad w \in L^2_-(S^1)$
 $\operatorname{Index}(D_f) = \operatorname{-winding number}(f).$

RIEMANN - ROCH

 ${\cal M}$ compact connected Riemann surface



genus of
$$M = \#$$
 of holes
$$= \frac{1}{2} \left[\operatorname{rank} H_1(M; \mathbb{Z}) \right]$$

 \boldsymbol{D} a divisor of \boldsymbol{M}

D consists of a finite set of points of M p_1, p_2, \ldots, p_l and an integer assigned to each point n_1, n_2, \ldots, n_l

Equivalently

D is a function $D\colon M\to \mathbb{Z}$ with finite support

 $\mathsf{Support}(D) = \{ p \in M \mid D(p) \neq 0 \}$

 $\mathsf{Support}(D)$ is a finite subset of M

 \boldsymbol{D} a divisor on \boldsymbol{M}

$$\deg(D):=\sum_{p\in M} D(p)$$

Remark

 D_1, D_2 two divisors

$$D_1 \ge D_2$$
 iff $\forall p \in M, D_1(p) \ge D_2(p)$

Remark

D a divisor, -D is

$$(-D)(p) = -D(p)$$

Let $f: M \to \mathbb{C} \cup \{\infty\}$ be a meromorphic function.

Define a divisor $\delta(f)$ by:

$$\delta(f)(p) = \begin{cases} 0 \text{ if } p \text{ is neither a zero nor a pole of } f \\ \text{order of the zero if } f(p) = 0 \\ -(\text{order of the pole}) \text{ if } p \text{ is a pole of } f \end{cases}$$

Let w be a meromorphic 1-form on M. Locally w is f(z)dz where f is a (locally defined) meromorphic function. Define a divisor $\delta(w)$ by:

$$\delta(w)(p) = \begin{cases} 0 \text{ if } p \text{ is neither a zero nor a pole of } w \\ \text{order of the zero if } w(p) = 0 \\ -(\text{order of the pole}) \text{ if } p \text{ is a pole of } w \end{cases}$$

 \boldsymbol{D} a divisor on \boldsymbol{M}

$$H^{0}(M,D) := \left\{ \begin{array}{l} \text{meromorphic functions} \\ f \colon M \to \mathbb{C} \cup \{\infty\} \end{array} \middle| \delta(f) \geqq -D \right\}$$
$$H^{1}(M,D) := \left\{ \begin{array}{l} \text{meromorphic 1-forms} \\ w \text{ on } M \end{array} \middle| \delta(w) \geqq D \right\}$$

Lemma

 $H^0(M,D)$ and $H^1(M,D)$ are finite dimensional $\mathbb C$ vector spaces

 $\dim_{\mathbb{C}} H^0(M, D) < \infty$ $\dim_{\mathbb{C}} H^1(M, D) < \infty$

Theorem (R. R.)

Let M be a compact connected Riemann surface and let D be a divisor on M. Then:

$$\dim_{\mathbb{C}} H^0(M,D) - \dim_{\mathbb{C}} H^1(M,D) = d - g + 1$$

$$d = degree (D)$$
$$g = genus (M)$$

HIRZEBRUCH-RIEMANN-ROCH

M non-singular projective algebraic variety / \mathbb{C} E an algebraic vector bundle on M \underline{E} = sheaf of germs of algebraic sections of E $H^{j}(M, \underline{E}) := j$ -th cohomology of M using \underline{E} , j = 0, 1, 2, 3, ...

Equivalently, $H^j(M,\underline{E})$ is the j-th homology of the Dolbeault complex of E.

LEMMA

For all $j = 0, 1, 2, \dots \dim_{\mathbb{C}} H^j(M, \underline{E}) < \infty$. For all $j > \dim_{\mathbb{C}}(M), \quad H^j(M, \underline{E}) = 0$.

$$\chi(M,E):=\sum_{j=0}^n (-1)^j \dim_{\mathbb{C}} H^j(M,\underline{E})$$

$$n=\dim_{\mathbb{C}}(M)$$

<u>THEOREM[HRR]</u> Let M be a non-singular projective algebraic variety $/ \mathbb{C}$ and let E be an algebraic vector bundle on M. Then

 $\chi(M,E) = (ch(E) \cup Td(M))[M]$

Hirzebruch-Riemann-Roch

Theorem (HRR)

Let M be a non-singular projective algebraic variety $/ \mathbb{C}$ and let E be an algebraic vector bundle on M. Then

 $\chi(M,E) = (ch(E) \cup Td(M))[M]$

SPECIAL CASE OF ATIYAH-SINGER

Let M be a compact even-dimensional Spin^c manifold without boundary. Let E be a \mathbb{C} vector bundle on M.

 D_E denotes the Dirac operator of M tensored with E.

$$D_E \colon C^{\infty}(M, S^+ \otimes E) \longrightarrow C^{\infty}(M, S^- \otimes E)$$

 S^+, S^- are the positive (negative) spinor bundles on M. <u>THEOREM</u> Index $(D_E) = (ch(E) \cup Td(M))[M]$.

$K_0(\cdot)$

Definition

Define an abelian group denoted $K_0(\cdot)$ by considering pairs (M, E) such that:

- 1 M is a compact even-dimensional Spin^c manifold without boundary.
- **2** E is a \mathbb{C} vector bundle on M.

Set $K_0(\cdot) = \{(M, E)\}/\sim$ where the the equivalence relation \sim is generated by the three elementary steps

Bordism

Direct sum - disjoint union

Vector bundle modification

Addition in $K_0(\cdot)$ is disjoint union.

$$(M, E) + (M', E') = (M \sqcup M', E \sqcup E')$$

In $K_0(\cdot)$ the additive inverse of (M, E) is (-M, E) where -M denotes M with the Spin^c structure reversed.

$$-(M,E) = (-M,E)$$

Isomorphism (M,E) is isomorphic to (M',E') iff \exists a diffeomorphism

$$\psi \colon M \to M'$$

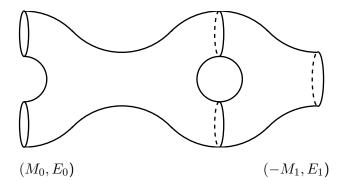
preserving the Spin^c-structures on M, M' and with

$$\psi^*(E') \cong E.$$

Bordism (M_0, E_0) is **bordant** to (M_1, E_1) iff $\exists (\Omega, E)$ such that:

- Ω is a compact odd-dimensional Spin^c manifold with boundary.
- **2** E is a \mathbb{C} vector bundle on Ω .
- $(\partial\Omega, E|_{\partial\Omega}) \cong (M_0, E_0) \sqcup (-M_1, E_1,)$

 $-M_1$ is M_1 with the Spin^c structure reversed.



Direct sum - disjoint union

Let E,E' be two ${\mathbb C}$ vector bundles on M

 $(M, E) \sqcup (M, E') \sim (M, E \oplus E')$

Vector bundle modification

(M, E)

Let F be a Spin^c vector bundle on M

Assume that

 $\dim_{\mathbb{R}}(F_p) \equiv 0 \mod 2 \quad p \in M$

for every fiber F_p of F

$$\mathbf{1}_{\mathbb{R}} = M \times \mathbb{R}$$
$$S(F \oplus \mathbf{1}_{\mathbb{R}}) := \text{unit sphere bundle of } F \oplus \mathbf{1}_{\mathbb{R}}$$
$$(M, E) \sim (S(F \oplus \mathbf{1}_{\mathbb{R}}), \beta \otimes \pi^* E)$$

$$S(F \oplus \mathbf{1}_{\mathbb{R}}) \\ \downarrow \pi \\ M$$

This is a fibration with even-dimensional spheres as fibers.

 $F \oplus \mathbf{1}_{\mathbb{R}}$ is a Spin^c vector bundle on M with odd-dimensional fibers.

The Spin^c structure for F causes there to appear on $S(F \oplus 1_{\mathbb{R}})$ a \mathbb{C} -vector bundle β whose restriction to each fiber of π is the Bott generator vector bundle of that oriented even-dimensional sphere.

 $(M, E) \sim (S(F \oplus \mathbf{1}_{\mathbb{R}}), \beta \otimes \pi^* E)$

Addition in $K_0(\cdot)$ is disjoint union.

$$(M, E) + (M', E') = (M \sqcup M', E \sqcup E')$$

In $K_0(\cdot)$ the additive inverse of (M, E) is (-M, E) where -M denotes M with the Spin^c structure reversed.

$$-(M,E) = (-M,E)$$

<u>DEFINITION.</u> (M, E) bounds $\iff \exists \ (\Omega, \widetilde{E})$ with :

 Ω is a compact odd-dimensional Spin^c manifold with boundary.

2
$$\widetilde{E}$$
 is a \mathbb{C} vector bundle on Ω .

$$(\partial\Omega, \widetilde{E}|_{\partial\Omega}) \cong (M, E)$$

<u>REMARK.</u> (M, E) = 0 in $K_0(\cdot) \iff (M, E) \sim (M', E')$ where (M', E') bounds.

Consider the homomorphism of abelian groups

 $\begin{array}{l}
K_0(\cdot) \longrightarrow \mathbb{Z} \\
(M, E) \longmapsto \operatorname{Index}(D_E)
\end{array}$

Notation

 D_E is the Dirac operator of M tensored with E.

$$\begin{array}{l}
K_0(\cdot) \longrightarrow \mathbb{Z} \\
(M, E) \longmapsto \operatorname{Index}(D_E)
\end{array}$$

It is a corollary of Bott periodicity that this homomorphism of abelian groups is an isomorphism.

Equivalently, $\operatorname{Index}(D_E)$ is a complete invariant for the equivalence relation generated by the three elementary steps; i.e. $(M, E) \sim (M', E')$ if and only if $\operatorname{Index}(D_E) = \operatorname{Index}(D'_{E'})$.

Have three problems for :

$$\begin{array}{ccc}
K_0(\cdot) \longrightarrow \mathbb{Z} \\
(M, E) \longmapsto \operatorname{Index}(D_E)
\end{array}$$

(i) well-defined(ii) surjective(iii) injective

In order to prove that the homomorphism of abelian groups

$$\begin{array}{l}
\mathrm{K}_0(\cdot) \longrightarrow \mathbb{Z} \\
(M, E) \longmapsto \mathrm{Index}(D_E)
\end{array}$$

is well-defined, the three elementary moves (bordism, direct sum - disjoint union, vector bundle modification) must be proved to be index-preserving.

Proof that $K_0(\cdot) \longrightarrow \mathbb{Z}$ is well-defined.

For bordism-invariance of the index have three proofs :

- Proof in R. Palais book Seminar on the Atiyah-Singer Index Theorem (1965).
- Proof by M. S. Raghunathan in paper "The Atiyah-Singer Index Theorem", Contemporary Mathematics (2008). Uses Morse theory to decompose any given bordism into elementary bordisms. Uses existence of the index density.
- Proof using Atiyah-Kasparov K-homology.
 Atiyah-Kasparov K-homology will be defined in the next lecture.

Proof that $K_0(\cdot) \longrightarrow \mathbb{Z}$ is well-defined.

For vector bundle modification :

Start with (M, E). Given a Spin^c vector bundle F on M with fiber dimension_{\mathbb{R}}(F) even, — form $(S(F \oplus \mathbf{1}_{\mathbb{R}}), \beta \otimes \pi^* E)$

$$S(F \oplus \mathbf{1}_{\mathbb{R}}) \ igcup \pi M$$

 π is a fibration with oriented even-dimensional spheres as fibers. Restriction of β to each fiber of π is the Bott generator vector bundle of that oriented even-dimensional sphere.

$$S(F \oplus \mathbf{1}_{\mathbb{R}}) \ igcup \pi M$$

For each fiber of π can form the elliptic operator (Dirac of the fiber) $\otimes(\beta$ restricted to the fiber). Thus for each point $p \in M$ have an elliptic operator. Hence have a family of elliptic operators over M. Key point is that the index of this family is the trivial line bundle on M — i.e. is $M \times \mathbb{C}$. This proof that vector bundle modification is index-preserving is in essence the same as :

- Proof by Atiyah and Singer of compatibility of index and Thom isomorphism.
- Proof by M. S. Raghunathan that reduces Atiyah-Singer to the special case when the manifold is stably parallelizable.

BOTT PERIODICITY

$$\pi_j GL(n, \mathbb{C}) = \begin{cases} \mathbb{Z} & \text{j odd} \\ \\ 0 & \text{j even} \end{cases}$$

$$j = 0, 1, 2, \dots, 2n - 1$$

Why does Bott periodicity imply that

$$\begin{array}{l}
\mathrm{K}_0(\cdot) \longrightarrow \mathbb{Z} \\
(M, E) \longmapsto \mathrm{Index}(D_E)
\end{array}$$

is an isomorphism?

To prove surjectivity must find an (M, E) with $Index(D_E) = 1$.

e.g. Let $M = \mathbb{C}P^n$, and let Ebe the trivial (complex) line bundle on $\mathbb{C}P^n$ $E=1_{\mathbb{C}} = \mathbb{C}P^n \times \mathbb{C}$ $\mathrm{Index}(\mathbb{C}P^n, 1_{\mathbb{C}}) = 1$

Thus Bott periodicity is not used in the proof of surjectivity.

Lemma used in the Proof of Injectivity

Given any (M, E) there exists an even-dimensional sphere S^{2n} and a \mathbb{C} -vector bundle F on S^{2n} with $(M, E) \sim (S^{2n}, F)$.

Bott periodicity is not used in the proof of this lemma. The lemma is proved by a direct argument using the definition of the equivalence relation on the pairs (M, E).

Let r be a positive integer, and let ${\rm Vect}_{\mathbb C}(S^{2n},r)$ be the set of isomorphism classes of $\mathbb C$ vector bundles on S^{2n} of rank r, i.e. of fiber dimension r.

$$\operatorname{Vect}_{\mathbb{C}}(S^{2n}, r) \longleftrightarrow \pi_{2n-1}GL(r, \mathbb{C})$$

PROOF OF INJECTIVITY Let (M, E) have $\operatorname{Index}(M, E) = 0$. By the above lemma, we may assume that $(M, E) = (S^{2n}, F)$. Using Bott periodicity plus the bijection

$$\operatorname{Vect}_{\mathbb{C}}(S^{2n}, r) \longleftrightarrow \pi_{2n-1}GL(r, \mathbb{C})$$

we may assume that F is of the form

$$F = \theta^p \oplus q\beta$$

 $\theta^p = S^{2n} \times \mathbb{C}^p$ and β is the Bott generator vector bundle on S^{2n} . Convention. If q < 0, then $q\beta = |q|\beta^*$.
$$\label{eq:Index} \begin{split} \mathrm{Index}(S^{2n},\beta) = 1 \quad \ \mathrm{Index}(S^{2n},\theta^p) = 0 \\ \mathsf{Therefore} \end{split}$$

$$\operatorname{Index}(S^{2n}, F) = 0 \Longrightarrow q = 0$$

Hence $(S^{2n}, F) = (S^{2n}, \theta^p)$. This bounds
 $(S^{2n}, \theta^p) = \partial(B^{2n+1}, B^{2n+1} \times \mathbb{C}^p)$
and so is zero in $\operatorname{K}_0(\cdot)$.

)

QED

Define a homomorphism of abelian groups

$$K_0(\cdot) \longrightarrow \mathbb{Q} (M, E) \longmapsto (ch(E) \cup \mathrm{Td}(M))[M]$$

where ch(E) is the Chern character of E and Td(M) is the Todd class of M.

 $ch(E) \in H^*(M, \mathbb{Q})$ and $\mathsf{Td}(M) \in H^*(M, \mathbb{Q})$.

[M] is the orientation cycle of M. $[M] \in H_*(M, \mathbb{Z})$.

Granted that

$$\begin{array}{c} \mathrm{K}_0(\cdot) \longrightarrow \mathbb{Z} \\ (M, E) \longmapsto \mathrm{Index}(D_E) \end{array}$$

is an isomorphism, to prove that these two homomorphisms are equal, it suffices to check one example (M, E) with $Index(D_E) = 1$.

<u>Reference.</u> P. F. Baum and E. van Erp, *K*-homology and Fredholm *Operators I : Dirac Operators*, to appear.

Symbol of a differential operator

Let Y be a C^{∞} manifold (possibly with boundary). Y is not required to be oriented. Y is not required to be even dimensional. On Y let

$$\delta: C^{\infty}(Y, E^0) \longrightarrow C^{\infty}(Y, E^1)$$

be a differential operator of order k. Denote by $\pi: T^*Y \to Y$ the projection $T^*Y \to Y$. The symbol (or principal symbol) of δ is for each $\xi \in T^*Y$ a \mathbb{C} -linear map

$$\sigma(\xi)\colon E^0_{\pi(\xi)} \longrightarrow E^1_{\pi(\xi)}$$

defined as follows :

Symbol of a differential operator

$$\delta : C^{\infty}(Y, E^0) \longrightarrow C^{\infty}(Y, E^1)$$
 $k = order(\delta)$

Given
$$\xi \in T^*Y$$
 and $u \in E^0_{\pi(\xi)}$, set $p = \pi(\xi)$, and choose :
(i) $s \in C^{\infty}(Y, E^0)$ with $s(p) = u$.
(ii) a C^{∞} function $f \colon Y \to \mathbb{R}$ with $f(p) = 0$ and $df(p) = \xi$.
Then:

$$\sigma(\xi)(u) := (\frac{1}{k!})\delta(f^k s)(p)$$

 $\sigma(\xi)\colon E^0_p\to E^1_p$ does not depend on the choices (i) (ii).

$$\delta: C^{\infty}(Y, E^0) \longrightarrow C^{\infty}(Y, E^1)$$

The differential operator δ is elliptic if for every non-zero $\xi \in T^*Y$

$$\sigma(\xi) \colon E^0_{\pi(\xi)} \to E^1_{\pi(\xi)}$$

is an isomorphism.

The symbol σ of δ can be viewed as a vector bundle map

$$\sigma \colon \pi^* E^0 \to \pi^* E^1$$

This basic theory (i.e. symbol, elliptic etc.) extends to pseudo-differential operators.

Let X be a compact C^{∞} manifold without boundary. X is not required to be oriented. X is not required to be even dimensional. On X let

$$\delta: C^{\infty}(X, E^0) \longrightarrow C^{\infty}(X, E^1)$$

be an elliptic differential (or elliptic pseudo-differential) operator.

 $(S(T^*X \oplus 1_{\mathbb{R}}), E_{\sigma}) \in \mathrm{K}_0(\cdot)$, and

 $\operatorname{Index}(D_{E_{\sigma}}) = \operatorname{Index}(\delta).$

$$(S(T^*X \oplus 1_{\mathbb{R}}), E_{\sigma})$$
$$\bigcup$$

 $\mathsf{Index}(\delta) = (ch(E_{\sigma}) \cup \mathrm{Td}((S(T^*X \oplus 1_{\mathbb{R}})))[(S(T^*X \oplus 1_{\mathbb{R}}))]$

and this is the general Atiyah-Singer formula.

 $S(T^*X \oplus 1_{\mathbb{R}})$ is the unit sphere bundle of $T^*X \oplus 1_{\mathbb{R}}$. $S(T^*X \oplus 1_{\mathbb{R}})$ is even dimensional and is — in a natural way — a Spin^c manifold.

 E_{σ} is the \mathbb{C} vector bundle on $S(T^*X \oplus 1_{\mathbb{R}})$ obtained by doing a clutching construction using the symbol σ of δ .

Construction of E_{σ}

upper hemisphere

lower hemisphere

 $S(T^*X \oplus 1_{\mathbb{R}}) = B_+(T^*X \oplus 1_{\mathbb{R}}) \cup_{S(T^*X)} B_-(T^*X \oplus 1_{\mathbb{R}})$ $E_{\sigma} := \pi^*(E^0) \cup_{\sigma} \pi^*(E^1)$

 $(S(T^*X \oplus 1_{\mathbb{R}}), E_{\sigma}) \in \mathcal{K}_0(\cdot)$ Index $(D_{E_{\sigma}}) = \operatorname{Index}(\delta)$

<u>Proof.</u> Show that can go from δ to $D_{E_{\sigma}}$ by an explicit finite sequence of index-preserving moves. This uses pseudo-differential operators.

<u>Reference.</u> P. F. Baum and E. van Erp, *K*-homology and Fredholm *Operators II : Elliptic Operators*, to appear. Next lecture : Tomorrow (i.e. Wednesday, 5 August).