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ATIYAH-SINGER INDEX THEOREM

There are several proofs of the Atiyah-Singer index theorem :

The first proof by M. F. Atiyah and I. M. Singer.
Published in the R. Palais book Seminar on the Atiyah-Singer
Index Theorem, Princeton University Press (1965).
The proof uses cobordism theory i.e. Pontrjagin-Thom
construction and calculation of cobordism groups.
A number of changes-simplifications in the proof have been
made by M. S. Raghunathan.
M. S. RaghunathanThe Atiyah-Singer Index Theorem,
published in “Contemporary Mathematics”, Vol 522, (Vector
Bundles and Complex Geometry) (2008).



The K-theory proof by Atiyah-Segal-Singer.
Five papers in Ann. of Math. (1968) (1971).
Proves Atiyah-Singer for the equivariant case
and the families case.

The heat equation proof by Atiyah-Bott-Patodi.
On the heat equation and the index theorem,
Invent. Math. 19 (4): 279 - 330, (1973).
Based on an idea originally proposed by McKean and Singer.
Uses Chern-Weil theory.
Does not in and of itself prove the general case of
Atiyah-Singer — but proves a very strong result for Dirac
operators. Sets the stage for the eta-invariant and index
theory on compact manifolds with boundary.



Bott periodicity proof by Baum - van Erp.
Reveals exactly how and why the Atiyah-Singer index theorem
can be proved as a corollary of Bott periodicity.
Does not use Pontrjagin-Thom construction and calculation
of cobordism groups.

Tangent groupoid proof by Alain Connes.
Published in the book Noncommutative Geometry by Alain
Connes, Academic Press, (1994).
See also the cyclic cohomology theory of Alain Connes.

Bivariant K-theory proof by Joachim Cuntz.
Uses Kasparov bivariant K-theory.



Five lectures:

1. Dirac operator

2. Atiyah-Singer revisited

3. What is K-homology?

4. Beyond ellipticity

5. The Riemann-Roch theorem



DIRAC OPERATOR

The Dirac operator of Rn will be defined. This is a first order
elliptic differential operator with constant coefficients. Next, the
class of differentiable manifolds which come equipped with an
order one differential operator which at the symbol level is locally
isomorphic to the Dirac operator of Rn will be considered. These
are the Spinc manifolds. Spinc is slightly stronger than oriented, so
Spinc can be viewed as “oriented plus epsilon”. Most of the
oriented manifolds that occur in practice are Spinc. The Dirac
operator of a closed Spinc manifold is the basic example for the
Hirzebruch-Riemann-Roch theorem and the Atiyah-Singer index
theorem.



What is the Dirac operator of Rn?

To answer this, shall construct matrices E1, E2, . . . , En with the
following properties :



Properties of E1, E2, . . . , En

Each Ej is a 2r × 2r matrix of complex numbers,
where r is the largest integer ≤ n/2.

Each Ej is skew adjoint, i.e. E∗j = −Ej
(* = conjugate transpose)

E2
j = −I j = 1, 2, . . . , n

(I is the 2r × 2r identity matrix.)

EjEk + EkEj = 0 whenever j 6= k.

For n odd, (n = 2r + 1) ir+1E1E2 · · ·En = I i =
√
−1

For n even, (n = 2r) each Ej is of the form

Ej = [ 0 ∗∗ 0 ] and irE1E2 · · ·En =
[
I 0
0 −I

]



These matrices are constructed by a simple inductive procedure.

n = 1, E1 = [−i]
———————————————————————————
n n+ 1 with n odd (r  r + 1)

The new matrices Ẽ1, Ẽ2, . . . , Ẽn+1 are

Ẽj =
[

0 Ej
Ej 0

]
for j = 1, . . . , n and Ẽn+1 =

[
0 −I
I 0

]
where E1, E2, . . . , En are the old matrices.
———————————————————————————–
n n+ 1 with n even (r does not change)

The new matrices Ẽ1, Ẽ2, . . . , Ẽn+1 are

Ẽj = Ej for j = 1, . . . , n and Ẽn+1 =
[−iI 0

0 iI

]
where E1, E2, . . . , En are the old matrices.



Example

n = 1: E1 = [−i]

n = 2: E1 =
[

0 −i
−i 0

]
, E2 =

[
0 −1
1 0

]
n = 3: E1 =

[
0 −i
−i 0

]
, E2 =

[
0 −1
1 0

]
, E3 =

[−i 0
0 i

]



Example

n = 4: E1 =

[
0 0 0 −i
0 0 −i 0
0 −i 0 0
−i 0 0 0

]
E2 =

[
0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

]

E3 =

[
0 0 −i 0
0 0 0 i
−i 0 0 0
0 i 0 0

]
E4 =

[
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

]



D = Dirac operator of Rn
{
n = 2r n even
n = 2r + 1 n odd

D =

n∑
j=1

Ej
∂

∂xj

D is an unbounded symmetric operator on the Hilbert space
L2(Rn)⊕ L2(Rn)⊕ . . .⊕ L2(Rn) (2r times)

To begin, the domain of D is
C∞c (Rn)⊕ C∞c (Rn)⊕ . . .⊕ C∞c (Rn) (2r times)

D is essentially self-adjoint
(i.e. D has a unique self-adjoint extension)
so it is natural to view D as an unbounded self-adjoint operator
on the Hilbert space
L2(Rn)⊕ L2(Rn)⊕ . . .⊕ L2(Rn) (2r times)



QUESTION : Let M be a C∞ manifold of dimension n.
Does M admit a differential operator which (at the symbol level)
is locally isomorphic to the Dirac operator of Rn?

To answer this question, will define Spinc vector bundle.



What is a Spinc vector bundle?

Let X be a paracompact Hausdorff topological space.
On X let E be an R vector bundle which has been oriented.
i.e. the structure group of E has been reduced from
GL(n,R) to GL+(n,R)

GL+(n,R) = {[aij ] ∈ GL(n,R) | det[aij ] > 0}

n= fiber dimension (E)

Assume n ≥ 3 and recall that for n ≥ 3

H2(GL+(n,R);Z) = Z/2Z

Denote by F+(E) the principal GL+(n,R) bundle on X consisting
of all positively oriented frames.



A point of F+(E) is a pair
(
x, (v1, v2, . . . , vn)

)
where x ∈ X

and (v1, v2, . . . , vn) is a positively oriented basis of Ex. The
projection F+(E)→ X is(

x, (v1, v2, . . . , vn)
)
7→ x

For x ∈ X, denote by

ιx : F+
x (E) ↪→ F+(E)

the inclusion of the fiber at x into F+(E).

Note that (with n ≥ 3)

H2(F+
x (E);Z) = Z/2Z



A Spinc vector bundle on X is an R vector bundle E on X
(fiber dimension E ≥ 3) with

1 E has been oriented.

2 α ∈ H2(F+(E);Z) has been chosen such that ∀x ∈ X

ι∗x(α) ∈ H2(F+
x (E);Z) is non-zero.



Remarks

1.For n = 1, 2 “E is a Spinc vector bundle” =“E has been oriented
and an element α ∈ H2(X;Z)” has been chosen. (α can be zero.)

2. For all values of n = fiber dimension(E), E is a Spinc vector
bundle iff the structure group of E has been changed from
GL(n,R) to Spinc(n).
i.e. Such a change of structure group is equivalent to the above
definition of Spinc vector bundle.



By forgetting some structure a complex vector bundle or a Spin
vector bundle canonically becomes a Spinc vector bundle

complex
⇓

Spin ⇒ Spinc

⇓
oriented

A Spinc structure for an R vector bundle E can be thought of as
an orientation for E plus a slight extra bit of structure. Spinc

structures behave very much like orientations. For example, an
orientation on two out of three R vector bundles in a short exact
sequence determines an orientation on the third vector bundle. An
analogous assertion is true for Spinc structures.



Two Out Of Three Lemma

Lemma

Let
0 −→ E′ −→ E −→ E′′ −→ 0

be a short exact sequence of R-vector bundles on X. If two out of
three are Spinc vector bundles, then so is the third.



Definition

Let M be a C∞ manifold (with or without boundary). M is a
Spinc manifold iff the tangent bundle TM of M is a Spinc vector
bundle on M .

The Two Out Of Three Lemma implies that the boundary ∂M of
a Spinc manifold M with boundary is again a Spinc manifold.



Various well-known structures on a manifold M make M into a
Spinc manifold.

(complex-analytic)
⇓

(symplectic) ⇒ (almost complex)
⇓

(contact) ⇒ (stably almost complex)
⇓

Spin ⇒ Spinc

⇓
(oriented)



A Spinc manifold can be thought of as an oriented manifold with a
slight extra bit of structure. Most of the oriented manifolds which
occur in practice are Spinc manifolds.

A Spinc manifold comes equipped with a first-order elliptic
differential operator known as its Dirac operator. This operator is
locally isomorphic (at the symbol level) to the Dirac operator of
Rn.



EXAMPLE. Let M be a compact complex-analytic manifold.
Set Ωp,q = C∞(M,Λp,qT ∗CM)
Ωp,q is the C vector space of all C∞ differential forms of type (p, q)
Dolbeault complex

0 −→ Ω0,0 −→ Ω0,1 −→ Ω0,2 −→ · · · −→ Ω0,n −→ 0

The Dirac operator (of the underlying Spinc manifold) is the
assembled Dolbeault complex

∂̄ + ∂̄∗ :
⊕
j

Ω0, 2j −→
⊕
j

Ω0, 2j+1

The index of this operator is the arithmetic genus of M — i.e. is
the Euler number of the Dolbeault complex.



TWO POINTS OF VIEW ON SPINc MANIFOLDS

1. Spinc is a slight strengthening of oriented. Most of the oriented
manifolds that occur in practice are Spinc.

2. Spinc is much weaker than complex-analytic. BUT the
assempled Dolbeault complex survives (as the Dirac operator).
AND the Todd class survives.

M Spinc =⇒ ∃ Td(M) ∈ H∗(M ;Q)



If M is a Spinc manifold, then Td(M) is

Td(M) := expc1(M)/2Â(M) Td(M) ∈ H∗(M ;Q)

If M is a complex-analyic manifold, then M has Chern classes
c1, c2, . . . , cn and

expc1(M)/2Â(M) = PTodd(c1, c2, . . . , cn)



WARNING!!!

The Todd class of a Spinc manifold is not obtained by
complexifying the tangent bundle TM of M and then
applying the Todd polynomial to the Chern classes of TCM .

Td(TCM) = Â(M)2 = Â(M) ∪ Â(M)

Correct formula for the Todd class of a Spinc manifold M is:

Td(M) := expc1(M)/2Â(M) Td(M) ∈ H∗(M ;Q)



SPECIAL CASE OF ATIYAH-SINGER
Let M be a compact even-dimensional Spinc manifold
without boundary. Let E be a C vector bundle on M .

DE denotes the Dirac operator of M tensored with E.

DE : C∞(M,S+ ⊗ E) −→ C∞(M,S− ⊗ E)

S+, (S−) are the positive (negative) spinor bundles on M .

THEOREM Index(DE) = (ch(E) ∪ Td(M))[M ].



SPECIAL CASE OF ATIYAH-SINGER
Let M be a compact even-dimensional Spinc manifold
without boundary. Let E be a C vector bundle on M .
DE denotes the Dirac operator of M tensored with E.

THEOREM Index(DE) = (ch(E) ∪ Td(M))[M ].

This theorem will be proved in the next lecture as a corollary of
Bott periodicity.

In particular, this will prove the Hirzebruch-Riemann-Roch
theorem.

Also, this will prove (for closed even-dimensional Spinc manifolds)
the Hirzebruch signature theorem.



From E1, E2, . . . , En obtain :

1) The Dirac operator of Rn

2) The Bott generator vector bundle on Sn (n even)

3) The spin representation of Spinc(n)



W finite dimensional C vector space dimC(W ) <∞

T : W →W T ∈ HomC(W,W ) T 2 = I

=⇒ The eigen-values of T are ± 1

W = W1 ⊕W−1

W1 = {v ∈W | Tv = v} W−1 = {v ∈W | Tv = −v}



Bott generator vector bundle

n even n = 2r Sn ⊂ Rn+1 Sn →M(2r,C)

Sn = {(a1, a2, . . . , an+1) ∈ Rn+1 | a2
1 + a2

2 + · · ·+ a2
n+1 = 1}

(a1, a2, . . . , an+1) 7→ i(a1E1 + a2E2 + · · ·+ an+1En+1)
i =
√
−1

(i)2(a1E1 + a2E2 + · · ·+ an+1En+1)2

= (−1)(−a2
1 − a2

2 − . . .− a2
n+1) I

= I

=⇒ The eigenvalues of i(a1E1 + a2E2 + · · ·+ an+1En+1) are ± 1.



Bott generator vector bundle β on Sn n even n = 2r

β(a1,a2,...,an+1)

= (+1 eigenspace of i(a1E1 + a2E2 + · · ·+ an+1En+1))∗

= HomC({v ∈ C2r | i(a1E1 + a2E2 + · · ·+ an+1En+1) v = v} , C)

K0(Sn) = Z ⊕ Z
1 β

1 = Sn × C



Bott generator vector bundle β on Sn n even n = 2r
β is determined by:

1 ∀p ∈ Sn , dimC(βp) = 2r−1

2 ch(β)[Sn] = 1



n even n = 2r Sn ⊂ Rn+1

With the Spin (or Spinc) structure Sn has as the boundary of the
unit ball Bn+1 of Rn+1, the Spinor bundle S of Sn is:

S = Sn × C2r

The positive (negative) Spinor bundles S+(S−) are defined by :

S+
(a1,a2,...,an+1) = +1 eigenspace of i(a1E1+a2E2+· · ·+an+1En+1)

S−(a1,a2,...,an+1) = −1 eigenspace of i(a1E1+a2E2+· · ·+an+1En+1)

S = Sn × C2r = S+ ⊕ S−

β = (S+)∗



M Spinc manifold

∂M might be non-empty

TM = the tangent bundle of M

Dirac operator
D : C∞c (M,S)→ C∞c (M,S)

S is the Spinor bundle

C∞c (M,S) = {C∞ sections with compact support of S}



D : C∞c (M,S)→ C∞c (M,S)

such that

(1) D is C-linear
D(s1 + s2) = Ds1 +Ds2 sj ∈ C∞c (M,S)
D(λx) = λDs λ ∈ C

(2) If f : M → C is a C∞ function, then

D(fs) = (df)s+ f(Ds)

(3) If sj ∈ C∞c (M,S) then∫
M

(Ds1x, s2x) =

∫
M

(s1x,Ds2x)dx

(4) If dim M is even, then D is off-diagonal S = S+ ⊕ S−

D =

 0 D−

D+ 0





D : C∞c (M,S)→ C∞c (M,S) is an elliptic first-order differential
operator.

D can be viewed as an unbounded operator on the Hilbert space
L2(M,S)

(s1, s2) =

∫
M

(s1x, s2x)dx

D : C∞c (M,S)→ C∞c (M,S)

is a symmetric operator



EXAMPLE. Let M be a compact complex-analytic manifold.
The positive (negative) Spinor bundles of the underlying Spinc

manifold are :
S+ =

⊕
j

Λ0, 2j T ∗CM

S− =
⊕
j

Λ0, 2j+1 T ∗CM

D+ : C∞(M,S+)→ C∞(M,S−) is

∂̄ + ∂̄∗ : C∞(M,
⊕
j

Λ0, 2j T ∗CM) −→ C∞(M,
⊕
j

Λ0, 2j+1 T ∗CM)

The index of this operator is the arithmetic genus of M — i.e. is
the Euler number of the Dolbeault complex.



EXAMPLE. Let M be a compact even-dimensional Spinc manifold
without boundary.

D+
S∗ : C∞(M,S+ ⊗ S∗) −→ C∞(M,S− ⊗ S∗)

is the Hirzebruch signature operator of M .
If the dimension of M is divisible by 4, the index of this operator is
the signature of the quadratic form

Hr(M ;R)⊗R H
r(M,R) −→ R n = 2r r even

a⊗ b 7→ (a ∪ b)[M ]



Example.
n even n = 2r Sn ⊂ Rn+1

D = Dirac operator of Sn

S = Spinor bundle of Sn = Sn × C2r

S = S+ ⊕ S−

D : C∞(Sn,S)→ C∞(Sn,S)

D =

 0 D−

D+ 0


D+ : C∞(Sn,S+)→ C∞(Sn,S−)

Index (D+) := dimC(KernelD+)− dimC(CokernelD+) = 0

Theorem. Index (D+) = 0



Tensor D+ with the Bott generator vector bundle β

D+
β : C∞(Sn,S+ ⊗ β)→ C∞(Sn,S− ⊗ β)

Theorem. On Sn, with n even,
Index(D+) = 0 and Index (D+

β ) = 1.



BOTT PERIODICITY

πjGL(n,C) =


Z j odd

0 j even

j = 0, 1, 2, . . . , 2n− 1



Why ???? does Bott periodicity imply
SPECIAL CASE OF ATIYAH-SINGER
Let M be a compact even-dimensional Spinc manifold
without boundary. Let E be a C vector bundle on M .
DE denotes the Dirac operator of M tensored with E.

THEOREM Index(DE) = (ch(E) ∪ Td(M))[M ].

This will be explained in the next lecture — tomorrow
(i.e. Tuesday, 4 August).



Two out of three lemma.

Let 0→ E′ → E → E′′ → 0 be an exact sequence of R vector
bundles on X. If Spinc structures are given for any two of E′, E,
E′′ then a Spinc structure is determined for the third.

Corollary. If M is a Spinc manifold with boundary ∂M , then ∂M
is (in a canonical way) a Spinc manifold.

Proof.



set 1 = ∂M × R
exact sequence

0→ T (∂M)→ TM | ∂M → 1→ 0



By forgetting some structure a complex vector bundle or a Spin
vector bundle canonically becomes a Spinc vector bundle

complex
⇓

Spin ⇒ Spinc

⇓
oriented

A Spinc structure for the R vector bundle E can be thought of as
an orientation for E plus a slight extra bit of structure. Spinc

structures behave very much like orientations. For example, an
orientation on two out of three R vector bundles in a short exact
sequence determines an orientation on the third vector bundle.
Analogous assertions are true for Spinc structures.

Two out of three lemma.



Let 0→ E′ → E → E′′ → 0 be an exact sequence of R vector
bundles on X. If Spinc structures are given for any two of E′, E,
E′′ then a Spinc structure is determined for the third.



Various well-known structures on a manifold M make M into a
Spinc manifold

(complex-analytic)
⇓

(symplectic) ⇒ (almost complex)
⇓

(contact) ⇒ (stably almost complex)
⇓

Spin ⇒ Spinc

⇓
(oriented)

A Spinc manifold can be thought of as an oriented manifold with a
slight extra bit of structure. Most of the oriented manifolds which
occur in practice are Spinc manifolds.



CliffC(V ) = C⊗
R

Cliff(V )

V ⊂ Cliff(V ) ⊂ CliffC(V )

CliffC(V ) is a C∗ algebra

v ∈ V v∗ = −v

Choose an orthogonal basis e1, e2, . . . , en for V

n = dimR(V )



n even n = 2r

E1, E2, . . . , En 2r × 2r matrices

ej 7→ Ej CliffC(V ) −→∼= M(2r,C)

Isomorphism of C∗ algebras



n odd n = 2r + 1 n = dimR(V )

ϕ+ : CliffC(V )→M(2r,C)

E1, E2, . . . , En 2r × 2r matrices

ϕ+(ej) = Ej j = 1, 2, . . . , n

ϕ− : CliffC(V )→M(2r,C)

ϕ−(ej) = −Ej j = 1, 2, . . . , n



ϕ+ ⊕ ϕ− : CliffC(V ) −→∼= M(2r,C)⊕M(2r,C)

Isomorphism of C∗ algebras

Remark. These isomorphisms are non-canonical since they depend
on the choice of an orthornormal basis for V .



Assume


X ×G→ X
G acts on X by a right action

G× Y → Y
G acts on Y by a left action

Notation. X ×
G
Y = X × Y/ ∼ (xg, y) ∼ (x, gy)

Example. E R vector bundle on X



∆(E) ×
GL(n,R)

Rn ∼= E

((p, v1, v2, . . . , vn), (a1, a2, . . . , an)) 7→ a1v1 + a2v2 + · · ·+ anvn



E R vector bundle on X

A Spinc datum η : P → ∆(E) determines
a Spinor system (ε, 〈 , 〉, F ) for E.

ε and 〈 , 〉 p ∈ X An R basis v1, v2, . . . , vn of Ep is positively
oriented and orthonormal iff

(v1, v2, . . . , vn) ∈ Image (η)

Spinor bundle F



n = 2r or n = 2r + 1

F = P ×
Spinc(n)

C2r

How does Spinc(n) act on C2r ?



n odd

Spinc(n) has an irreducible representation known as its spin
representation

Spinc(n)→ GL(2r,C)

n = 2r + 1

n even



Spinc(n) has two irreducible representations known as its 1/2-spin
representations

Spinc(n)→ GL(2r−1,C)

Spinc(n)→ GL(2r−1,C)

The direct sum Spinc(n)→ GL(2r,C) of these two
representations is the spin representation of Spinc(n)



Consider Rn with its usual inner product and usual orthonormal
basis e1, e2, . . . , en

ϕ : CliffC(Rn)→M(2r,C)

ϕ(ej) = Ej j = 1, 2, . . . , n

There is a canonical inclusion

Spinc(n) ⊂ CliffC(Rn)

ϕ : CliffC(Rn)→M(2r,C) restricted to Spinc(n) maps Spinc(n)
to 2r × 2r unitary matrices



Spinc(n)→ U(2r) ⊂ GL(2r,C)

This is the Spin representation of Spinc(n)

Spinc(n) acts on C2r via this representation



M C∞ manifold

∂M might be non-empty

TM = the tangent bundle of M



(
Spinc datum for TM
η : P → ∆(TM)

)
y

(
Spinor system for TM

(ε, 〈 , 〉, F )

)
y

(
Dirac operator

D : C∞c (M,F )→ C∞c (M,F )

)



F is the Spinor bundle

C∞c (M,F ) = {C∞ sections with compact support of F}



D : C∞c (M,F )→ C∞c (M,F )

such that

(1) D is C-linear
D(s1 + s2) = Ds1 +Ds2 sj ∈ C∞c (M,F )
D(λx) = λDs λ ∈ C

(2) If f : M → C is a C∞ function, then

D(fs) = (df)s+ f(Ds)

(3) If sj ∈ C∞c (M,F ) then∫
M

(Ds1x, s2x) =

∫
M

(s1x,Ds2x)dx



(4) If dim M is even, then D is off-diagonal F = F+ ⊕ F−

D =

 0 D−

D+ 0





Existence of D ?

YES – Construct D locally and patch together with a C∞ partition
of unity.

Uniqueness of D ?

YES – If D0 and D1 both satisfy (1)-(4) then D0 −D1 is a vector
bundle map



D0 −D1 : F → F

Hence D0 and D1 differ by lower order terms



D : C∞c (M,F )→ C∞c (M,F ) is an elliptic first-order differential
operator.

D can be viewed as an unbounded operator on the Hilbert space
L2(M,F )

(s1, s2) =

∫
M

(s1x, s2x)dx

D : C∞c (M,F )→ C∞c (M,F )

is a symmetric operator



Example.
n even

Sn ⊂ Rn+1

D = Dirac operator of Sn

F = Spinor bundle of Sn

F = F+ ⊕ F−

D : C∞(Sn, F )→ C∞(Sn, F )



D =

 0 D−

D+ 0



D+ : C∞(Sn, F+)→ C∞(Sn, F−)

Index (D+) := dimC(KernelD+)− dimC(CokernelD+)

Theorem. Index (D+) = 0



Tensor D+ with the Bott generator vector bundle β

D+
β : C∞(Sn, F+ ⊗ β)→ C∞(Sn, F− ⊗ β)

Theorem. Index (D+
β ) = 1



Atiyah-Singer Index theorem

M compact C∞ manifold without boundary

D an elliptic differential (or pseudo-differential) operator on M

E0, E1, C∞ C vector bundles on M

C∞(M,Ej) denotes the C vector space of all C∞ sections of Ej .

D : C∞(M,E0) −→ C∞(M,E1)

D is a linear transformation of C vector spaces.



Atiyah-Singer Index theorem

M compact C∞ manifold without boundary

D an elliptic differential (or pseudo-differential) operator on M

Index(D) := dimC (Kernel D)− dimC (Cokernel D)

Theorem (M.Atiyah and I.Singer)

Index (D) = (a topological formula)



Example

M = S1 = {(t1, t2) ∈ R2 | t21 + t22 = 1}

Df : L2(S1) −→ L2(S1) is

0

Tf

I

0

where L2(S1) = L2
+(S1)⊕ L2

−(S1).

L2
+(S1) has as orthonormal basis einθ with n = 0, 1, 2, . . .

L2
−(S1) has as orthonormal basis einθ with n = −1,−2,−3, . . ..



Example

f : S1 −→ R2 − {0} is a C∞ map.

S1 R2 − {(0, 0)}
f

Tf : L2
+(S1) −→ L2

+(S1) is the composition

L2
+(S1)

Mf−→ L2(S1) −→ L2
+(S1)

Tf : L2
+(S1) −→ L2

+(S1) is the Toeplitz operator associated to f



Example

Thus Tf is composition

Tf : L2
+(S1)

Mf−→ L2(S1)
P−→ L2

+(S1)

where L2
+(S1)

Mf−→ L2(S1) is v 7→ fv
fv(t1, t2) := f(t1, t2)v(t1, t2) ∀(t1, t2) ∈ S1 R2 = C

and L2(S1)
P−→ L2

+(S1) is the Hilbert space projection.

Df (v + w) := Tf (v) + w v ∈ L2
+(S1), w ∈ L2

−(S1)

Index(Df ) = -winding number (f).



RIEMANN - ROCH

M compact connected Riemann surface

genus of M = # of holes

=
1

2
[rankH1(M ;Z)]



D a divisor of M

D consists of a finite set of points of M p1, p2, . . . , pl and an
integer assigned to each point n1, n2, . . . , nl

Equivalently

D is a function D : M → Z with finite support

Support(D) = {p ∈M | D(p) 6= 0}

Support(D) is a finite subset of M



D a divisor on M

deg(D) :=
∑

p∈M D(p)

Remark

D1, D2 two divisors

D1 = D2 iff ∀p ∈M,D1(p) = D2(p)

Remark

D a divisor, −D is
(−D)(p) = −D(p)



Example

Let f : M → C ∪ {∞} be a meromorphic function.

Define a divisor δ(f) by:

δ(f)(p) =


0 if p is neither a zero nor a pole of f

order of the zero if f(p) = 0

−(order of the pole) if p is a pole of f



Example

Let w be a meromorphic 1-form on M . Locally w is f(z)dz where
f is a (locally defined) meromorphic function. Define a divisor
δ(w) by:

δ(w)(p) =


0 if p is neither a zero nor a pole of w

order of the zero if w(p) = 0

−(order of the pole) if p is a pole of w



D a divisor on M

H0(M,D) :=

{
meromorphic functions

f : M → C ∪ {∞}

∣∣∣∣∣ δ(f) = −D

}

H1(M,D) :=

{
meromorphic 1-forms

w on M

∣∣∣∣∣ δ(w) = D

}

Lemma

H0(M,D) and H1(M,D) are finite dimensional C vector spaces

dimCH
0(M,D) <∞

dimCH
1(M,D) <∞



Theorem (R. R.)

Let M be a compact connected Riemann surface and let D be a
divisor on M . Then:

dimCH
0(M,D)− dimCH

1(M,D) = d− g + 1

d = degree (D)

g = genus (M)



HIRZEBRUCH-RIEMANN-ROCH

M non-singular projective algebraic variety / C
E an algebraic vector bundle on M

E = sheaf of germs of algebraic sections of E

Hj(M,E) := j-th cohomology of M using E,
j = 0, 1, 2, 3, . . .



LEMMA
For all j = 0, 1, 2, . . . dimCH

j(M,E) <∞.

For all j > dimC(M), Hj(M,E) = 0.

χ(M,E) :=

n∑
j=0

(−1)j dimCH
j(M,E)

n = dimC(M)

THEOREM[HRR] Let M be a non-singular projective algebraic
variety / C and let E be an algebraic vector bundle on M . Then

χ(M,E) = (ch(E) ∪ Td(M))[M ]



Hirzebruch-Riemann-Roch

Theorem (HRR)

Let M be a non-singular projective algebraic variety / C and let E
be an algebraic vector bundle on M . Then

χ(M,E) = (ch(E) ∪ Td(M))[M ]



Various well-known structures on a C∞ manifold M make M into
a Spinc manifold

(complex-analytic)
⇓

(symplectic) ⇒ (almost complex)
⇓

(contact) ⇒ (stably almost complex)
⇓

Spin ⇒ Spinc

⇓
(oriented)

A Spinc manifold can be thought of as an oriented manifold with a
slight extra bit of structure. Most of the oriented manifolds which
occur in practice are Spinc manifolds.



Two Out Of Three Lemma

Lemma

Let
0 −→ E′ −→ E −→ E′′ −→ 0

be a short exact sequence of R-vector bundles on X. If two out of
three are Spinc vector bundles, then so is the third.



Definition

Let M be a C∞ manifold (with or without boundary). M is a
Spinc manifold iff the tangent bundle TM of M is a Spinc vector
bundle on M .

The Two Out Of Three Lemma implies that the boundary ∂M of
a Spinc manifold M with boundary is again a Spinc manifold.



A Spinc manifold comes equipped with a first-order elliptic
differential operator known as its Dirac operator.

If M is a Spinc manifold, then Td(M) is

Td(M) := expc1(M)/2Â(M) Td(M) ∈ H∗(M ;Q)

If M is a complex-analyic manifold, then M has Chern classes
c1, c2, . . . , cn and

expc1(M)/2Â(M) = PTodd(c1, c2, . . . , cn)



EXAMPLE. Let M be a compact complex-analytic manifold.
Set Ωp,q = C∞(M,Λp,qT ∗M)
Ωp,q is the C vector space of all C∞ differential forms of type (p, q)
Dolbeault complex

0 −→ Ω0,0 −→ Ω0,1 −→ Ω0,2 −→ · · · −→ Ω0,n −→ 0

The Dirac operator (of the underlying Spinc manifold) is the
assembled Dolbeault complex

∂̄ + ∂̄∗ :
⊕
j

Ω0, 2j −→
⊕
j

Ω0, 2j+1

The index of this operator is the arithmetic genus of M — i.e. is
the Euler number of the Dolbeault complex.



TWO POINTS OF VIEW ON SPINc MANIFOLDS

1. Spinc is a slight strengthening of oriented. The oriented
manifolds that occur in practice are Spinc.

2. Spinc is much weaker than complex-analytic. BUT the
assempled Dolbeault complex survives (as the Dirac operator).
AND the Todd class survives.

M Spinc =⇒ ∃ Td(M) ∈ H∗(M ;Q)



SPECIAL CASE OF ATIYAH-SINGER
Let M be a compact even-dimensional Spinc manifold
without boundary. Let E be a C vector bundle on M .

DE denotes the Dirac operator of M tensored with E.

DE : C∞(M,S+ ⊗ E) −→ C∞(M,S− ⊗ E)

S+, S− are the positive (negative) spinor bundles on M .

THEOREM Index(DE) = (ch(E) ∪ Td(M))[M ].



K0(·)

Definition

Define an abelian group denoted K0(·) by considering pairs (M,E)
such that:

1 M is a compact even-dimensional Spinc manifold without
boundary.

2 E is a C vector bundle on M .



Set K0(·) = {(M,E)}/ ∼ where the the equivalence relation ∼
is generated by the three elementary steps

Bordism

Direct sum - disjoint union

Vector bundle modification

Addition in K0(·) is disjoint union.

(M,E) + (M ′, E′) = (M tM ′, E t E′)

In K0(·) the additive inverse of (M,E) is (−M,E) where −M
denotes M with the Spinc structure reversed.

−(M,E) = (−M,E)



Isomorphism (M,E) is isomorphic to (M ′, E′) iff ∃ a
diffeomorphism

ψ : M →M ′

preserving the Spinc-structures on M,M ′ and with

ψ∗(E′) ∼= E.



Bordism (M0, E0) is bordant to (M1, E1) iff ∃ (Ω, E) such that:

1 Ω is a compact odd-dimensional Spinc manifold with
boundary.

2 E is a C vector bundle on Ω.

3 (∂Ω, E|∂Ω) ∼= (M0, E0) t (−M1, E1, )

−M1 is M1 with the Spinc structure reversed.



(M0, E0) (−M1, E1)



Direct sum - disjoint union

Let E,E′ be two C vector bundles on M

(M,E) t (M,E′) ∼ (M,E ⊕ E′)



Vector bundle modification

(M,E)

Let F be a Spinc vector bundle on M

Assume that
dimR(Fp) ≡ 0 mod 2 p ∈M

for every fiber Fp of F

1R = M × R

S(F ⊕ 1R) := unit sphere bundle of F ⊕ 1R

(M,E) ∼ (S(F ⊕ 1R), β ⊗ π∗E)



S(F ⊕ 1R)

M

π

This is a fibration with even-dimensional spheres as fibers.

F ⊕ 1R is a Spinc vector bundle on M with odd-dimensional fibers.

The Spinc structure for F causes there to appear on S(F ⊕ 1R) a
C-vector bundle β whose restriction to each fiber of π is the Bott
generator vector bundle of that even-dimensional sphere.

(M,E) ∼ (S(F ⊕ 1R), β ⊗ π∗E)



Addition in K0(·) is disjoint union.

(M,E) + (M ′, E′) = (M tM ′, E t E′)

In K0(·) the additive inverse of (M,E) is (−M,E) where −M
denotes M with the Spinc structure reversed.

−(M,E) = (−M,E)



DEFINITION. (M,E) bounds ⇐⇒ ∃ (Ω, Ẽ) with :

1 Ω is a compact odd-dimensional Spinc manifold with
boundary.

2 Ẽ is a C vector bundle on Ω.

3 (∂Ω, Ẽ|∂Ω) ∼= (M,E)

REMARK. (M,E) = 0 in K0(·)⇐⇒ (M,E) ∼ (M ′, E′) where
(M ′, E′) bounds.



Consider the homomorphism of abelian groups

K0(·) −→ Z
(M,E) 7−→ Index(DE)

Notation

DE is the Dirac operator of M tensored with E.



It is a corollary of Bott periodicity that this homomorphism of
abelian groups is an isomorphism.

Equivalently, Index(DE) is a complete invariant for the equivalence
relation generated by the three elementary steps; i.e.
(M,E) ∼ (M ′, E′) if and only if Index(DE) = Index(D′E′).



BOTT PERIODICITY

πjGL(n,C) =


Z j odd

0 j even

j = 0, 1, 2, . . . , 2n− 1



Why does Bott periodicity imply that

K0(·) −→ Z
(M,E) 7−→ Index(DE)

is an isomorphism?



To prove surjectivity must find an (M,E) with Index(DE) = 1.

e.g. Let M = CPn, and let E
be the trivial (complex) line bundle on CPn
E=1C = CPn × C
Index(CPn, 1C) = 1

Thus Bott periodicity is not used in the proof of surjectivity.



Lemma used in the Proof of Injectivity

Given any (M,E) there exists an even-dimensional sphere S2n and
a C-vector bundle F on S2n with (M,E) ∼ (S2n, F ).

Bott periodicity is not used in the proof of this lemma.
The lemma is proved by a direct argument using the definition of
the equivalence relation on the pairs (M,E).



Let r be a positive integer, and let VectC(S2n, r)
be the set of isomorphism classes of C vector bundles on S2n

of rank r, i.e. of fiber dimension r.

VectC(S2n, r)←→ π2n−1GL(r,C)



PROOF OF INJECTIVITY
Let (M,E) have Index(M,E) = 0.
By the above lemma, we may assume that (M,E) = (S2n, F ).
Using Bott periodicity plus the bijection

VectC(S2n, r)←→ π2n−1GL(r,C)

we may assume that F is of the form

F = θp ⊕ qβ

θp = S2n ×Cp and β is the Bott generator vector bundle on S2n.
Convention. If q < 0, then qβ = |q|β∗.



Index(S2n, β) = 1 Index(S2n, θp) = 0
Therefore

Index(S2n, F ) = 0 =⇒ q = 0

Hence (S2n, F ) = (S2n, θp). This bounds

(S2n, θp) = ∂(B2n+1, B2n+1 × Cp)

and so is zero in K0(·).
QED



Define a homomorphism of abelian groups

K0(·) −→ Q
(M,E) 7−→

(
ch(E) ∪ Td(M)

)
[M ]

where ch(E) is the Chern character of E and Td(M) is the Todd
class of M .

ch(E) ∈ H∗(M,Q) and Td(M) ∈ H∗(M,Q).

[M ] is the orientation cycle of M . [M ] ∈ H∗(M,Z).



Granted that

K0(·) −→ Z
(M,E) 7−→ Index(DE)

is an isomorphism, to prove that these two homomorphisms are
equal, it suffices to check one nonzero example.



Let X be a compact C∞ manifold without boundary.
X is not required to be oriented.
X is not required to be even dimensional.
On X let

δ : C∞(X,E0) −→ C∞(X,E1)

be an elliptic differential (or pseudo-differential) operator.

(S(TX ⊕ 1R), Eσ) ∈ K0(·), and

Index(DEσ) = Index(δ).



(S(TX ⊕ 1R), Eσ)ww�
Index(δ) = (ch(Eσ) ∪ Td((S(TX ⊕ 1R)))[(S(TX ⊕ 1R)]

and this is the general Atiyah-Singer formula.

S(TX ⊕ 1R) is the unit sphere bundle of TX ⊕ 1R.
S(TX ⊕ 1R) is even dimensional and is — in a natural way — a
Spinc manifold.

Eσ is the C vector bundle on S(TX ⊕ 1R) obtained by doing a
clutching construction using the symbol σ of δ.


