BEYOND ELLIPTICITY

TIFR
Mumbai, India

Paul Baum
Penn State

6 August, 2015

Five lectures:

1. Dirac operator \checkmark
2. Atiyah-Singer revisited \checkmark
3. What is K-homology? \checkmark
4. Beyond ellipticity
5. The Riemann-Roch theorem

Five lectures:

1. Dirac operator \checkmark
2. Atiyah-Singer revisited \checkmark
3. What is K-homology? \checkmark
4. Beyond ellipticity
5. The Riemann-Roch theorem

Let X be a finite CW complex.
The three versions of K-homology are isomorphic.

$$
\begin{gathered}
K_{j}^{\text {homotopy }}(X) \longrightarrow \\
\text { homotopy theory }
\end{gathered} K_{j}(X) \longrightarrow K K^{j}(C(X), \mathbb{C})
$$

With X a finite CW complex, suppose a datum (i.e. some analytical information) is given which then determines an element $\xi \in K K^{j}(C(X), \mathbb{C})$.

QUESTION : What does it mean to solve the index problem for ξ ?

ANSWER : It means to explicitly construct the K-cycle (M, E, φ) such that

$$
\mu(M, E, \varphi)=\xi
$$

where $\mu: K_{j}(X) \rightarrow K K^{j}(C(X), \mathbb{C})$ is the natural map of abelian groups.

Example

General case of the Atiyah-Singer index theorem

Let X be a compact C^{∞} manifold without boundary.
X is not required to be oriented.
X is not required to be even dimensional.
On X let

$$
\delta: C^{\infty}\left(X, E_{0}\right) \longrightarrow C^{\infty}\left(X, E_{1}\right)
$$

be an elliptic differential (or elliptic pseudo-differential) operator.
Then δ determines an element

$$
[\delta] \in K K^{0}(C(X), \mathbb{C})
$$

The K-cycle on X - which solves the index problem for δ - is

$$
\left(S\left(T X \oplus 1_{\mathbb{R}}\right), E_{\sigma}, \pi\right)
$$

$$
\left(S\left(T X \oplus 1_{\mathbb{R}}\right), E_{\sigma}, \pi\right)
$$

$S\left(T X \oplus 1_{\mathbb{R}}\right)$ is the unit sphere bundle of $T X \oplus 1_{\mathbb{R}}$.
$\pi: S\left(T X \oplus 1_{\mathbb{R}}\right) \longrightarrow X$ is the projection of $S\left(T X \oplus 1_{\mathbb{R}}\right)$ onto X.
$S\left(T X \oplus 1_{\mathbb{R}}\right)$ is even-dimensional and is a Spin^{c} manifold.
E_{σ} is the \mathbb{C} vector bundle on $S\left(T X \oplus 1_{\mathbb{R}}\right)$ obtained by doing a clutching construction using the symbol σ of δ.

$$
\mu\left(\left(S\left(T X \oplus 1_{\mathbb{R}}\right), E_{\sigma}, \pi\right)\right)=[\delta]
$$

$$
\operatorname{Index}(\delta)=\left(\operatorname{ch}\left(E_{\sigma}\right) \cup T d\left(S\left(T X \oplus 1_{\mathbb{R}}\right)\right)\right)\left[\left(S\left(T X \oplus 1_{\mathbb{R}}\right)\right]\right.
$$

which is the general Atiyah-Singer formula.

REMARK. If the construction of the K-cycle (M, E, φ) with

$$
\mu(M, E, \varphi)=\xi
$$

has been done correctly, then it will work in the equivariant case and in the case of families of operators.

Abstract

BEYOND ELLIPTICITY K-homology is the dual theory to K-theory. The BD (Baum-Douglas) isomorphism of Atiyah-Kasparov K-homology and K-cycle K-homology provides a framework within which the Atiyah-Singer index theorem can be extended to certain differential operators which are not elliptic. This talk will consider a class of differential operators (which are not elliptic) on compact contact manifolds. These operators have been studied by a number of mathematicians. Working within the BD framework, the index problem will be solved for these operators. This is joint work with Erik van Erp.

REFERENCE

P. Baum and E. van Erp, K-homology and index theory on contact manifolds Acta. Math. 213 (2014) 1-48.

FACT:

If M is a closed odd-dimensional C^{∞} manifold and D is any elliptic differential operator on M, then $\operatorname{Index}(D)=0$.

EXAMPLE:

$M=S^{3}=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \mathbb{R}^{4} \mid a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}=1\right\}$ $x_{1}, x_{2}, x_{3}, x_{4}$ are the usual co-ordinate functions on \mathbb{R}^{4}.

$$
\begin{gathered}
x_{j}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=a_{j} \quad j=1,2,3,4 \\
\frac{\partial}{\partial x_{j}} \text { usual vector fields on } \mathbb{R}^{4} \quad j=1,2,3,4
\end{gathered}
$$

On S^{3} consider the (tangent) vector fields V_{1}, V_{2}, V_{3}

$$
\begin{aligned}
& V_{1}=x_{2} \frac{\partial}{\partial x_{1}}-x_{1} \frac{\partial}{\partial x_{2}}+x_{4} \frac{\partial}{\partial x_{3}}-x_{3} \frac{\partial}{\partial x_{4}} \\
& V_{2}=x_{3} \frac{\partial}{\partial x_{1}}-x_{4} \frac{\partial}{\partial x_{2}}-x_{1} \frac{\partial}{\partial x_{3}}+x_{2} \frac{\partial}{\partial x_{4}} \\
& V_{3}=x_{4} \frac{\partial}{\partial x_{1}}+x_{3} \frac{\partial}{\partial x_{2}}-x_{2} \frac{\partial}{\partial x_{3}}-x_{1} \frac{\partial}{\partial x_{4}}
\end{aligned}
$$

Let r be any positive integer and let $\gamma: S^{3} \longrightarrow M(r, \mathbb{C})$ be a C^{∞} map. $M(r, \mathbb{C}):=\{r \times r$ matrices of complex numbers $\}$.
Form the operator $P_{\gamma}:=i \gamma\left(V_{1} \otimes I_{r}\right)-V_{2}^{2} \otimes I_{r}-V_{3}^{2} \otimes I_{r}$.
$I_{r}:=r \times r$ identity matrix.

$$
P_{\gamma}: C^{\infty}\left(S^{3}, S^{3} \times \mathbb{C}^{r}\right) \longrightarrow C^{\infty}\left(S^{3}, S^{3} \times \mathbb{C}^{r}\right)
$$

$$
P_{\gamma}:=i \gamma\left(V_{1} \otimes I_{r}\right)-V_{2}^{2} \otimes I_{r}-V_{3}^{2} \otimes I_{r}
$$

$I_{r}:=r \times r$ identity matrix. $\quad i=\sqrt{-1}$.

$$
P_{\gamma}: C^{\infty}\left(S^{3}, S^{3} \times \mathbb{C}^{r}\right) \longrightarrow C^{\infty}\left(S^{3}, S^{3} \times \mathbb{C}^{r}\right)
$$

LEMMA.
Assume that for all $p \in S^{3}, \gamma(p)$ does not have any odd integers among its eigenvalues i.e.

$$
\forall p \in S^{3}, \forall \lambda \in\{\ldots-3,-1,1,3, \ldots\} \Longrightarrow \lambda I_{r}-\gamma(p) \in G L(r, \mathbb{C})
$$

then $\operatorname{dim}_{\mathbb{C}}\left(\right.$ Kernel $\left.P_{\gamma}\right)<\infty$ and $\operatorname{dim}_{\mathbb{C}}\left(\right.$ Cokernel $\left.P_{\gamma}\right)<\infty$.

With γ as in the above lemma, for each odd integer n, let

$$
\begin{aligned}
& \gamma_{n}: S^{3} \longrightarrow G L(r, \mathbb{C}) \\
& p \text { be } \\
& p I_{r}-\gamma(p)
\end{aligned}
$$

By Bott periodicity if $r \geq 2$, then $\pi_{3} G L(r, \mathbb{C})=\mathbb{Z}$. Hence for each odd integer n have the Bott number $\beta\left(\gamma_{n}\right)$. PROPOSITION. With γ as above and $r \geq 2$

$$
\operatorname{Index}\left(P_{\gamma}\right)=\sum_{n \text { odd }} \beta\left(\gamma_{n}\right)
$$

$S^{2 n+1}=$ unit sphere of $\mathbb{R}^{2 n+2}$

$$
S^{2 n+1} \subset \mathbb{R}^{2 n+2} \quad n=1,2,3, \ldots
$$

On $S^{2 n+1}$ there is the nowhere-vanishing vector field V
$V=$
$x_{2} \frac{\partial}{\partial x_{1}}-x_{1} \frac{\partial}{\partial x_{2}}+x_{4} \frac{\partial}{\partial x_{3}}-x_{3} \frac{\partial}{\partial x_{4}}+\cdots+x_{2 n+2} \frac{\partial}{\partial x_{2 n+1}}-x_{2 n+1} \frac{\partial}{\partial x_{2 n+2}}$

$$
V=\sum_{i=1}^{n+1} x_{2 i} \frac{\partial}{\partial x_{2 i-1}}-x_{2 i-1} \frac{\partial}{\partial x_{2 i}}
$$

Let θ be the 1-form on $S^{2 n+1}$

$$
\theta=\sum_{i=1}^{n+1} x_{2 i} d x_{2 i-1}-x_{2 i-1} d x_{2 i}
$$

Then:

- $\theta(V)=1$
- $\theta(d \theta)^{n}$ is a volume form on $S^{2 n+1}$ i.e. $\theta(d \theta)^{n}$ is a nowhere-vanishing $C^{\infty} 2 n+1$ form on $S^{2 n+1}$.

Let H be the null-space of θ.

$$
H=\{v \in T X \mid \theta(v)=0\}
$$

H is a C^{∞} sub vector bundle of $T X$ with

$$
\text { For all } x \in X, \operatorname{dim}_{\mathbb{R}}\left(H_{x}\right)=2 n
$$

The sub-Laplacian

$$
\Delta_{H}: C^{\infty}(X) \rightarrow C^{\infty}(X)
$$

is locally $-W_{1}^{2}-W_{2}^{2}-\cdots-W_{2 n}^{2}$
where $W_{1}, W_{2}, \ldots, W_{2 n}$ is a locally defined C^{∞} orthonormal frame for H.
These locally defined operators are then patched together using a C^{∞} partition of unity to give the sub-Laplacian Δ_{H}.

Let r be a positive integer and let $\gamma: S^{2 n+1} \longrightarrow M(r, \mathbb{C})$ be a C^{∞} map. $M(r, \mathbb{C}):=\{r \times r$ matrices of complex numbers $\}$.

Assume: For each $x \in S^{2 n+1}$
$\{$ Eigenvalues of $\gamma(x)\} \cap\{\ldots,-n-4,-n-2,-n, n, n+2, n+4, \ldots\}=\emptyset$ i.e. $\forall x \in S^{2 n+1}$,
$\lambda \in\{\ldots-n-4,-n-2,-n, n, n+2, n+4, \ldots\} \Longrightarrow \lambda I_{r}-\gamma(x) \in G L(r, \mathbb{C})$

Let

$$
\gamma: S^{2 n+1} \longrightarrow M(r, \mathbb{C})
$$

be as above, $P_{\gamma}: C^{\infty}\left(S^{2 n+1}, S^{2 n+1} \times \mathbb{C}^{r}\right) \rightarrow C^{\infty}\left(S^{2 n+1}, S^{2 n+1} \times \mathbb{C}^{r}\right)$ is defined:
$P_{\gamma}=i \gamma\left(W \otimes I_{r}\right)+\left(\Delta_{H}\right) \otimes I_{r} \quad I_{r}=r \times r$ identity matrix $\quad i=\sqrt{-1}$
P_{γ} is a differential operator (of order 2) and is hypoelliptic but not
elliptic. P_{γ} is Fredholm.

The formula for the index of P_{γ} is
Index $P_{\gamma}=$

$$
\left.\sum_{j=0}^{N}\binom{n+j-1}{j}\left[\beta\left((n+2 j) I_{r}-\gamma\right)+(-1)^{n+1} \beta\left((n+2 j) I_{r}\right)+\gamma\right)\right]
$$

$\beta\left((n+2 j) I_{r}-\gamma\right):=$ the Bott number of $(n+2 j) I_{r}-\gamma$

$$
(n+2 j) I_{r}-\gamma: S^{2 n+1} \rightarrow G L(r, \mathbb{C})
$$

Remark on the $S^{2 n+1}$ example

$$
V=\sum_{i=1}^{n+1} x_{2 i} \frac{\partial}{\partial x_{2 i-1}}-x_{2 i-1} \frac{\partial}{\partial x_{2 i}}
$$

θ is the 1-form on $S^{2 n+1}$

$$
\begin{gathered}
\theta=\sum_{i=1}^{n+1} x_{2 i} d x_{2 i-1}-x_{2 i-1} d x_{2 i} \\
\theta(V)=1
\end{gathered}
$$

V is the vector field along the orbits for the usual action of S^{1} on $S^{2 n+1}$.

$$
S^{1} \times S^{2 n+1} \longrightarrow S^{2 n+1}
$$

The quotient space $S^{2 n+1} / S^{1}$ is $\mathbb{C} P^{n}$. Denote the quotient map by $\pi: S^{2 n+1} \rightarrow \mathbb{C} P^{n}$.

$$
\pi: S^{2 n+1} \rightarrow \mathbb{C} P^{n}
$$

THEN: $H:=$ null space of $\theta=\pi^{*}\left(T \mathbb{C} P^{n}\right)$ is a \mathbb{C} vector bundle on $S^{2 n+1}$.

Contact Manifolds

A contact manifold is an odd dimensional C^{∞} manifold X $\operatorname{dimension}(X)=2 n+1$ with a given $C^{\infty} 1$-form θ such that
$\theta(d \theta)^{n}$ is non zero at every $x \in X-i . e . \theta(d \theta)^{n}$ is a volume form for X.

Let X be a compact connected contact manifold without boundary $(\partial X=\emptyset)$.
Set dimension $(X)=2 n+1$.
Let r be a positive integer and let $\gamma: X \longrightarrow M(r, \mathbb{C})$ be a C^{∞} map.
$M(r, \mathbb{C}):=\{r \times r$ matrices of complex numbers $\}$.
Assume: For each $x \in X$,
$\{$ Eigenvalues of $\gamma(x)\} \cap\{\ldots,-n-4,-n-2,-n, n, n+2, n+4, \ldots\}=\emptyset$
i.e. $\forall x \in X$,
$\lambda \in\{\ldots-n-4,-n-2,-n, n, n+2, n+4, \ldots\} \Longrightarrow \lambda I_{r}-\gamma(x) \in G L(r, \mathbb{C})$
$\gamma: X \longrightarrow M(r, \mathbb{C})$
Are assuming : $\forall x \in X$,
$\lambda \in\{\ldots-n-4,-n-2,-n, n, n+2, n+4, \ldots\} \Longrightarrow \lambda I_{r}-\gamma(x) \in G L(r, \mathbb{C})$
Associated to γ is a differential operator P_{γ} which is hypoelliptic and Fredholm.

$$
P_{\gamma}: C^{\infty}\left(X, X \times \mathbb{C}^{r}\right) \longrightarrow C^{\infty}\left(X, X \times \mathbb{C}^{r}\right)
$$

P_{γ} is constructed as follows.

The sub-Laplacian Δ_{H}

Let H be the null-space of θ.

$$
H=\{v \in T X \mid \theta(v)=0\}
$$

H is a C^{∞} sub vector bundle of $T X$ with

$$
\text { For all } x \in X, \operatorname{dim}_{\mathbb{R}}\left(H_{x}\right)=2 n
$$

The sub-Laplacian

$$
\Delta_{H}: C^{\infty}(X) \rightarrow C^{\infty}(X)
$$

is locally $-W_{1}^{2}-W_{2}^{2}-\cdots-W_{2 n}^{2}$
where $W_{1}, W_{2}, \ldots, W_{2 n}$ is a locally defined C^{∞} orthonormal frame for H. These locally defined operators are then patched together using a C^{∞} partition of unity to give the sub-Laplacian Δ_{H}.

The Reeb vector field

The Reeb vector field is the unique C^{∞} vector field W on X with :

$$
\theta(W)=1 \text { and } \forall v \in T X, d \theta(W, v)=0
$$

Let

$$
\gamma: X \longrightarrow M(r, \mathbb{C})
$$

be as above, $P_{\gamma}: C^{\infty}\left(X, X \times \mathbb{C}^{r}\right) \rightarrow C^{\infty}\left(X, X \times \mathbb{C}^{r}\right)$ is defined:
$P_{\gamma}=i \gamma\left(W \otimes I_{r}\right)+\left(\Delta_{H}\right) \otimes I_{r} \quad I_{r}=r \times r$ identity matrix $\quad i=\sqrt{-1}$
P_{γ} is a differential operator (of order 2) and is hypoelliptic but not elliptic.

These operators P_{γ} have been studied by :

- R.Beals and P.Greiner Calculus on Heisenberg Manifolds Annals of Math. Studies 119 (1988).
- C.Epstein and R.Melrose.
- E. van ErpThe Atiyah-Singer index formula for subelliptic operators on contact manifolds. Part 1 and Part 2 Annals of Math. 171(2010).

A class of operators with somewhat similar analytic and topological properties has been studied by A. Connes and H. Moscovici. M. Hilsum and G. Skandalis.

Set $T_{\gamma}=P_{\gamma}\left(I+P_{\gamma}^{*} P_{\gamma}\right)^{-1 / 2}$.
Let $\psi: C(X) \rightarrow \mathcal{L}\left(L^{2}(X) \otimes_{\mathbb{C}} \mathbb{C}^{r}\right)$ be

$$
\psi(\alpha)\left(u_{1}, u_{2}, \ldots, u_{r}\right)=\left(\alpha u_{1}, \alpha u_{2}, \ldots, \alpha u_{r}\right)
$$

where for $x \in X$ and $u \in L^{2}(X),(\alpha u)(x)=\alpha(x) u(x)$

$$
\alpha \in C(X) \quad u \in L^{2}(X)
$$

Then

$$
\left(L^{2}(X) \otimes_{\mathbb{C}} \mathbb{C}^{r}, \psi, L^{2}(X) \otimes_{\mathbb{C}} \mathbb{C}^{r}, \psi, T_{\gamma}\right) \in K K^{0}(C(X), \mathbb{C})
$$

Denote this element of $K K^{0}(C(X), \mathbb{C})$ by $\left[P_{\gamma}\right]$.

$$
\left[P_{\gamma}\right] \in K K^{0}(C(X), \mathbb{C})
$$

$$
\left[P_{\gamma}\right] \in K K^{0}(C(X), \mathbb{C})
$$

QUESTION.What is the K -cycle that solves the index problem for $\left[P_{\gamma}\right]$? ANSWER. To construct this K-cycle, first recall that the given 1-form θ which makes X a contact manifold also makes X a stably almost complex manifold :

$$
\text { (contact) } \Longrightarrow \text { (stably almost complex) }
$$

$($ contact $) \Longrightarrow($ stably almost complex $)$

Let θ, H, and W be as above. Then :

- $T X=H \oplus 1_{\mathbb{R}}$ where $1_{\mathbb{R}}$ is the (trivial) \mathbb{R} line bundle spanned by W.
- A morphism of $C^{\infty} \mathbb{R}$ vector bundles $J: H \rightarrow H$ can be chosen with $J^{2}=-I$ and $\forall x \in X$ and $u, v \in H_{x}$

$$
d \theta(J u, J v)=d \theta(u, v) \quad d \theta(J u, u) \geq 0
$$

- J is unique up to homotopy.

$($ contact $) \Longrightarrow($ stably almost complex $)$

$J: H \rightarrow H$ is unique up to homotopy.
Once J has been chosen :

H is a $C^{\infty} \mathbb{C}$ vector bundle on X . \Downarrow

$T X \oplus 1_{\mathbb{R}}=H \oplus 1_{\mathbb{R}} \oplus 1_{\mathbb{R}}=H \oplus 1_{\mathbb{C}}$ is a $C^{\infty} \mathbb{C}$ vector bundle on X. \Downarrow

$$
X \times S^{1} \text { is an almost complex manifold. }
$$

REMARK. An almost complex manifold is a \mathbb{C}^{∞} manifold Ω with a given morphism $\zeta: T \Omega \rightarrow T \Omega$ of $C^{\infty} \mathbb{R}$ vector bundles on Ω such that

$$
\zeta \circ \zeta=-I
$$

The conjugate almost complex manifold is Ω with ζ replaced by $-\zeta$.

NOTATION. As above $X \times S^{1}$ is an almost complex manifold, $\overline{X \times S^{1}}$ denotes the conjugate almost complex manifold.

Since (almost complex) $\Longrightarrow\left(\right.$ Spin $\left.^{c}\right)$, the disjoint union $X \times S^{1} \sqcup \overline{X \times S^{1}}$ can be viewed as a Spin c manifold.

Let

$$
\pi: X \times S^{1} \sqcup \overline{X \times S^{1}} \longrightarrow X
$$

be the evident projection of $X \times S^{1} \sqcup \overline{X \times S^{1}}$ onto X. i.e.

$$
\pi(x, \lambda)=x \quad(x, \lambda) \in X \times S^{1} \sqcup \overline{X \times S^{1}}
$$

The solution K-cycle for $\left[P_{\gamma}\right]$ is $\left(X \times S^{1} \sqcup \overline{X \times S^{1}}, E_{\gamma}, \pi\right)$
$E_{\gamma}=\left(\bigoplus_{j=0}^{j=N} L(\gamma, n+2 j) \otimes \pi^{*} \operatorname{Sym}^{j}(H)\right) \bigsqcup\left(\bigoplus_{j=0}^{j=N} L(\gamma,-n-2 j) \otimes \pi^{*} \operatorname{Sym}^{j}\left(H^{*}\right)\right)$
(1) "Sym" is " j -th symmetric power".
(2) H^{*} is the dual vector bundle of H.

- N is any positive integer such that : $n+2 N>\sup \{\|\gamma(x)\|, x \in X\}$.
(0) $L(\gamma, n+2 j)$ is the \mathbb{C} vector bundle on $X \times S^{1}$ obtained by doing a clutching construction using $(n+2 j) I_{r}-\gamma: X \rightarrow G L(r, \mathbb{C})$.
- Similarly, $L(\gamma,-n-2 j)$ is obtained by doing a clutching construction using $(-n-2 j) I_{r}-\gamma: X \rightarrow G L(r, \mathbb{C})$.

Restriction of E_{γ} to $X \times S^{1}$

Let N be any positive integer such that:

$$
n+2 N>\sup \{\|\gamma(x)\|, x \in X\}
$$

The restriction of E_{γ} to $X \times S^{1}$ is:

$$
E_{\gamma} \mid X \times S^{1}=\bigoplus_{j=0}^{j=N} L(\gamma, n+2 j) \otimes \pi^{*} \operatorname{Sym}^{j}(H)
$$

Restriction of E_{γ} to $\overline{X \times S^{1}}$

The restriction of E_{γ} to $\overline{X \times S^{1}}$ is:

$$
E_{\gamma} \mid \overline{X \times S^{1}}=\bigoplus_{j=0}^{j=N} L(\gamma,-n-2 j) \otimes \pi^{*} \operatorname{Sym}^{j}\left(H^{*}\right)
$$

Here H^{*} is the dual vector bundle of H :

$$
H_{x}^{*}=\operatorname{Hom}_{\mathbb{C}}\left(H_{x}, \mathbb{C}\right) \quad x \in X
$$

$E_{\gamma}=\left(\bigoplus_{j=0}^{j=N} L(\gamma, n+2 j) \otimes \pi^{*} \operatorname{Sym}^{j}(H)\right) \bigsqcup\left(\bigoplus_{j=0}^{j=N} L(\gamma,-n-2 j) \otimes \pi^{*} \operatorname{Sym}^{j}\left(H^{*}\right)\right)$

Theorem (PB and Erik van Erp)

$$
\mu\left(X \times S^{1} \sqcup \overline{X \times S^{1}}, E_{\gamma}, \pi\right)=\left[P_{\gamma}\right]
$$

Next lecture : Tomorrow (i.e. Friday 7 August).
Will show how K-homology can be used to extend
Grothendieck-Riemann-Roch to projective algebraic varieties which may have singularities.

