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Five lectures:

1. Dirac operatorX

2. Atiyah-Singer revisitedX

3. What is K-homology?X

4. Beyond ellipticity

5. The Riemann-Roch theorem
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Let X be a finite CW complex.
The three versions of K-homology are isomorphic.

Khomotopy
j (X)

−→
←−

Kj(X) −→ KKj(C(X),C)

homotopy theory K-cycles Atiyah-Kasparov

j = 0, 1
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With X a finite CW complex, suppose a datum (i.e. some analytical
information) is given which then determines an element
ξ ∈ KKj(C(X),C).

QUESTION : What does it mean to solve the index problem for ξ?

ANSWER : It means to explicitly construct the K-cycle (M,E,ϕ) such
that

µ(M,E,ϕ) = ξ

where µ : Kj(X)→ KKj(C(X),C) is the natural map of abelian groups.
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Example

General case of the Atiyah-Singer index theorem

Let X be a compact C∞ manifold without boundary.
X is not required to be oriented.
X is not required to be even dimensional.
On X let

δ : C∞(X,E0) −→ C∞(X,E1)

be an elliptic differential (or elliptic pseudo-differential) operator.
Then δ determines an element

[δ] ∈ KK0(C(X),C)

The K-cycle on X – which solves the index problem for δ – is

(S(TX ⊕ 1R), Eσ, π).
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(S(TX ⊕ 1R), Eσ, π)

S(TX ⊕ 1R) is the unit sphere bundle of TX ⊕ 1R.

π : S(TX ⊕ 1R) −→ X is the projection of S(TX ⊕ 1R) onto X.

S(TX ⊕ 1R) is even-dimensional and is a Spinc manifold.

Eσ is the C vector bundle on S(TX ⊕ 1R) obtained by doing a clutching
construction using the symbol σ of δ.

µ((S(TX ⊕ 1R), Eσ, π)) = [δ]ww�
Index(δ) = (ch(Eσ) ∪ Td(S(TX ⊕ 1R)))[(S(TX ⊕ 1R)]

which is the general Atiyah-Singer formula.

Paul Baum (Penn State) Beyond Ellipticity 6 August, 2015 7 / 40



REMARK. If the construction of the K-cycle (M,E,ϕ) with

µ(M,E,ϕ) = ξ

has been done correctly, then it will work in the equivariant case and in the
case of families of operators.
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BEYOND ELLIPTICITY
K-homology is the dual theory to K-theory. The BD (Baum-Douglas)
isomorphism of Atiyah-Kasparov K-homology and K-cycle K-homology
provides a framework within which the Atiyah-Singer index theorem can be
extended to certain differential operators which are not elliptic. This talk
will consider a class of differential operators (which are not elliptic) on
compact contact manifolds. These operators have been studied by a
number of mathematicians. Working within the BD framework, the index
problem will be solved for these operators.
This is joint work with Erik van Erp.
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REFERENCE
P. Baum and E. van Erp, K-homology and index theory on contact
manifolds Acta. Math. 213 (2014) 1-48.
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FACT:
If M is a closed odd-dimensional C∞ manifold
and D is any elliptic differential operator on M ,
then Index(D) = 0.
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EXAMPLE:
M = S3 = {(a1, a2, a3, a4) ∈ R4 | a21 + a22 + a23 + a24 = 1}
x1, x2, x3, x4 are the usual co-ordinate functions on R4.

xj(a1, a2, a3, a4) = aj j = 1, 2, 3, 4

∂

∂xj
usual vector fields on R4 j = 1, 2, 3, 4
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On S3 consider the (tangent) vector fields V1, V2, V3

V1 = x2
∂

∂x1
− x1

∂

∂x2
+ x4

∂

∂x3
− x3

∂

∂x4

V2 = x3
∂

∂x1
− x4

∂

∂x2
− x1

∂

∂x3
+ x2

∂

∂x4

V3 = x4
∂

∂x1
+ x3

∂

∂x2
− x2

∂

∂x3
− x1

∂

∂x4

Let r be any positive integer and let γ : S3 −→M(r,C) be a C∞ map.
M(r,C):= {r×r matrices of complex numbers}.
Form the operator Pγ := iγ(V1 ⊗ Ir)− V 2

2 ⊗ Ir − V 2
3 ⊗ Ir.

Ir := r × r identity matrix.

Pγ : C∞(S3, S3 × Cr) −→ C∞(S3, S3 × Cr)
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Pγ := iγ(V1 ⊗ Ir)− V 2
2 ⊗ Ir − V 2

3 ⊗ Ir
Ir := r × r identity matrix. i =

√
−1.

Pγ : C∞(S3, S3 × Cr) −→ C∞(S3, S3 × Cr)

LEMMA.
Assume that for all p ∈ S3, γ(p) does not have any odd integers among its
eigenvalues i.e.

∀p ∈ S3, ∀λ ∈ {. . .− 3,−1, 1, 3, . . .} =⇒ λIr − γ(p) ∈ GL(r,C)

then dimC (Kernel Pγ) <∞ and dimC (Cokernel Pγ) <∞.
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With γ as in the above lemma, for each odd integer n , let

γn : S3 −→ GL(r,C) be

p 7−→ nIr − γ(p)

By Bott periodicity if r ≥ 2, then π3GL(r,C) = Z.
Hence for each odd integer n have the Bott number β(γn).

PROPOSITION. With γ as above and r ≥ 2

Index(Pγ) =
∑
n odd

β(γn)
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S2n+1 = unit sphere of R2n+2 S2n+1 ⊂ R2n+2 n = 1, 2, 3, . . .
On S2n+1 there is the nowhere-vanishing vector field V
V=

x2
∂

∂x1
− x1

∂

∂x2
+ x4

∂

∂x3
− x3

∂

∂x4
+ · · ·+ x2n+2

∂

∂x2n+1
− x2n+1

∂

∂x2n+2

V =

n+1∑
i=1

x2i
∂

∂x2i−1
− x2i−1

∂

∂x2i

Let θ be the 1-form on S2n+1

θ =
n+1∑
i=1

x2idx2i−1 − x2i−1dx2i
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Then:

θ(V ) = 1

θ(dθ)n is a volume form on S2n+1 i.e. θ(dθ)n is a nowhere-vanishing
C∞ 2n+ 1 form on S2n+1.
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Let H be the null-space of θ.

H = {v ∈ TX | θ(v) = 0}

H is a C∞ sub vector bundle of TX with

For all x ∈ X,dimR(Hx) = 2n

The sub-Laplacian
∆H : C∞(X)→ C∞(X)

is locally −W 2
1 −W 2

2 − · · · −W 2
2n

where W1,W2, . . . ,W2n is a locally defined C∞ orthonormal frame for H.
These locally defined operators are then patched together using a C∞

partition of unity to give the sub-Laplacian ∆H .
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Let r be a positive integer and let γ : S2n+1 −→M(r,C) be a C∞ map.
M(r,C):= {r×r matrices of complex numbers}.

Assume: For each x ∈ S2n+1

{Eigenvalues of γ(x)} ∩ {. . . ,−n− 4,−n− 2,−n, n, n+ 2, n+ 4, . . .} = ∅
i.e. ∀x ∈ S2n+1,
λ ∈ {. . .−n−4,−n−2,−n, n, n+2, n+4, . . .} =⇒ λIr−γ(x) ∈ GL(r,C)
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Let
γ : S2n+1 −→M(r,C)

be as above, Pγ : C∞(S2n+1, S2n+1 × Cr)→ C∞(S2n+1, S2n+1 × Cr) is
defined:

Pγ = iγ(W ⊗Ir)+(∆H)⊗Ir Ir = r×r identity matrix i =
√
−1

Pγ is a differential operator (of order 2) and is hypoelliptic but not

elliptic. Pγ is Fredholm.
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The formula for the index of Pγ is

IndexPγ =

N∑
j=0

(
n+ j − 1

j

)[
β((n+ 2j)Ir − γ) + (−1)n+1β((n+ 2j)Ir) + γ)

]

β((n+ 2j)Ir − γ) := the Bott number of (n+ 2j)Ir − γ

(n+ 2j)Ir − γ : S2n+1 → GL(r,C)
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Remark on the S2n+1 example

V =

n+1∑
i=1

x2i
∂

∂x2i−1
− x2i−1

∂

∂x2i

θ is the 1-form on S2n+1

θ =

n+1∑
i=1

x2idx2i−1 − x2i−1dx2i

θ(V ) = 1

Paul Baum (Penn State) Beyond Ellipticity 6 August, 2015 22 / 40



V is the vector field along the orbits for the usual action of S1 on S2n+1.

S1 × S2n+1 −→ S2n+1

The quotient space S2n+1/S1 is CPn.
Denote the quotient map by π : S2n+1 → CPn.

π : S2n+1 → CPn

THEN: H := null space of θ = π∗(TCPn) is a C vector bundle on S2n+1.
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Contact Manifolds

A contact manifold is an odd dimensional C∞ manifold X
dimension(X) = 2n+ 1
with a given C∞ 1-form θ such that

θ(dθ)n is non zero at every x ∈ X − i.e. θ(dθ)n is a volume form for X.
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Let X be a compact connected contact manifold without boundary
(∂X = ∅).
Set dimension(X) = 2n+ 1.
Let r be a positive integer and let γ : X −→M(r,C) be a C∞ map.
M(r,C):= {r×r matrices of complex numbers}.

Assume: For each x ∈ X,
{Eigenvalues of γ(x)} ∩ {. . . ,−n− 4,−n− 2,−n, n, n+ 2, n+ 4, . . .} = ∅
i.e. ∀x ∈ X,
λ ∈ {. . .−n−4,−n−2,−n, n, n+2, n+4, . . .} =⇒ λIr−γ(x) ∈ GL(r,C)
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γ : X −→M(r,C)
Are assuming : ∀x ∈ X,
λ ∈ {. . .−n−4,−n−2,−n, n, n+2, n+4, . . .} =⇒ λIr−γ(x) ∈ GL(r,C)

Associated to γ is a differential operator Pγ which is hypoelliptic and
Fredholm.

Pγ : C∞(X,X × Cr) −→ C∞(X,X × Cr)

Pγ is constructed as follows.
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The sub-Laplacian ∆H

Let H be the null-space of θ.

H = {v ∈ TX | θ(v) = 0}

H is a C∞ sub vector bundle of TX with

For all x ∈ X,dimR(Hx) = 2n

The sub-Laplacian
∆H : C∞(X)→ C∞(X)

is locally −W 2
1 −W 2

2 − · · · −W 2
2n

where W1,W2, . . . ,W2n is a locally defined C∞ orthonormal frame for H.
These locally defined operators are then patched together using a C∞

partition of unity to give the sub-Laplacian ∆H .
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The Reeb vector field

The Reeb vector field is the unique C∞ vector field W on X with :

θ(W ) = 1 and ∀v ∈ TX, dθ(W, v) = 0

Let
γ : X −→M(r,C)

be as above, Pγ : C∞(X,X × Cr)→ C∞(X,X × Cr) is defined:

Pγ = iγ(W ⊗Ir)+(∆H)⊗Ir Ir = r×r identity matrix i =
√
−1

Pγ is a differential operator (of order 2) and is hypoelliptic but not elliptic.
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These operators Pγ have been studied by :

R.Beals and P.Greiner Calculus on Heisenberg Manifolds Annals of
Math. Studies 119 (1988).

C.Epstein and R.Melrose.

E. van ErpThe Atiyah-Singer index formula for subelliptic operators
on contact manifolds. Part 1 and Part 2 Annals of Math. 171(2010).

A class of operators with somewhat similar analytic and topological
properties has been studied by A. Connes and H. Moscovici.
M. Hilsum and G. Skandalis.
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Set Tγ = Pγ(I + P ∗γPγ)−1/2.

Let ψ : C(X)→ L(L2(X)⊗C Cr) be

ψ(α)(u1, u2, . . . , ur) = (αu1, αu2, . . . , αur)

where for x ∈ X and u ∈ L2(X), (αu)(x) = α(x)u(x)

α ∈ C(X) u ∈ L2(X)

Then

(L2(X)⊗C Cr, ψ, L2(X)⊗C Cr, ψ, Tγ) ∈ KK0(C(X),C)

Denote this element of KK0(C(X),C) by [Pγ ].

[Pγ ] ∈ KK0(C(X),C)
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[Pγ ] ∈ KK0(C(X),C)

QUESTION.What is the K-cycle that solves the index problem for [Pγ ]?

ANSWER. To construct this K-cycle, first recall that the given 1-form
θ which makes X a contact manifold also makes X a stably almost
complex manifold :

(contact) =⇒ (stably almost complex)
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(contact) =⇒ (stably almost complex)

Let θ, H, and W be as above. Then :

TX = H ⊕ 1R where 1R is the (trivial) R line bundle spanned by W .

A morphism of C∞ R vector bundles J : H → H can be chosen with
J2 = −I and ∀x ∈ X and u, v ∈ Hx

dθ(Ju, Jv) = dθ(u, v) dθ(Ju, u) ≥ 0

J is unique up to homotopy.
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(contact) =⇒ (stably almost complex)

J : H → H is unique up to homotopy.
Once J has been chosen :

H is a C∞ C vector bundle on X.
⇓

TX ⊕ 1R = H ⊕ 1R ⊕ 1R = H ⊕ 1C is a C∞ C vector bundle on X.
⇓

X × S1 is an almost complex manifold.
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REMARK. An almost complex manifold is a C∞ manifold Ω with a given
morphism ζ : TΩ→ TΩ of C∞ R vector bundles on Ω such that

ζ ◦ ζ = −I

The conjugate almost complex manifold is Ω with ζ replaced by −ζ.

NOTATION. As above X × S1 is an almost complex manifold, X × S1

denotes the conjugate almost complex manifold.

Since (almost complex)=⇒ (Spinc), the disjoint union X × S1 tX × S1

can be viewed as a Spinc manifold.
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Let
π : X × S1 tX × S1 −→ X

be the evident projection of X × S1 tX × S1 ontoX.
i.e.

π(x, λ) = x (x, λ) ∈ X × S1 tX × S1

The solution K-cycle for [Pγ ] is (X × S1 tX × S1, Eγ , π)
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Eγ =
(j=N⊕
j=0

L(γ, n+2j)⊗π∗Symj(H)
)⊔(j=N⊕

j=0

L(γ,−n−2j)⊗π∗Symj(H∗)
)

1 “Symj” is “ j-th symmetric power”.

2 H∗ is the dual vector bundle of H.

3 N is any positive integer such that : n+ 2N > sup{||γ(x)||, x ∈ X}.
4 L(γ, n+ 2j) is the C vector bundle on X × S1 obtained by doing a

clutching construction using (n+ 2j)Ir − γ : X → GL(r,C).

5 Similarly, L(γ,−n− 2j) is obtained by doing a clutching construction
using (−n− 2j)Ir − γ : X → GL(r,C).
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Restriction of Eγ to X × S1

Let N be any positive integer such that :

n+ 2N > sup{||γ(x)||, x ∈ X}

The restriction of Eγ to X × S1 is:

Eγ | X × S1 =

j=N⊕
j=0

L(γ, n+ 2j)⊗ π∗Symj(H)
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Restriction of Eγ to X × S1

The restriction of Eγ to X × S1 is:

Eγ | X × S1 =

j=N⊕
j=0

L(γ,−n− 2j)⊗ π∗Symj(H∗)

Here H∗ is the dual vector bundle of H:

H∗x = HomC(Hx,C) x ∈ X
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Eγ =
(j=N⊕
j=0

L(γ, n+2j)⊗π∗Symj(H)
)⊔(j=N⊕

j=0

L(γ,−n−2j)⊗π∗Symj(H∗)
)

Theorem (PB and Erik van Erp)

µ(X × S1 tX × S1, Eγ , π) = [Pγ ]
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Next lecture : Tomorrow (i.e. Friday 7 August).

Will show how K-homology can be used to extend
Grothendieck-Riemann-Roch to projective algebraic varieties which may
have singularities.
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