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Five lectures:

1. Dirac operatorv’

2. Atiyah-Singer revisited
3.
4
5

What is K-homology?

. Beyond ellipticity

. The Riemann-Roch theorem



ATIYAH-SINGER REVISITED
This is an expository talk about the Atiyah-Singer index theorem.

Dirac operator of R™ will be defined.v’

Some low dimensional examples of the theorem will be
considered.

A special case of the theorem will be proved, with the proof
based on Bott periodicity.

The proof will be outlined that the special case implies the full
theorem.



Atiyah-Singer Index theorem
M compact C*° manifold without boundary

D an elliptic differential (or elliptic pseudo-differential) operator on
M

E° E',  (C> C vector bundles on M
C>(M, E7) denotes the C vector space of all C* sections of E7.
D: C*®(M,E%) — C>®(M, E")

D is a linear transformation of C vector spaces.



Atiyah-Singer Index theorem
M compact C* manifold without boundary

D an elliptic differential (or elliptic pseudo-differential) operator on
M

Index(D) := dimc (Kernel D) — dim¢ (Cokernel D)

Theorem (M.Atiyah and |.Singer)

Index (D) = (a topological formula)



M =SS! ={(t1,t) eR? | 2 + 13 =1}

Dy: L2(SY) — L2(SY) is

Tf 0

0 I

where L2(S1) = L2 (SY) @ L2 (S1).

L2 (S') has as orthonormal basis ™ with n =0,1,2,...
L% (S') has as orthonormal basis ¢ with n = —1,-2, -3, .. ..



f: 81— R? — {0} is a C* map.

St R? —{(0,0)}

TN -
NP2

Ty: L% (S') — L2 (S') is the composition
12(5%) 2% £2(81) — L3(SY)

Ty: L2 (S') — L2 (S') is the Toeplitz operator associated to f



Thus T is the composition
M
Ty: L2 (SY) =5 £2(sY) 55 12(5Y)

where L2 (S ) L2(SY) is v+ fo
fv(tl,tg) f(tl,tQ) (tl,tg) V(tl,tg) € Sl R2 =C

and L2(S') -5 L?% (S') is the Hilbert space projection.
Dy(v+w) :=Ty(v) + w veL2(SY), welL%(Sh)

Index(Dy) = -winding number (f).



RIEMANN - ROCH

M compact connected Riemann surface

genus of M = # of holes

_ % rank Hy (M; Z)|



D a divisor of M

D consists of a finite set of points of M p1,pa,...

integer assigned to each point ny,no,...,n;
Equivalently

D is a function D: M — 7Z with finite support
Support(D) = {p € M | D(p) # 0}

Support(D) is a finite subset of M

,p and an



D a divisor on M

deg(D) := > e D(p)

Remark

D1, Dy two divisors

Dy 2 D, iff Vp € M, D1(p) = Da(p)

Remark

D a divisor, —D is



Let f: M — CU{oo} be a meromorphic function.

Define a divisor 0(f) by:

0 if p is neither a zero nor a pole of f
d(f)(p) = { order of the zero if f(p) =0
—(order of the pole) if p is a pole of f



Let w be a meromorphic 1-form on M. Locally w is f(z)dz where
f is a (locally defined) meromorphic function. Define a divisor

d(w) by:

0 if p is neither a zero nor a pole of w
d(w)(p) = { order of the zero if w(p) =0
—(order of the pole) if p is a pole of w



D a divisor on M

meromorphic functions
HY(M,D) := P )= —-D
f: M — CU{oo}
meromorphic 1-forms
HY(M,D) := { P S(w) = D}
w on M

Lemma

H°(M, D) and H*(M, D) are finite dimensional C vector spaces

dime H(M, D) < oo
dim¢ H' (M, D) < oo



Theorem (R. R.)

Let M be a compact connected Riemann surface and let D be a
divisor on M. Then:

dim¢c H°(M, D) — dime¢ H'(M,D) =d — g+ 1

d = degree (D)
g = genus (M)



HIRZEBRUCH-RIEMANN-ROCH

M non-singular projective algebraic variety / C
FE an algebraic vector bundle on M

E = sheaf of germs of algebraic sections of E

HJ(M, E) := j-th cohomology of M using E,

j=0,1,2,3,...

Equivalently, H/(M, E) is the j-th homology of the
Dolbeault complex of E.



LEMMA
Forall j =0,1,2,... dim¢c H' (M, E) < oo.

For all j > dim¢ (M), HY(M,E)=0.

X(M,E) := Y (-1)) dim¢ H (M, E)
j=0
n = dimc (M)

THEOREM[HRR] Let M be a non-singular projective algebraic
variety / C and let E be an algebraic vector bundle on M. Then

X(M, E) = (ch(E) UTd(M))[M]



Hirzebruch-Riemann-Roch

Theorem (HRR)

Let M be a non-singular projective algebraic variety / C and let E
be an algebraic vector bundle on M. Then

X(M, E) = (ch(E) UTd(M))[M]






SPECIAL CASE OF ATIYAH-SINGER
Let M be a compact even-dimensional Spin® manifold
without boundary. Let E be a C vector bundle on M.

Dp denotes the Dirac operator of M tensored with F.
Dp: C®(M,ST®E) — C®(M,S” ® E)
St,S~ are the positive (negative) spinor bundles on M.

THEOREM Index(Dg) = (ch(E) UTd(M))[M].



Ko(+)

Define an abelian group denoted Ky(-) by considering pairs (M, E)
such that:

M is a compact even-dimensional Spin® manifold without
boundary.

FE is a C vector bundle on M.



Set Ko() = {(M,E)}/ ~ where the the equivalence relation ~
is generated by the three elementary steps

m Bordism
m Direct sum - disjoint union

m Vector bundle modification

Addition in K(-) is disjoint union.
(M,E)+ (M',E')= (MUM',EUE

In Ko(+) the additive inverse of (M, E) is (—M, E) where —M
denotes M with the Spin® structure reversed.

—(M,E)=(-M,E)



Isomorphism (M, E) is isomorphic to (M', E’) iff 3 a
diffeomorphism
W M — M’

preserving the Spin®-structures on M, M’ and with

U (E') = E.



Bordism (M, Ey) is bordant to (M, Ey) iff 3 (Q, E) such that:

Q) is a compact odd-dimensional Spin® manifold with
boundary.

FE is a C vector bundle on .
(09, Elaq) = (Mo, Ep) U (=M, Ey,)

— M7y is M7 with the Spin® structure reversed.






Direct sum - disjoint union
Let E, E’ be two C vector bundles on M

(M,E)U (M,E"Y ~ (M,E® E")



Vector bundle modification
(M, E)
Let F' be a Spin® vector bundle on M

Assume that
dimg(Fp) =0 mod2 pe M

for every fiber F), of F

1r = M xR
S(F @ 1g) := unit sphere bundle of F' & 1y
(M, E) ~ (S(F @ 1), 8 7°E)



S(F @ 1g)
Jw
M
This is a fibration with even-dimensional spheres as fibers.

F @ 1y is a Spin® vector bundle on M with odd-dimensional fibers.

The Spin€ structure for F' causes there to appear on S(F @ 1g) a
C-vector bundle S whose restriction to each fiber of 7 is the Bott
generator vector bundle of that oriented even-dimensional sphere.

(MaE) ~ (S(F@ 1R)a5®7‘-*E)



Addition in Ko(-) is disjoint union.
(M,E)+ (M',E"Y = (MUM,EUE

In Ko(+) the additive inverse of (M, E) is (—M, E) where —M
denotes M with the Spin® structure reversed.

—(M, E) = (~M, E)



DEFINITION. (M, E) bounds <= 3 (, E) with :

) is a compact odd-dimensional Spin® manifold with
boundary.

E is a C vector bundle on .
(697E|89) = (MvE)

REMARK. (M, E) =0 in Ko(-) <= (M, E) ~ (M', E") where
(M', E") bounds.



Consider the homomorphism of abelian groups

(M, E) — Index(Dpg)

Dg is the Dirac operator of M tensored with E.




K()() — 7
(M, E) — Index(Dg)



It is a corollary of Bott periodicity that this homomorphism of
abelian groups is an isomorphism.

Equivalently, Index(Dpg) is a complete invariant for the equivalence
relation generated by the three elementary steps; i.e.
(M,E) ~ (M',E") if and only if Index(Dg) = Index(D,).



Have three problems for :

(M, E) — Index(Dpg)

(i) well-defined
(i) surjective
(iii) injective



In order to prove that the homomorphism of abelian groups

(M, E) — Index(Dg)
is well-defined, the three elementary moves (bordism, direct sum -

disjoint union, vector bundle modification) must be proved to be
index-preserving.



Proof that K¢(-) — Z is well-defined.

For bordism-invariance of the index have three proofs :

Proof in R. Palais book Seminar on the Atiyah-Singer Index
Theorem (1965).

Proof by M. S. Raghunathan in paper “"The Atiyah-Singer
Index Theorem”, Contemporary Mathematics (2008).
Uses Morse theory to decompose any given bordism into
elementary bordisms. Uses existence of the index density.

Proof using Atiyah-Kasparov K-homology.

Atiyah-Kasparov K-homology will be defined in the next
lecture.



Proof that K¢(-) — Z is well-defined.

For vector bundle modification :
Start with (M, E). Given a Spin© vector bundle F' on M with
fiber dimensiong(F') even, — form (S(F @ 1g), 8 ® 7*E)

S(F & 1g)

|

M

m is a fibration with oriented even-dimensional spheres as fibers.
Restriction of [ to each fiber of 7 is the Bott generator vector
bundle of that oriented even-dimensional sphere.



S(F & 1g)

|

M

For each fiber of m can form the elliptic operator

(Dirac of the fiber)®(f restricted to the fiber).

Thus for each point p € M have an elliptic operator.

Hence have a family of elliptic operators over M .

Key point is that the index of this family is the trivial line bundle
on M —i.e. is M xC.



This proof that vector bundle modification is index-preserving is in
essence the same as :

m Proof by Atiyah and Singer of compatibility of index and
Thom isomorphism.

m Proof by M. S. Raghunathan that reduces Atiyah-Singer to
the special case when the manifold is stably parallelizable.



BOTT PERIODICITY

Z jodd
WjGL(n,(C) =

0 j even

j=0,1,2,...,2n — 1



Why does Bott periodicity imply that

Ko() — Z
(M, E) — Index(Dg)

is an isomorphism?



To prove surjectivity must find an (M, E) with Index(Dpg) = 1.

e.g. Let M =CP", and let £

be the trivial (complex) line bundle on CP™
E=1c =CP"x C

Index(CP",1¢) =1

Thus Bott periodicity is not used in the proof of surjectivity.



Lemma used in the Proof of Injectivity

Given any (M, E) there exists an even-dimensional sphere S$*" and
a C-vector bundle F on S*" with (M, E) ~ (S*", F).

Bott periodicity is not used in the proof of this lemma.
The lemma is proved by a direct argument using the definition of
the equivalence relation on the pairs (M, E).



Let r be a positive integer, and let Vectc(S*",r)
be the set of isomorphism classes of C vector bundles on S2"
of rank r, i.e. of fiber dimension r.

Vecte (52", 1) +— mo,_1GL(r, C)



PROOF OF INJECTIVITY

Let (M, E) have Index(M, E) = 0.

By the above lemma, we may assume that (M, E) = (S*", F).
Using Bott periodicity plus the bijection

Vecte (52", 1) +— ma,_1GL(r, C)
we may assume that F' is of the form
F=0"®qp

6P = S?" x CP and f is the Bott generator vector bundle on S?".
Convention. If ¢ < 0, then ¢8 = |q|8*.



Index(S?",8) =1  Index(5%",6P) =0
Therefore

Index(S*", F) =0=¢=0
Hence (52", F) = (5?",0P). This bounds
(SQn7 Hp) — 8(32n+1’ B2n+1 % (Cp)

and so is zero in Ko(+).
QED



Define a homomorphism of abelian groups

Ko(-) — Q
(M, E) —s (ch(E) UTd(M))[M]

where ch(E) is the Chern character of E and Td(M) is the Todd
class of M.

ch(E) € H*(M,Q) and Td(M) € H*(M,Q).

[M] is the orientation cycle of M. [M] € H.(M,Z).



Granted that

(M, E) — Index(Dg)
is an isomorphism, to prove that these two homomorphisms are

equal, it suffices to check one example (M, E) with
Index(Dpg) = 1.



Reference. P. F. Baum and E. van Erp, K-homology and Fredholm
Operators | : Dirac Operators, to appear.



Symbol of a differential operator

Let Y be a C* manifold (possibly with boundary).
Y is not required to be oriented.
Y is not required to be even dimensional.
OnY let
§: C®(Y,E%) — C>(Y, EY)
be a differential operator of order k.
Denote by 7w: T*Y — Y the projection T*Y — Y.
The symbol (or principal symbol) of ¢ is for each £ € T*Y a

C-linear map
o(€): Exe) — Engg)

defined as follows :



Symbol of a differential operator

§:C°(Y,EY) — C>®(Y,E") k = order (9)

Given £ € T*Y and u € Eg(g), set p = 7w(§), and choose :
(i) s € C>(Y, E°) with s(p) = u.
(i) a C*° function f: Y — R with f(p) =0 and df (p) = ¢&.

Then: 1
o(§)(u) := (g)&f’“S)(p)

o(£): E) — E} does not depend on the choices (i) (ii).



Symbol of a differential operator

§:C>(Y,E%) — C>®(Y,E")
The differential operator § is elliptic if for every non-zero £ € T*Y
. 0 1
7(8): Erge) = Ene)

is an isomorphism.
The symbol o of § can be viewed as a vector bundle map

o: ' EY — 7* B!

This basic theory (i.e. symbol, elliptic etc.) extends to
pseudo-differential operators.



Let X be a compact C*° manifold without boundary.
X is not required to be oriented.
X is not required to be even dimensional.

On X let
§:C0%®(X,E%) — C*(X,E")

be an elliptic differential (or elliptic pseudo-differential) operator.
(S(T*X D 1R),Eg) S Ko('), and

Index(Dg, ) = Index(0).



(S(T*"X & 1r), Eo)

ﬂ

Index(d) = (ch(E,) UTA((S(T*X & 1g))[(S(T*X & 1r)]
and this is the general Atiyah-Singer formula.

S(T*X @ 1) is the unit sphere bundle of T* X @ 1.
S(T*X @ 1gr) is even dimensional and is — in a natural way — a
Spin¢ manifold.

E, is the C vector bundle on S(T*X @ 1g) obtained by doing a
clutching construction using the symbol o of §.



Construction of E,

upper hemisphere lower hemisphere
S(T*X D 1R> = B+(T*X ) 1R) US(T*X) B_ (T*X D 1R)

E, .= n*(E%) U, n*(E")



(S(T"X @ 1r), Ey) € Ko(+)
Index(Dg,) = Index()

Proof. Show that can go from d to Dg, by an explicit finite
sequence of index-preserving moves. This uses pseudo-differential
operators.

Reference. P. F. Baum and E. van Erp, K-homology and Fredholm
Operators Il : Elliptic Operators, to appear.



Next lecture : Tomorrow (i.e. Wednesday, 5 August).



