WHAT IS K-HOMOLOGY ?

TIFR
Mumbai, India

Paul Baum
Penn State

5 August, 2015

Five lectures:

1. Dirac operator \checkmark
2. Atiyah-Singer revisited \checkmark
3. What is K-homology?
4. Beyond ellipticity
5. The Riemann-Roch theorem

Define a homomorphism of abelian groups

$$
\begin{aligned}
\mathrm{K}_{0}(\cdot) & \longrightarrow \mathbb{Q} \\
(M, E) & \longmapsto(\operatorname{ch}(E) \cup \operatorname{Td}(M))[M]
\end{aligned}
$$

where $\operatorname{ch}(E)$ is the Chern character of E and $\operatorname{Td}(M)$ is the Todd class of M.
$\operatorname{ch}(E) \in H^{*}(M, \mathbb{Q})$ and $\operatorname{Td}(M) \in H^{*}(M, \mathbb{Q})$.
$[M]$ is the orientation cycle of $M .[M] \in H_{*}(M, \mathbb{Z})$.

Bott periodicity implies that

$$
\begin{aligned}
\mathrm{K}_{0}(\cdot) & \longrightarrow \mathbb{Z} \\
(M, E) & \longmapsto \operatorname{Index}\left(D_{E}\right)
\end{aligned}
$$

is an isomorphism. Hence to prove that these two homomorphisms are equal, it suffices to check one example with $\operatorname{Index}(M, E)=1$.

Let X be a compact C^{∞} manifold without boundary. X is not required to be oriented.
X is not required to be even dimensional.
On X let

$$
\delta: C^{\infty}\left(X, E^{0}\right) \longrightarrow C^{\infty}\left(X, E^{1}\right)
$$

be an elliptic differential (or pseudo-differential) operator. Then:

$$
\left(S\left(T^{*} X \oplus 1_{\mathbb{R}}\right), E_{\sigma}\right) \in \mathrm{K}_{0}(\cdot)
$$

and

$$
\operatorname{Index}\left(D_{E_{\sigma}}\right)=\operatorname{Index}(\delta)
$$

$$
\left(S\left(T^{*} X \oplus 1_{\mathbb{R}}\right), E_{\sigma}\right) \in \mathrm{K}_{0}(\cdot) \text { and } \operatorname{Index}\left(D_{E_{\sigma}}\right)=\operatorname{Index}(\delta)
$$

$$
\downarrow
$$

$$
\operatorname{Index}(\delta)=\left(\operatorname{ch}\left(E_{\sigma}\right) \cup \operatorname{Td}\left(S\left(T^{*} X \oplus 1_{\mathbb{R}}\right)\right)\right)\left[S\left(T^{*} X \oplus 1_{\mathbb{R}}\right)\right]
$$

and this is the general Atiyah-Singer formula.
$S\left(T^{*} X \oplus 1_{\mathbb{R}}\right)$ is the unit sphere bundle of $T^{*} X \oplus 1_{\mathbb{R}}$.
$S\left(T^{*} X \oplus 1_{\mathbb{R}}\right)$ is even dimensional and is - in a natural way - a $S \operatorname{pin}^{c}$ manifold.
E_{σ} is the \mathbb{C} vector bundle on $S\left(T^{*} X \oplus 1_{\mathbb{R}}\right)$ obtained by doing a clutching construction using the (principal) symbol σ of δ.

FACT:
If M is any closed odd-dimensional C^{∞} manifold and δ is any elliptic differential operator on M, then

$$
\operatorname{Index}(\delta)=0
$$

QUESTION :

What are the examples on odd-dimensional closed C^{∞} manifolds for the Atiyah-Singer index theorem?
"closed" = "compact without boundary"

Let M be a closed odd-dimensional Spin c manifold.
The Dirac operator D of M

$$
D: C^{\infty}(M, \mathcal{S}) \longrightarrow C^{\infty}(M, \mathcal{S})
$$

is a symmetric operator which has a unique self-adjoint extension, and thus can be viewed as a self-adjoint unbounded operator on the Hilbert space $L^{2}(M, \mathcal{S})$.

The spectrum of D consists of real numbers $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots$ Each λ_{j} is an isolated point in the spectrum. Each λ_{j} is an eigenvalue whose eigenspace $E\left(\lambda_{j}\right)$ is finite-dimensional and is contained in $C^{\infty}(M, \mathcal{S})$.

$$
\begin{gathered}
E\left(\lambda_{j}\right) \subset C^{\infty}(M, \mathcal{S}) \\
\operatorname{dim}_{\mathbb{C}} E\left(\lambda_{j}\right)<\infty
\end{gathered}
$$

Let $L_{+}^{2}(M, \mathcal{S}) \quad\left(L_{-}^{2}(M, \mathcal{S})\right) \quad$ be the sub Hilbert space of $L^{2}(M, \mathcal{S})$ spanned by the $E\left(\lambda_{j}\right)$ with $\lambda_{j} \geq 0 \quad\left(\lambda_{j}<0\right)$.
The Hilbert space $L^{2}(M, \mathcal{S})$ is then the direct sum :

$$
L^{2}(M, \mathcal{S})=L_{+}^{2}(M, \mathcal{S}) \oplus L_{-}^{2}(M, \mathcal{S})
$$

Let $f: M \rightarrow \mathbb{C}$ be a C^{∞} function. The multiplication operator

$$
\mathcal{M}_{f}: L^{2}(M, \mathcal{S}) \rightarrow L^{2}(M, \mathcal{S})
$$

is

$$
\mathcal{M}_{f}(s)=f s \quad(f s)(p)=f(p) s(p) \quad s \in L^{2}(M, \mathcal{S}) \quad p \in M
$$

$f: M \rightarrow \mathbb{C}$
The Toeplitz operator T_{f} associated to f

$$
T_{f}: L_{+}^{2}(M, \mathcal{S}) \rightarrow L_{+}^{2}(M, \mathcal{S})
$$

is the compression of \mathcal{M}_{f} to $L_{+}^{2}(M, \mathcal{S})$ i.e. T_{f} is the composition

$$
T_{f}: L_{+}^{2}(M, \mathcal{S}) \xrightarrow{\mathcal{M}_{f}} L^{2}(M, \mathcal{S}) \xrightarrow{P} L_{+}^{2}(M, \mathcal{S})
$$

where $P: L^{2}(M, \mathcal{S}) \rightarrow L_{+}^{2}(M, \mathcal{S})$ is the Hilbert space projection.
$f: M \rightarrow \mathbb{C} \quad L^{2}(M, \mathcal{S})=L_{+}^{2}(M, \mathcal{S}) \oplus L_{-}^{2}(M, \mathcal{S})$
Let $D_{f}: L^{2}(M, \mathcal{S}) \rightarrow L^{2}(M, \mathcal{S})$ be $T_{f} \oplus I$.
i.e. $D_{f}: L^{2}(M, \mathcal{S}) \rightarrow L^{2}(M, \mathcal{S})$ is

$$
D_{f}\left(s_{1}+s_{2}\right):=T_{f}\left(s_{1}\right)+s_{2} \quad s_{1} \in L_{+}^{2}(M, \mathcal{S}) \quad s_{2} \in L_{-}^{2}(M, \mathcal{S})
$$

D_{f} is a pseudo-differential operator of order zero.

Let n be any positive integer. Given a C^{∞} map

$$
\alpha: M \rightarrow G L(n, \mathbb{C})
$$

view α as an $n \times n$ matrix $\alpha=\left[\alpha_{i, j}\right]$ where each $\alpha_{i, j}$ is a C^{∞} function on M.

$$
\alpha_{i, j}: M \rightarrow \mathbb{C}
$$

Consider the operator $D_{\alpha}:=\left[D_{\alpha_{i, j}}\right]$

$$
D_{\alpha}: L^{2}(M, \mathcal{S})^{\oplus n} \rightarrow L^{2}(M, \mathcal{S})^{\oplus n}
$$

D_{α} is an elliptic pseudo-differential operator of order zero.
The Atiyah-Singer formula for $\operatorname{Index}\left(D_{\alpha}\right)$ is :

$$
\begin{aligned}
& \operatorname{Index}\left(D_{\alpha}\right)=(\operatorname{ch}(\alpha) \cup T d(M))[M] \\
& \operatorname{ch}(\alpha)=\sum_{j \geq 0} \operatorname{Tr}\left(\left(\frac{\alpha^{-1} d \alpha}{-2 \pi i}\right)^{2 j+1}\right)
\end{aligned}
$$

Equivariant case of Atiyah-Singer
Families case of Atiyah-Singer

Proof of equivariant case and proof of families case :
Step 1. Dirac case via Bott periodicity.
Step 2. General case reduces to the Dirac case via a finite sequence of index-preserving moves.

Let G be a compact Lie group.

Definition

Define an abelian group, denoted $K_{0}^{G}(\cdot)$, by considering pairs (M, E) such that:
(1) M is a closed even-dimensional C^{∞} manifold with a given C^{∞} action of G. $\quad G \times M \rightarrow M$.
(2) A G-equivariant Spin^{c} structure for M is given.
(3) E is a $C^{\infty} G$-equivariant \mathbb{C} vector bundle on M.

> "closed" = "compact without boundary"

Set $K_{0}^{G}(\cdot)=\{(M, E)\} / \sim \quad$ where the the equivalence relation \sim is generated by the three elementary steps:
bordism, direct sum-disjoint union, vector bundle modification.
Addition in $K_{0}^{G}(\cdot)$ is disjoint union.

$$
\begin{gathered}
K_{0}^{G}(\cdot) \text { is an } R(G) \text { module. } \\
V \cdot(M, E):=(M,(M \times V) \otimes E)
\end{gathered}
$$

Notation. $R(G)$ is the representation ring of the compact Lie group G. V is a finite-dimensional representation of $G . \operatorname{dim}_{\mathbb{C}}(V)<\infty$.

Equivariant Bott periodicity implies that

$$
\begin{aligned}
K_{0}^{G}(\cdot) & \longrightarrow R(G) \\
(M, E) & \longmapsto \operatorname{Index}\left(D_{E}\right)
\end{aligned}
$$

is an isomorphism of $R(G)$ modules.
For general equivariant case of Atiyah-Singer, consider

$$
\left(S\left(T^{*} X \oplus 1_{\mathbb{R}}\right), E_{\sigma}\right) \in K_{0}^{G}(\cdot)
$$

and use a finite sequence of index-preserving moves.

K-homology in algebraic geometry

Let X be a (possibly singular) projective algebraic variety / \mathbb{C}.
Grothendieck defined two abelian groups:
$K_{\text {alg }}^{0}(X)=$ Grothendieck group of algebraic vector bundles on X.
$K_{0}^{\text {alg }}(X)=$ Grothendieck group of coherent algebraic sheaves on X.
$K_{\text {alg }}^{0}(X)=$ the algebraic geometry K-theory of X (contravariant).
$K_{0}^{a l g}(X)=$ the algebraic geometry K-homology of X (covariant).

K-homology in topology

Problem

How can K-homology be taken from algebraic geometry to topology?
K-homology is the dual theory to K-theory. There are three ways in which K-homology in topology has been defined:

Homotopy Theory K-theory is the cohomology theory and K-homology is the homology theory determined by the Bott (i.e. K-theory) spectrum.

This is the spectrum $\ldots, \mathbb{Z} \times B U, U, \mathbb{Z} \times B U, U, \ldots$
K-Cycles K-homology is the group of K-cycles.
C^{*}-algebras K-homology is the Atiyah-BDF-Kasparov group $K K^{*}(A, \mathbb{C})$.

Let X be a finite CW complex.
The three versions of K-homology are isomorphic.

$$
\begin{gathered}
K_{j}^{\text {homotopy }}(X) \longleftrightarrow K_{j}(X) \longrightarrow K K^{j}(C(X), \mathbb{C}) \\
\text { homotopy theory } \\
\longleftarrow K \text {-cycles Atiyah-BDF-Kasparov } \\
j=0,1
\end{gathered}
$$

Cycles for K-homology

Let X be a CW complex.

Definition

A K-cycle on X is a triple (M, E, φ) such that :
(1) M is a compact Spin^{c} manifold without boundary.
(2) E is a \mathbb{C} vector bundle on M.
(3) $\varphi: M \rightarrow X$ is a continuous map from M to X.

Set $K_{*}(X)=\{(M, E, \varphi)\} / \sim$ where the equivalence relation \sim is generated by the three elementary steps

- Bordism
- Direct sum - disjoint union
- Vector bundle modification

Isomorphism (M, E, φ) is isomorphic to $\left(M^{\prime}, E^{\prime}, \varphi^{\prime}\right)$ iff \exists a diffeomorphism

$$
\psi: M \rightarrow M^{\prime}
$$

preserving the Spin^{c}-structures on M, M^{\prime} and with

$$
\psi^{*}\left(E^{\prime}\right) \cong E
$$

and commutativity in the diagram

Bordism $\left(M_{0}, E_{0}, \varphi_{0}\right)$ is bordant to $\left(M_{1}, E_{1}, \varphi_{1}\right)$ iff $\exists(\Omega, E, \varphi)$ such that:
(1) Ω is a compact Spin^{c} manifold with boundary.
(2) E is \mathbb{C} vector bundle on Ω.
(3) $\left(\partial \Omega,\left.E\right|_{\partial \Omega},\left.\varphi\right|_{\partial \Omega}\right) \cong\left(M_{0}, E_{0}, \varphi_{0}\right) \sqcup\left(-M_{1}, E_{1}, \varphi_{1}\right)$
$-M_{1}$ is M_{1} with the Spin^{c} structure reversed.

Direct sum - disjoint union

Let E, E^{\prime} be two \mathbb{C} vector bundles on M

$$
(M, E, \varphi) \sqcup\left(M, E^{\prime}, \varphi\right) \sim\left(M, E \oplus E^{\prime}, \varphi\right)
$$

Vector bundle modification

(M, E, φ)
Let F be a Spin^{c} vector bundle on M
Assume that

$$
\operatorname{dim}_{\mathbb{R}}\left(F_{p}\right) \equiv 0 \quad \bmod 2 \quad p \in M
$$

for every fiber F_{p} of F

$$
\begin{aligned}
& \mathbf{1}_{\mathbb{R}}=M \times \mathbb{R} \\
S\left(F \oplus \mathbf{1}_{\mathbb{R}}\right):= & \text { unit sphere bundle of } F \oplus \mathbf{1}_{\mathbb{R}} \\
(M, E, \varphi) \sim & \left(S\left(F \oplus \mathbf{1}_{\mathbb{R}}\right), \beta \otimes \pi^{*} E, \varphi \circ \pi\right)
\end{aligned}
$$

$$
\begin{gathered}
S\left(F \oplus \mathbf{1}_{\mathbb{R}}\right) \\
\downarrow \pi \\
M
\end{gathered}
$$

This is a fibration with even-dimensional spheres as fibers.
$F \oplus \mathbf{1}_{\mathbb{R}}$ is a Spin c vector bundle on M with odd-dimensional fibers. Let Σ be the spinor bundle for $F \oplus \mathbf{1}$

$$
\begin{gathered}
\operatorname{Cliff}_{\mathbb{C}}\left(F_{p} \oplus \mathbb{R}\right) \otimes \Sigma_{p} \rightarrow \Sigma_{p} \\
\pi^{*} \Sigma=\beta \oplus \beta_{-} \\
(M, E, \varphi) \sim\left(S\left(F \oplus \mathbf{1}_{\mathbb{R}}\right), \beta \otimes \pi^{*} E, \varphi \circ \pi\right)
\end{gathered}
$$

$$
\{(M, E, \varphi)\} / \sim=K_{0}(X) \oplus K_{1}(X)
$$

$$
K_{j}(X)=\begin{aligned}
& \text { subgroup of }\{(M, E, \varphi)\} / \sim \\
& \text { consisting of all }(M, E, \varphi) \text { such that } \\
& \text { every connected component of } M \\
& \\
& \text { has dimension } \equiv j \quad \bmod 2 \quad j=0,1
\end{aligned}
$$

Addition in $K_{j}(X)$ is disjoint union.

$$
(M, E, \varphi)+\left(M^{\prime}, E^{\prime}, \varphi^{\prime}\right)=\left(M \sqcup M^{\prime}, E \sqcup E^{\prime}, \varphi \sqcup \varphi^{\prime}\right)
$$

Additive inverse of (M, E, φ) is obtained by reversing the Spin^{c} structure of M.

$$
-(M, E, \varphi)=(-M, E, \varphi)
$$

Let X, Y be CW complexes and let $f: X \rightarrow Y$ be a continuous map.
Then $f_{*}: K_{j}(X) \rightarrow K_{j}(Y)$ is

$$
f_{*}(M, E, \varphi):=(M, E, f \circ \varphi)
$$

Atiyah-BDF-Kasparov K-homology

Reference. M.F. Atiyah, Global Theory of Elliptic Operators, Proc. Int. Conf. on Functional Analysis and Related Topics (Tokyo, 1969), University of Tokyo Press (1970).

Atiyah-BDF-Kasparov K-homology

```
M.F. Atiyah Brown-Douglas-Fillmore G.Kasparov
Let }X\mathrm{ be a finite CW complex.
C(X)={\alpha:X->\mathbb{C | \alpha is continuous }}
L}(\mathcal{H})={\mathrm{ bounded operators T:H}->\mathcal{H}
Any element in the Atiyah-BDF-Kasparov K-homology
group KK}\mp@subsup{K}{}{0}(C(X),\mathbb{C}
is given by a 5-tuple ( }\mp@subsup{\mathcal{H}}{0}{},\mp@subsup{\psi}{0}{},\mp@subsup{\mathcal{H}}{1}{},\mp@subsup{\psi}{1}{},T)\mathrm{ such that:
```

- \mathcal{H}_{0} and \mathcal{H}_{1} are separable Hilbert spaces.
- $\psi_{0}: C(X) \longrightarrow \mathcal{L}\left(\mathcal{H}_{0}\right)$ and $\psi_{1}: C(X) \longrightarrow \mathcal{L}\left(\mathcal{H}_{1}\right)$ are unital $*$-homomorphisms.
- $T: \mathcal{H}_{0} \longrightarrow \mathcal{H}_{1}$ is a (bounded) Fredholm operator.
- For every $\alpha \in C(X)$ the commutator $T \circ \psi_{0}(\alpha)-\psi_{1}(\alpha) \circ T$ $\in \mathcal{L}\left(\mathcal{H}_{0}, \mathcal{H}_{1}\right)$ is compact.

$$
K K^{0}(C(X), \mathbb{C}):=\left\{\left(\mathcal{H}_{0}, \psi_{0}, \mathcal{H}_{1}, \psi_{1}, T\right)\right\} / \sim
$$

$$
K K^{0}(C(X), \mathbb{C}):=\left\{\left(\mathcal{H}_{0}, \psi_{0}, \mathcal{H}_{1}, \psi_{1}, T\right)\right\} / \sim
$$

$\left(\mathcal{H}_{0}, \psi_{0}, \mathcal{H}_{1}, \psi_{1}, T\right)+\left(\mathcal{H}_{0}^{\prime}, \psi_{0}^{\prime}, \mathcal{H}_{1}^{\prime}, \psi_{1}^{\prime}, T^{\prime}\right)=$
$\left(\mathcal{H}_{0} \oplus \mathcal{H}_{0}^{\prime}, \psi_{0} \oplus \psi_{0}^{\prime}, \mathcal{H}_{1} \oplus \mathcal{H}_{1}^{\prime}, \psi_{1} \oplus \psi_{1}^{\prime}, T \oplus T^{\prime}\right)$
$-\left(\mathcal{H}_{0}, \psi_{0}, \mathcal{H}_{1}, \psi_{1}, T\right)=\left(\mathcal{H}_{1}, \psi_{1}, \mathcal{H}_{0}, \psi_{0}, T^{*}\right)$

Let X be a finite CW complex.
Any element in the Atiyah-BDF-Kasparov K-homology group $K K^{1}(C(X), \mathbb{C})$
is given by a 3-tuple (\mathcal{H}, ψ, T) such that :

- \mathcal{H} is a separable Hilbert space.
- $\psi: C(X) \longrightarrow \mathcal{L}(\mathcal{H})$ is a unital $*$-homomorphism.
- $T: \mathcal{H} \longrightarrow \mathcal{H}$ is a (bounded) self-adjoint Fredholm operator.
- For every $\alpha \in C(X)$ the commutator $T \circ \psi(\alpha)-\psi(\alpha) \circ T \in \mathcal{L}(\mathcal{H})$ is compact.

$$
K K^{1}(C(X), \mathbb{C}):=\{(\mathcal{H}, \psi, T)\} / \sim
$$

$(\mathcal{H}, \psi, T)+\left(\mathcal{H}^{\prime}, \psi^{\prime}, T^{\prime}\right)=\left(\mathcal{H} \oplus \mathcal{H}^{\prime}, \psi \oplus \psi^{\prime}, T \oplus T^{\prime}\right)$

$$
-(\mathcal{H}, \psi, T)=(\mathcal{H}, \psi,-T)
$$

Let X, Y be CW complexes and let $f: X \rightarrow Y$ be a continuous map. Denote by $f^{\natural}: C(X) \leftarrow C(Y)$ the $*$-homomorphism

$$
f^{\natural}(\alpha):=\alpha \circ f \quad \alpha \in C(Y)
$$

Then $f_{*}: K K^{j}(C(X), \mathbb{C}) \rightarrow K K^{j}(C(Y), \mathbb{C})$ is

$$
\begin{aligned}
f_{*}(\mathcal{H}, \psi, T) & :=\left(\mathcal{H}, \psi \circ f^{\natural}, T\right) & j=1 \\
f_{*}\left(\mathcal{H}_{0}, \psi_{0}, \mathcal{H}_{1}, \psi_{1}, T\right) & :=\left(\mathcal{H}_{0}, \psi_{0} \circ f^{\natural}, \mathcal{H}_{1}, \psi_{1} \circ f^{\natural}, T\right) & j=0
\end{aligned}
$$

Theorem (PB and R.Douglas and M. Taylor, PB and N. Higson and T. Schick)

Let X be a finite CW complex.
Then for $j=0,1$ the natural map of abelian groups

$$
K_{j}(X) \rightarrow K K^{j}(C(X), \mathbb{C})
$$

is an isomorphism.

For $j=0,1$ the natural map of abelian groups

$$
K_{j}(X) \rightarrow K K^{j}(C(X), \mathbb{C})
$$

is $(M, E, \varphi) \mapsto \varphi_{*}\left[D_{E}\right]$
where
(1) D_{E} is the Dirac operator of M tensored with E.
(2) $\left[D_{E}\right] \in K K^{j}(C(M), \mathbb{C})$ is the element in the Kasparov K-homology of M determined by D_{E}.
(3) $\varphi_{*}: K K^{j}(C(M), \mathbb{C}) \rightarrow K K^{j}(C(X), \mathbb{C})$ is the homomorphism of abelian groups determined by $\varphi: M \rightarrow X$.

Let (M, E, φ) be a K-cycle on X, with M even-dimensional.

$$
D_{E}: C^{\infty}\left(M, \mathcal{S}^{+} \otimes E\right) \longrightarrow C^{\infty}\left(M, \mathcal{S}^{-} \otimes E\right)
$$

Set $\mathcal{H}_{0}=L^{2}\left(M, \mathcal{S}^{+} \otimes E\right) \quad \mathcal{H}_{1}=L^{2}\left(M, \mathcal{S}^{-} \otimes E\right)$
For $j=0,1$ define $\psi_{j}: C(M) \rightarrow \mathcal{L}\left(\mathcal{H}_{j}\right)$ by :

$$
\alpha \mapsto \mathcal{M}_{\alpha} \quad \alpha \in C(M)
$$

where \mathcal{M}_{α} is the multiplication operator

$$
\mathcal{M}_{\alpha}(u)=\alpha u \quad(\alpha u)(p)=\alpha(p) u(p) \quad \alpha \in C(M), u \in \mathcal{H}_{j}, p \in M
$$

Set $T=D_{E}\left(I+D_{E}^{*} D_{E}\right)^{-1 / 2} \quad$ Then :

$$
\left(\mathcal{H}_{0}, \psi_{0}, \mathcal{H}_{1}, \psi_{1}, T\right) \in K K^{0}(C(M), \mathbb{C})
$$

and

$$
\varphi_{*}\left(\mathcal{H}_{0}, \psi_{0}, \mathcal{H}_{1}, \psi_{1}, T\right) \in K K^{0}(C(X), \mathbb{C})
$$

$$
\begin{aligned}
& \varphi_{*}\left(\mathcal{H}_{0}, \psi_{0}, \mathcal{H}_{1}, \psi_{1}, T\right):=\left(\mathcal{H}_{0}, \psi_{0} \circ \varphi^{\natural}, \mathcal{H}_{1}, \psi_{1} \circ \varphi^{\natural}, T\right) \\
& \varphi^{\natural}: C(M) \leftarrow C(X) \quad \varphi^{\natural}(\gamma):=\gamma \circ \varphi \quad \gamma \in C(X)
\end{aligned}
$$

Let (M, E, φ) be a K-cycle on X, with M odd-dimensional.

$$
D_{E}: C^{\infty}(M, \mathcal{S} \otimes E) \longrightarrow C^{\infty}(M, \mathcal{S} \otimes E)
$$

Set $\mathcal{H}=L^{2}(M, \mathcal{S} \otimes E)$
Define $\psi: C(M) \rightarrow \mathcal{L}(\mathcal{H})$ by :

$$
\alpha \mapsto \mathcal{M}_{\alpha} \quad \alpha \in C(M)
$$

where \mathcal{M}_{α} is the multiplication operator

$$
\mathcal{M}_{\alpha}(u)=\alpha u \quad(\alpha u)(p)=\alpha(p) u(p) \quad \alpha \in C(M), u \in \mathcal{H}, p \in M
$$

Set $T=D_{E}\left(I+D_{E}^{*} D_{E}\right)^{-1 / 2} \quad$ Then :

$$
(\mathcal{H}, \psi, T) \in K K^{1}(C(M), \mathbb{C})
$$

and

$$
\varphi_{*}(\mathcal{H}, \psi, T) \in K K^{1}(C(X), \mathbb{C})
$$

$$
\begin{aligned}
& \varphi_{*}(\mathcal{H}, \psi, T):=\left(\mathcal{H}, \psi \circ \varphi^{\natural}, T\right) \\
& \varphi^{\natural}: C(M) \leftarrow C(X) \quad \varphi^{\natural}(\gamma):=\gamma \circ \varphi \quad \gamma \in C(X)
\end{aligned}
$$

EXAMPLE. $\quad S^{1} \subset \mathbb{R}^{2}$
S^{1} with its usual Spin c structure has $\mathcal{S}=S^{1} \times \mathbb{C}$.
The Dirac operator $D: L^{2}\left(S^{1}\right) \rightarrow L^{2}\left(S^{1}\right)$ is:

$$
D=-i \frac{\partial}{\partial \theta}
$$

The functions $e^{i n \theta}$ are an orthonormal basis for $L^{2}\left(S^{1}\right)$. Each $e^{i n \theta}$ is an eigenvector of D :

$$
-i \frac{\partial}{\partial \theta}\left(e^{i n \theta}\right)=n e^{i n \theta} \quad n \in \mathbb{Z}
$$

D is an unbounded self-adjoint operaror. $D^{*}=D$.
The bounded operator $T:=D\left(I+D^{*} D\right)^{-1 / 2}$ is

$$
T\left(e^{i n \theta}\right)=\frac{n}{\sqrt{1+n^{2}}} e^{i n \theta} \quad n \in \mathbb{Z}
$$

K-cycles and string theory

K-cycles are very closely connected to the D-branes of string theory. A D-brane is a K-cycle for the twisted K-homology of space-time.

In some models, the D-branes are allowed to evolve with time. This evolution is achieved by permitting the D-branes to change by the three elementary steps. Thus the underlying charge of a D-brane (i.e. the element in the twisted K-homology of space-time determined by the D-brane) remains unchanged as the D-brane evolves.

For more, see Jonathan Rosenberg's CBMS string theory lectures. Also, see Baum-Carey-Wang paper K-cycles for twisted K-homology Journal of K-theory 12, 69-98, 2013.
Also, lectures (at Erwin Schrodinger Institute) by Bai-Ling Wang.

Comparison of $K_{*}(X)$ and $K K^{*}(C(X), \mathbb{C})$

Given some analytic data on X (i.e. an index problem) it is usually easy to construct an element in $K K^{*}(C(X), \mathbb{C})$. This does not solve the given index problem. $K K^{*}(C(X), \mathbb{C})$ does not have a simple explicitly defined chern character mapping it to $H_{*}(X ; \mathbb{Q})$.
$K_{*}(X)$ does have a simple explicitly defined chern character mapping it to $H_{*}(X ; \mathbb{Q})$.

$$
\begin{gathered}
c h: K_{j}(X) \longrightarrow \bigoplus_{l} H_{j+2 l}(X ; \mathbb{Q}) \\
(M, E, \varphi) \mapsto \varphi_{*}(\operatorname{ch}(E) \cup T d(M) \cap[M])
\end{gathered}
$$

With X a finite CW complex, suppose a datum (i.e. some analytical information) is given which then determines an element $\xi \in K K^{j}(C(X), \mathbb{C})$.

QUESTION : What does it mean to solve the index problem for ξ ?

ANSWER : It means to explicitly construct the K-cycle (M, E, φ) such that

$$
\mu(M, E, \varphi)=\xi
$$

where $\mu: K_{j}(X) \rightarrow K K^{j}(C(X), \mathbb{C})$ is the natural map of abelian groups.

Suppose that $j=0$ and that a K-cycle (M, E, φ) with

$$
\mu(M, E, \varphi)=\xi
$$

has been constructed. It then follows that for any \mathbb{C} vector bundle F on X

$$
\begin{aligned}
& \operatorname{Index}(F \otimes \xi)=\epsilon_{*}(\operatorname{ch}(F) \cap \operatorname{ch}(M, E, \varphi)) \\
& \epsilon: X \longrightarrow \cdot \quad \epsilon \text { is the map of } X \text { to a point. } \\
& \operatorname{ch}(M, E, \varphi):=\varphi_{*}(\operatorname{ch}(E) \cup \operatorname{Td}(M) \cap[M])
\end{aligned}
$$

REMARK. If the construction of the K-cycle (M, E, φ) with

$$
\mu(M, E, \varphi)=\xi
$$

has been done correctly, then it will work in the equivariant case and in the case of families of operators.

Example

General case of the Atiyah-Singer index theorem

Let X be a compact C^{∞} manifold without boundary.
X is not required to be oriented.
X is not required to be even dimensional.
On X let

$$
\delta: C^{\infty}\left(X, E_{0}\right) \longrightarrow C^{\infty}\left(X, E_{1}\right)
$$

be an elliptic differential (or pseudo-differential) operator.
Then δ determines an element

$$
[\delta] \in K K^{0}(C(X), \mathbb{C})
$$

The K-cycle on X - which solves the index problem for δ - is:

$$
\left(S\left(T X \oplus 1_{\mathbb{R}}\right), E_{\sigma}, \pi\right)
$$

$$
\left(S\left(T X \oplus 1_{\mathbb{R}}\right), E_{\sigma}, \pi\right)
$$

$S\left(T X \oplus 1_{\mathbb{R}}\right)$ is the unit sphere bundle of $T X \oplus 1_{\mathbb{R}}$.
$\pi: S\left(T X \oplus 1_{\mathbb{R}}\right) \longrightarrow X$ is the projection of $S\left(T X \oplus 1_{\mathbb{R}}\right)$ onto X.
$S\left(T X \oplus 1_{\mathbb{R}}\right)$ is even-dimensional and is a Spin^{c} manifold.
E_{σ} is the \mathbb{C} vector bundle on $S\left(T X \oplus 1_{\mathbb{R}}\right)$ obtained by doing a clutching construction using the symbol σ of δ.

$$
\mu\left(\left(S\left(T X \oplus 1_{\mathbb{R}}\right), E_{\sigma}, \pi\right)\right)=[\delta]
$$

$$
\operatorname{Index}(\delta)=\left(\operatorname{ch}\left(E_{\sigma}\right) \cup T d\left(S\left(T X \oplus 1_{\mathbb{R}}\right)\right)\right)\left[\left(S\left(T X \oplus 1_{\mathbb{R}}\right)\right]\right.
$$

which is the general Atiyah-Singer formula.

Next lecture: Tomorrow i.e. Thursday, 6 August.

Contact Manifolds

A contact manifold is an odd dimensional C^{∞} manifold X $\operatorname{dimension}(X)=2 n+1$ with a given $C^{\infty} 1$-form θ such that
$\theta(d \theta)^{n}$ is non zero at every $x \in X-i . e . \theta(d \theta)^{n}$ is a volume form for X.

Let X be a compact connected contact manifold without boundary $(\partial X=\emptyset)$.
Set dimension $(X)=2 n+1$.
Let r be a positive integer and let $\gamma: X \longrightarrow M(r, \mathbb{C})$ be a C^{∞} map.
$M(r, \mathbb{C}):=\{r \times r$ matrices of complex numbers $\}$.
Assume: For each $x \in X$,
$\{$ Eigenvalues of $\gamma(x)\} \cap\{\ldots,-n-4,-n-2,-n, n, n+2, n+4, \ldots\}=\emptyset$
i.e. $\forall x \in X$,
$\lambda \in\{\ldots-n-4,-n-2,-n, n, n+2, n+4, \ldots\} \Longrightarrow \lambda I_{r}-\gamma(x) \in G L(r, \mathbb{C})$
$\gamma: X \longrightarrow M(r, \mathbb{C})$
Are assuming : $\forall x \in X$,
$\lambda \in\{\ldots-n-4,-n-2,-n, n, n+2, n+4, \ldots\} \Longrightarrow \lambda I_{r}-\gamma(x) \in G L(r, \mathbb{C})$
Associated to γ is a differential operator P_{γ} which is hypoelliptic and Fredholm.

$$
P_{\gamma}: C^{\infty}\left(X, X \times \mathbb{C}^{r}\right) \longrightarrow C^{\infty}\left(X, X \times \mathbb{C}^{r}\right)
$$

P_{γ} is constructed as follows.

The sub-Laplacian Δ_{H}

Let H be the null-space of θ.

$$
H=\{v \in T X \mid \theta(v)=0\}
$$

H is a C^{∞} sub vector bundle of $T X$ with

$$
\text { For all } x \in X, \operatorname{dim}_{\mathbb{R}}\left(H_{x}\right)=2 n
$$

The sub-Laplacian

$$
\Delta_{H}: C^{\infty}(X) \rightarrow C^{\infty}(X)
$$

is locally $-W_{1}^{2}-W_{2}^{2}-\cdots-W_{2 n}^{2}$
where $W_{1}, W_{2}, \ldots, W_{2 n}$ is a locally defined C^{∞} orthonormal frame for H. These locally defined operators are then patched together using a C^{∞} partition of unity to give the sub-Laplacian Δ_{H}.

The Reeb vector field

The Reeb vector field is the unique C^{∞} vector field W on X with :

$$
\theta(W)=1 \text { and } \forall v \in T X, d \theta(W, v)=0
$$

Let

$$
\gamma: X \longrightarrow M(r, \mathbb{C})
$$

be as above, $P_{\gamma}: C^{\infty}\left(X, X \times \mathbb{C}^{r}\right) \rightarrow C^{\infty}\left(X, X \times \mathbb{C}^{r}\right)$ is defined:
$P_{\gamma}=i \gamma\left(W \otimes I_{r}\right)+\left(\Delta_{H}\right) \otimes I_{r} \quad I_{r}=r \times r$ identity matrix $\quad i=\sqrt{-1}$
P_{γ} is a differential operator (of order 2) and is hypoelliptic but not elliptic.

These operators P_{γ} have been studied by :

- R.Beals and P.Greiner Calculus on Heisenberg Manifolds Annals of Math. Studies 119 (1988).
- C.Epstein and R.Melrose.
- E. van ErpThe Atiyah-Singer index formula for subelliptic operators on contact manifolds. Part 1 and Part 2 Annals of Math. 171(2010).

A class of operators with somewhat similar analytic and topological properties has been studied by A. Connes and H. Moscovici. M. Hilsum and G. Skandalis.

Set $T_{\gamma}=P_{\gamma}\left(I+P_{\gamma}^{*} P_{\gamma}\right)^{-1 / 2}$.
Let $\psi: C(X) \rightarrow \mathcal{L}\left(L^{2}(X) \otimes_{\mathbb{C}} \mathbb{C}^{r}\right)$ be

$$
\psi(\alpha)\left(u_{1}, u_{2}, \ldots, u_{r}\right)=\left(\alpha u_{1}, \alpha u_{2}, \ldots, \alpha u_{r}\right)
$$

where for $x \in X$ and $u \in L^{2}(X),(\alpha u)(x)=\alpha(x) u(x)$

$$
\alpha \in C(X) \quad u \in L^{2}(X)
$$

Then

$$
\left(L^{2}(X) \otimes_{\mathbb{C}} \mathbb{C}^{r}, \psi, L^{2}(X) \otimes_{\mathbb{C}} \mathbb{C}^{r}, \psi, T_{\gamma}\right) \in K K^{0}(C(X), \mathbb{C})
$$

Denote this element of $K K^{0}(C(X), \mathbb{C})$ by $\left[P_{\gamma}\right]$.

$$
\left[P_{\gamma}\right] \in K K^{0}(C(X), \mathbb{C})
$$

$$
\left[P_{\gamma}\right] \in K K^{0}(C(X), \mathbb{C})
$$

QUESTION.What is the K -cycle that solves the index problem for $\left[P_{\gamma}\right]$? ANSWER. To construct this K-cycle, first recall that the given 1-form θ which makes X a contact manifold also makes X a stably almost complex manifold :

$$
\text { (contact) } \Longrightarrow \text { (stably almost complex) }
$$

$($ contact $) \Longrightarrow($ stably almost complex $)$

Let θ, H, and W be as above. Then :

- $T X=H \oplus 1_{\mathbb{R}}$ where $1_{\mathbb{R}}$ is the (trivial) \mathbb{R} line bundle spanned by W.
- A morphism of $C^{\infty} \mathbb{R}$ vector bundles $J: H \rightarrow H$ can be chosen with $J^{2}=-I$ and $\forall x \in X$ and $u, v \in H_{x}$

$$
d \theta(J u, J v)=d \theta(u, v) \quad d \theta(J u, u) \geq 0
$$

- J is unique up to homotopy.

$($ contact $) \Longrightarrow($ stably almost complex $)$

$J: H \rightarrow H$ is unique up to homotopy.
Once J has been chosen :

H is a $C^{\infty} \mathbb{C}$ vector bundle on X . \Downarrow

$T X \oplus 1_{\mathbb{R}}=H \oplus 1_{\mathbb{R}} \oplus 1_{\mathbb{R}}=H \oplus 1_{\mathbb{C}}$ is a $C^{\infty} \mathbb{C}$ vector bundle on X. \Downarrow

$$
X \times S^{1} \text { is an almost complex manifold. }
$$

REMARK. An almost complex manifold is a \mathbb{C}^{∞} manifold Ω with a given morphism $\zeta: T \Omega \rightarrow T \Omega$ of $C^{\infty} \mathbb{R}$ vector bundles on Ω such that

$$
\zeta \circ \zeta=-I
$$

The conjugate almost complex manifold is Ω with ζ replaced by $-\zeta$.

NOTATION. As above $X \times S^{1}$ is an almost complex manifold, $\overline{X \times S^{1}}$ denotes the conjugate almost complex manifold.

Since (almost complex) $\Longrightarrow\left(\right.$ Spin $\left.^{c}\right)$, the disjoint union $X \times S^{1} \sqcup \overline{X \times S^{1}}$ can be viewed as a Spin c manifold.

Let

$$
\pi: X \times S^{1} \sqcup \overline{X \times S^{1}} \longrightarrow X
$$

be the evident projection of $X \times S^{1} \sqcup \overline{X \times S^{1}}$ onto X. i.e.

$$
\pi(x, \lambda)=x \quad(x, \lambda) \in X \times S^{1} \sqcup \overline{X \times S^{1}}
$$

The solution K-cycle for $\left[P_{\gamma}\right]$ is $\left(X \times S^{1} \sqcup \overline{X \times S^{1}}, E_{\gamma}, \pi\right)$
$E_{\gamma}=\left(\bigoplus_{j=0}^{j=N} L(\gamma, n+2 j) \otimes \pi^{*} \operatorname{Sym}^{j}(H)\right) \bigsqcup\left(\bigoplus_{j=0}^{j=N} L(\gamma,-n-2 j) \otimes \pi^{*} \operatorname{Sym}^{j}\left(H^{*}\right)\right)$
(1) "Sym" is " j -th symmetric power".
(2) H^{*} is the dual vector bundle of H.

- N is any positive integer such that : $n+2 N>\sup \{\|\gamma(x)\|, x \in X\}$.
(0) $L(\gamma, n+2 j)$ is the \mathbb{C} vector bundle on $X \times S^{1}$ obtained by doing a clutching construction using $(n+2 j) I_{r}-\gamma: X \rightarrow G L(r, \mathbb{C})$.
- Similarly, $L(\gamma,-n-2 j)$ is obtained by doing a clutching construction using $(-n-2 j) I_{r}-\gamma: X \rightarrow G L(r, \mathbb{C})$.

Restriction of E_{γ} to $X \times S^{1}$

Let N be any positive integer such that:

$$
n+2 N>\sup \{\|\gamma(x)\|, x \in X\}
$$

The restriction of E_{γ} to $X \times S^{1}$ is:

$$
E_{\gamma} \mid X \times S^{1}=\bigoplus_{j=0}^{j=N} L(\gamma, n+2 j) \otimes \pi^{*} \operatorname{Sym}^{j}(H)
$$

Restriction of E_{γ} to $\overline{X \times S^{1}}$

The restriction of E_{γ} to $\overline{X \times S^{1}}$ is:

$$
E_{\gamma} \mid \overline{X \times S^{1}}=\bigoplus_{j=0}^{j=N} L(\gamma,-n-2 j) \otimes \pi^{*} \operatorname{Sym}^{j}\left(H^{*}\right)
$$

Here H^{*} is the dual vector bundle of H :

$$
H_{x}^{*}=\operatorname{Hom}_{\mathbb{C}}\left(H_{x}, \mathbb{C}\right) \quad x \in X
$$

$E_{\gamma}=\left(\bigoplus_{j=0}^{j=N} L(\gamma, n+2 j) \otimes \pi^{*} \operatorname{Sym}^{j}(H)\right) \bigsqcup\left(\bigoplus_{j=0}^{j=N} L(\gamma,-n-2 j) \otimes \pi^{*} \operatorname{Sym}^{j}\left(H^{*}\right)\right)$

Theorem (PB and Erik van Erp)

$$
\mu\left(X \times S^{1} \sqcup \overline{X \times S^{1}}, E_{\gamma}, \pi\right)=\left[P_{\gamma}\right]
$$

