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Five lectures:

1. Dirac operatorX

2. Atiyah-Singer revisitedX

3. What is K-homology?

4. Beyond ellipticity

5. The Riemann-Roch theorem
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Define a homomorphism of abelian groups

K0(·) −→ Q
(M,E) 7−→

(
ch(E) ∪ Td(M)

)
[M ]

where ch(E) is the Chern character of E and Td(M) is the Todd class of
M .

ch(E) ∈ H∗(M,Q) and Td(M) ∈ H∗(M,Q).

[M ] is the orientation cycle of M . [M ] ∈ H∗(M,Z).
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Bott periodicity implies that

K0(·) −→ Z
(M,E) 7−→ Index(DE)

is an isomorphism. Hence to prove that these two homomorphisms are
equal, it suffices to check one example with Index(M,E) = 1.
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Let X be a compact C∞ manifold without boundary.
X is not required to be oriented.
X is not required to be even dimensional.
On X let

δ : C∞(X,E0) −→ C∞(X,E1)

be an elliptic differential (or pseudo-differential) operator. Then:

(S(T ∗X ⊕ 1R), Eσ) ∈ K0(·)

and
Index(DEσ) = Index(δ).
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(S(T ∗X ⊕ 1R), Eσ) ∈ K0(·) and Index(DEσ) = Index(δ)ww�
Index(δ) = (ch(Eσ) ∪ Td(S(T ∗X ⊕ 1R)))[S(T ∗X ⊕ 1R)]

and this is the general Atiyah-Singer formula.

S(T ∗X ⊕ 1R) is the unit sphere bundle of T ∗X ⊕ 1R.
S(T ∗X ⊕ 1R) is even dimensional and is — in a natural way — a Spinc

manifold.

Eσ is the C vector bundle on S(T ∗X ⊕ 1R) obtained by doing a clutching
construction using the (principal) symbol σ of δ.
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FACT:
If M is any closed odd-dimensional C∞ manifold and δ is any elliptic
differential operator on M , then

Index(δ) = 0

QUESTION :
What are the examples on odd-dimensional closed C∞ manifolds for the
Atiyah-Singer index theorem?

“closed” = “compact without boundary”
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Let M be a closed odd-dimensional Spinc manifold.
The Dirac operator D of M

D : C∞(M,S) −→ C∞(M,S)

is a symmetric operator which has a unique self-adjoint extension, and
thus can be viewed as a self-adjoint unbounded operator on the Hilbert
space L2(M,S).

The spectrum of D consists of real numbers λ1, λ2, λ3, . . .
Each λj is an isolated point in the spectrum.
Each λj is an eigenvalue whose eigenspace E(λj) is finite-dimensional
and is contained in C∞(M,S).

E(λj) ⊂ C∞(M,S)

dimCE(λj) <∞
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Let L2
+(M,S) (L2

−(M,S)) be the sub Hilbert space of L2(M,S)
spanned by the E(λj) with λj ≥ 0 (λj < 0).

The Hilbert space L2(M,S) is then the direct sum :

L2(M,S) = L2
+(M,S)⊕ L2

−(M,S)

Let f : M → C be a C∞ function. The multiplication operator

Mf : L2(M,S)→ L2(M,S)

is

Mf (s) = fs (fs)(p) = f(p)s(p) s ∈ L2(M,S) p ∈M
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f : M → C
The Toeplitz operator Tf associated to f

Tf : L2
+(M,S)→ L2

+(M,S)

is the compression of Mf to L2
+(M,S) i.e. Tf is the composition

Tf : L2
+(M,S)

Mf−→ L2(M,S)
P−→ L2

+(M,S)

where P : L2(M,S)→ L2
+(M,S) is the Hilbert space projection.
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f : M → C L2(M,S) = L2
+(M,S)⊕ L2

−(M,S)

Let Df : L2(M,S)→ L2(M,S) be Tf ⊕ I.

i.e. Df : L2(M,S)→ L2(M,S) is

Df (s1 + s2) := Tf (s1) + s2 s1 ∈ L2
+(M,S) s2 ∈ L2

−(M,S)

Df is a pseudo-differential operator of order zero.
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Let n be any positive integer. Given a C∞ map

α : M → GL(n,C)

view α as an n× n matrix α = [αi,j ]
where each αi,j is a C∞ function on M .

αi,j : M → C

Consider the operator Dα := [Dαi,j ]

Dα : L2(M,S)⊕n → L2(M,S)⊕n
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Dα is an elliptic pseudo-differential operator of order zero.

The Atiyah-Singer formula for Index(Dα) is :

Index(Dα) = (ch(α) ∪ Td(M))[M ]

ch(α) =
∑
j≥0

Tr

((
α−1dα

−2πi

)2j+1
)
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Equivariant case of Atiyah-Singer

Families case of Atiyah-Singer

Proof of equivariant case and proof of families case :

Step 1. Dirac case via Bott periodicity.

Step 2. General case reduces to the Dirac case via a finite sequence of
index-preserving moves.
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Let G be a compact Lie group.

Definition

Define an abelian group, denoted KG
0 (·), by considering pairs (M,E) such

that:

1 M is a closed even-dimensional C∞ manifold with a given C∞ action
of G. G×M →M .

2 A G-equivariant Spinc structure for M is given.

3 E is a C∞ G-equivariant C vector bundle on M .

“closed” = “compact without boundary”
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Set KG
0 (·) = {(M,E)}/ ∼ where the the equivalence relation ∼

is generated by the three elementary steps :

bordism, direct sum-disjoint union, vector bundle modification.

Addition in KG
0 (·) is disjoint union.

KG
0 (·) is an R(G) module.

V · (M,E) := (M, (M × V )⊗ E)

Notation. R(G) is the representation ring of the compact Lie group G.
V is a finite-dimensional representation of G. dimC(V ) <∞.
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Equivariant Bott periodicity implies that

KG
0 (·) −→ R(G)

(M,E) 7−→ Index(DE)

is an isomorphism of R(G) modules.

For general equivariant case of Atiyah-Singer, consider

(S(T ∗X ⊕ 1R), Eσ) ∈ KG
0 (·)

and use a finite sequence of index-preserving moves.
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K-homology in algebraic geometry

Let X be a (possibly singular) projective algebraic variety / C.

Grothendieck defined two abelian groups:

K0
alg(X) = Grothendieck group of algebraic vector bundles on X.

Kalg
0 (X) = Grothendieck group of coherent algebraic sheaves on X.

K0
alg(X) = the algebraic geometry K-theory of X (contravariant).

Kalg
0 (X) = the algebraic geometry K-homology of X (covariant).
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K-homology in topology

Problem

How can K-homology be taken from algebraic geometry to topology?
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K-homology is the dual theory to K-theory. There are three ways in which
K-homology in topology has been defined:

Homotopy Theory K-theory is the cohomology theory and
K-homology is the homology theory determined by the Bott
(i.e. K-theory) spectrum.
This is the spectrum . . . ,Z×BU,U,Z×BU,U, . . .

K-Cycles K-homology is the group of K-cycles.

C∗-algebras K-homology is the Atiyah-BDF-Kasparov
group KK∗(A,C).

Paul Baum (Penn State) WHAT IS K-HOMOLOGY ? 5 August, 2015 20 / 70



Let X be a finite CW complex.
The three versions of K-homology are isomorphic.

Khomotopy
j (X)

−→
←−

Kj(X) −→ KKj(C(X),C)

homotopy theory K-cycles Atiyah-BDF-Kasparov

j = 0, 1
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Cycles for K-homology

Let X be a CW complex.

Definition

A K-cycle on X is a triple (M,E,ϕ) such that :

1 M is a compact Spinc manifold without boundary.

2 E is a C vector bundle on M .

3 ϕ : M → X is a continuous map from M to X.
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Set K∗(X) = {(M,E,ϕ)}/ ∼ where the equivalence relation ∼
is generated by the three elementary steps

Bordism

Direct sum - disjoint union

Vector bundle modification
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Isomorphism (M,E,ϕ) is isomorphic to (M ′, E′, ϕ′) iff ∃ a
diffeomorphism

ψ : M →M ′

preserving the Spinc-structures on M,M ′ and with

ψ∗(E′) ∼= E

and commutativity in the diagram

M
ψ //

ϕ   

M ′

ϕ′
}}

X
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Bordism (M0, E0, ϕ0) is bordant to (M1, E1, ϕ1) iff ∃ (Ω, E, ϕ) such
that:

1 Ω is a compact Spinc manifold with boundary.

2 E is C vector bundle on Ω.

3 (∂Ω, E|∂Ω, ϕ|∂Ω) ∼= (M0, E0, ϕ0) t (−M1, E1, ϕ1)

−M1 is M1 with the Spinc structure reversed.
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(M0, E0, ϕ0) (−M1, E1, ϕ1)

X
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Direct sum - disjoint union

Let E,E′ be two C vector bundles on M

(M,E,ϕ) t (M,E′, ϕ) ∼ (M,E ⊕ E′, ϕ)
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Vector bundle modification

(M,E,ϕ)

Let F be a Spinc vector bundle on M

Assume that
dimR(Fp) ≡ 0 mod 2 p ∈M

for every fiber Fp of F

1R = M × R

S(F ⊕ 1R) := unit sphere bundle of F ⊕ 1R

(M,E,ϕ) ∼ (S(F ⊕ 1R), β ⊗ π∗E,ϕ ◦ π)
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S(F ⊕ 1R)

π

��
M

This is a fibration with even-dimensional spheres as fibers.

F ⊕ 1R is a Spinc vector bundle on M with odd-dimensional fibers. Let Σ
be the spinor bundle for F ⊕ 1

CliffC(Fp ⊕ R)⊗ Σp → Σp

π∗Σ = β ⊕ β−
(M,E,ϕ) ∼ (S(F ⊕ 1R), β ⊗ π∗E,ϕ ◦ π)
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{(M,E,ϕ)}/ ∼= K0(X)⊕K1(X)

Kj(X) =

subgroup of {(M,E,ϕ)}/ ∼
consisting of all (M,E,ϕ) such that
every connected component of M
has dimension ≡ j mod 2 j = 0, 1

Paul Baum (Penn State) WHAT IS K-HOMOLOGY ? 5 August, 2015 30 / 70



Addition in Kj(X) is disjoint union.

(M,E,ϕ) + (M ′, E′, ϕ′) = (M tM ′, E t E′, ϕ t ϕ′)

Additive inverse of (M,E,ϕ) is obtained by reversing the Spinc structure
of M .

−(M,E,ϕ) = (−M,E,ϕ)
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Let X,Y be CW complexes and let f : X → Y be a continuous map.

Then f∗ : Kj(X)→ Kj(Y ) is

f∗(M,E,ϕ) := (M,E, f ◦ ϕ)
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Atiyah-BDF-Kasparov K-homology

Reference. M.F. Atiyah, Global Theory of Elliptic Operators,
Proc. Int. Conf. on Functional Analysis and Related Topics
(Tokyo, 1969), University of Tokyo Press (1970).
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Atiyah-BDF-Kasparov K-homology

M.F. Atiyah Brown-Douglas-Fillmore G.Kasparov
Let X be a finite CW complex.
C(X) = {α : X → C | α is continuous}
L(H) = {bounded operators T : H → H}
Any element in the Atiyah-BDF-Kasparov K-homology
group KK0(C(X),C)
is given by a 5-tuple (H0, ψ0,H1, ψ1, T ) such that :
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H0 and H1 are separable Hilbert spaces.

ψ0 : C(X) −→ L(H0) and ψ1 : C(X) −→ L(H1)
are unital ∗-homomorphisms.

T : H0 −→ H1 is a (bounded) Fredholm operator.

For every α ∈ C(X) the commutator T ◦ ψ0(α)− ψ1(α) ◦ T
∈ L(H0,H1) is compact.

KK0(C(X),C) := {(H0, ψ0,H1, ψ1, T )}/ ∼
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KK0(C(X),C) := {(H0, ψ0,H1, ψ1, T )}/ ∼

(H0, ψ0,H1, ψ1, T ) + (H′0, ψ′0,H′1, ψ′1, T ′) =
(H0 ⊕H′0, ψ0 ⊕ ψ′0,H1 ⊕H′1, ψ1 ⊕ ψ′1, T ⊕ T ′)

−(H0, ψ0,H1, ψ1, T ) = (H1, ψ1,H0, ψ0, T
∗)
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Let X be a finite CW complex.
Any element in the Atiyah-BDF-Kasparov K-homology
group KK1(C(X),C)
is given by a 3-tuple (H, ψ, T ) such that :

H is a separable Hilbert space.

ψ : C(X) −→ L(H) is a unital ∗-homomorphism.

T : H −→ H is a (bounded) self-adjoint Fredholm operator.

For every α ∈ C(X) the commutator T ◦ ψ(α)− ψ(α) ◦ T ∈ L(H)
is compact.
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KK1(C(X),C) := {(H, ψ, T )}/ ∼

(H, ψ, T ) + (H′, ψ′, T ′) = (H⊕H′, ψ ⊕ ψ′, T ⊕ T ′)

−(H, ψ, T ) = (H, ψ,−T )
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Let X,Y be CW complexes and let f : X → Y be a continuous map.

Denote by f \ : C(X)← C(Y ) the ∗-homomorphism

f \(α) := α ◦ f α ∈ C(Y )

Then f∗ : KKj(C(X),C)→ KKj(C(Y ),C) is

f∗(H, ψ, T ) := (H, ψ ◦ f \, T ) j = 1

f∗(H0, ψ0,H1, ψ1, T ) := (H0, ψ0 ◦ f \,H1, ψ1 ◦ f \, T ) j = 0
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Theorem (PB and R.Douglas and M.Taylor, PB and N. Higson and
T. Schick)

Let X be a finite CW complex.

Then for j = 0, 1 the natural map of abelian groups

Kj(X)→ KKj(C(X),C)

is an isomorphism.
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For j = 0, 1 the natural map of abelian groups

Kj(X)→ KKj(C(X),C)

is (M,E,ϕ) 7→ ϕ∗[DE ]

where

1 DE is the Dirac operator of M tensored with E.

2 [DE ] ∈ KKj(C(M),C) is the element in the
Kasparov K-homology of M determined by DE .

3 ϕ∗ : KKj(C(M),C)→ KKj(C(X),C) is the homomorphism of
abelian groups determined by ϕ : M → X.
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Let (M,E,ϕ) be a K-cycle on X, with M even-dimensional.

DE : C∞(M,S+ ⊗ E) −→ C∞(M,S− ⊗ E)

Set H0 = L2(M,S+ ⊗ E) H1 = L2(M,S− ⊗ E)

For j = 0, 1 define ψj : C(M)→ L(Hj) by :

α 7→ Mα α ∈ C(M)

where Mα is the multiplication operator

Mα(u) = αu (αu)(p) = α(p)u(p) α ∈ C(M), u ∈ Hj , p ∈M
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Set T = DE(I +D∗EDE)−1/2 Then :

(H0, ψ0,H1, ψ1, T ) ∈ KK0(C(M),C)

and
ϕ∗(H0, ψ0,H1, ψ1, T ) ∈ KK0(C(X),C)

ϕ∗(H0, ψ0,H1, ψ1, T ) := (H0, ψ0 ◦ ϕ\,H1, ψ1 ◦ ϕ\, T )

ϕ\ : C(M)← C(X) ϕ\(γ) := γ ◦ ϕ γ ∈ C(X)
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Let (M,E,ϕ) be a K-cycle on X, with M odd-dimensional.

DE : C∞(M,S ⊗ E) −→ C∞(M,S ⊗ E)

Set H = L2(M,S ⊗ E)

Define ψ : C(M)→ L(H) by :

α 7→ Mα α ∈ C(M)

where Mα is the multiplication operator

Mα(u) = αu (αu)(p) = α(p)u(p) α ∈ C(M), u ∈ H , p ∈M
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Set T = DE(I +D∗EDE)−1/2 Then :

(H, ψ, T ) ∈ KK1(C(M),C)

and
ϕ∗(H, ψ, T ) ∈ KK1(C(X),C)

ϕ∗(H, ψ, T ) := (H, ψ ◦ ϕ\, T )

ϕ\ : C(M)← C(X) ϕ\(γ) := γ ◦ ϕ γ ∈ C(X)
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EXAMPLE. S1 ⊂ R2

S1 with its usual Spinc structure has S = S1 × C.
The Dirac operator D : L2(S1)→ L2(S1) is:

D = −i ∂
∂θ

The functions einθ are an orthonormal basis for L2(S1).
Each einθ is an eigenvector of D :

−i ∂
∂θ

(einθ) = neinθ n ∈ Z

D is an unbounded self-adjoint operaror. D∗ = D.
The bounded operator T := D(I +D∗D)−1/2 is

T (einθ) =
n√

1 + n2
einθ n ∈ Z
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K-cycles and string theory

K-cycles are very closely connected to the D-branes of string theory.
A D-brane is a K-cycle for the twisted K-homology of space-time.

In some models, the D-branes are allowed to evolve with time. This
evolution is achieved by permitting the D-branes to change by the three
elementary steps. Thus the underlying charge of a D-brane (i.e. the
element in the twisted K-homology of space-time determined by the
D-brane) remains unchanged as the D-brane evolves.

For more, see Jonathan Rosenberg’s CBMS string theory lectures.
Also, see Baum-Carey-Wang paper K-cycles for twisted K-homology
Journal of K-theory 12, 69-98, 2013.
Also, lectures (at Erwin Schrodinger Institute) by Bai-Ling Wang.
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Comparison of K∗(X) and KK∗(C(X),C)

Given some analytic data on X (i.e. an index problem) it is usually easy to
construct an element in KK∗(C(X),C). This does not solve the given
index problem.KK∗(C(X),C) does not have a simple explicitly defined
chern character mapping it to H∗(X;Q).

K∗(X) does have a simple explicitly defined chern character mapping it to
H∗(X;Q).

ch : Kj(X) −→
⊕
l

Hj+2l(X;Q)

(M,E,ϕ) 7→ ϕ∗(ch(E) ∪ Td(M) ∩ [M ])
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With X a finite CW complex, suppose a datum (i.e. some analytical
information) is given which then determines an element
ξ ∈ KKj(C(X),C).

QUESTION : What does it mean to solve the index problem for ξ?

ANSWER : It means to explicitly construct the K-cycle (M,E,ϕ) such
that

µ(M,E,ϕ) = ξ

where µ : Kj(X)→ KKj(C(X),C) is the natural map of abelian groups.
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Suppose that j = 0 and that a K-cycle (M,E,ϕ) with

µ(M,E,ϕ) = ξ

has been constructed. It then follows that for any C vector bundle F on X

Index(F ⊗ ξ) = ε∗(ch(F ) ∩ ch(M,E,ϕ))

ε : X −→ · ε is the map of X to a point.

ch(M,E,ϕ) := ϕ∗(ch(E) ∪ Td(M) ∩ [M ])

Paul Baum (Penn State) WHAT IS K-HOMOLOGY ? 5 August, 2015 50 / 70



REMARK. If the construction of the K-cycle (M,E,ϕ) with

µ(M,E,ϕ) = ξ

has been done correctly, then it will work in the equivariant case and in the
case of families of operators.
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Example

General case of the Atiyah-Singer index theorem

Let X be a compact C∞ manifold without boundary.
X is not required to be oriented.
X is not required to be even dimensional.
On X let

δ : C∞(X,E0) −→ C∞(X,E1)

be an elliptic differential (or pseudo-differential) operator.
Then δ determines an element

[δ] ∈ KK0(C(X),C)

The K-cycle on X – which solves the index problem for δ – is:

(S(TX ⊕ 1R), Eσ, π).
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(S(TX ⊕ 1R), Eσ, π)

S(TX ⊕ 1R) is the unit sphere bundle of TX ⊕ 1R.

π : S(TX ⊕ 1R) −→ X is the projection of S(TX ⊕ 1R) onto X.

S(TX ⊕ 1R) is even-dimensional and is a Spinc manifold.

Eσ is the C vector bundle on S(TX ⊕ 1R) obtained by doing a clutching
construction using the symbol σ of δ.

µ((S(TX ⊕ 1R), Eσ, π)) = [δ]ww�
Index(δ) = (ch(Eσ) ∪ Td(S(TX ⊕ 1R)))[(S(TX ⊕ 1R)]

which is the general Atiyah-Singer formula.
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Next lecture : Tomorrow i.e. Thursday, 6 August.
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Contact Manifolds

A contact manifold is an odd dimensional C∞ manifold X
dimension(X) = 2n+ 1
with a given C∞ 1-form θ such that

θ(dθ)n is non zero at every x ∈ X − i.e. θ(dθ)n is a volume form for X.
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Let X be a compact connected contact manifold without boundary
(∂X = ∅).
Set dimension(X) = 2n+ 1.
Let r be a positive integer and let γ : X −→M(r,C) be a C∞ map.
M(r,C):= {r×r matrices of complex numbers}.

Assume: For each x ∈ X,
{Eigenvalues of γ(x)} ∩ {. . . ,−n− 4,−n− 2,−n, n, n+ 2, n+ 4, . . .} = ∅
i.e. ∀x ∈ X,
λ ∈ {. . .−n−4,−n−2,−n, n, n+2, n+4, . . .} =⇒ λIr−γ(x) ∈ GL(r,C)
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γ : X −→M(r,C)
Are assuming : ∀x ∈ X,
λ ∈ {. . .−n−4,−n−2,−n, n, n+2, n+4, . . .} =⇒ λIr−γ(x) ∈ GL(r,C)

Associated to γ is a differential operator Pγ which is hypoelliptic and
Fredholm.

Pγ : C∞(X,X × Cr) −→ C∞(X,X × Cr)

Pγ is constructed as follows.
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The sub-Laplacian ∆H

Let H be the null-space of θ.

H = {v ∈ TX | θ(v) = 0}

H is a C∞ sub vector bundle of TX with

For all x ∈ X,dimR(Hx) = 2n

The sub-Laplacian
∆H : C∞(X)→ C∞(X)

is locally −W 2
1 −W 2

2 − · · · −W 2
2n

where W1,W2, . . . ,W2n is a locally defined C∞ orthonormal frame for H.
These locally defined operators are then patched together using a C∞

partition of unity to give the sub-Laplacian ∆H .
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The Reeb vector field

The Reeb vector field is the unique C∞ vector field W on X with :

θ(W ) = 1 and ∀v ∈ TX, dθ(W, v) = 0

Let
γ : X −→M(r,C)

be as above, Pγ : C∞(X,X × Cr)→ C∞(X,X × Cr) is defined:

Pγ = iγ(W ⊗Ir)+(∆H)⊗Ir Ir = r×r identity matrix i =
√
−1

Pγ is a differential operator (of order 2) and is hypoelliptic but not elliptic.
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These operators Pγ have been studied by :

R.Beals and P.Greiner Calculus on Heisenberg Manifolds Annals of
Math. Studies 119 (1988).

C.Epstein and R.Melrose.

E. van ErpThe Atiyah-Singer index formula for subelliptic operators
on contact manifolds. Part 1 and Part 2 Annals of Math. 171(2010).

A class of operators with somewhat similar analytic and topological
properties has been studied by A. Connes and H. Moscovici.
M. Hilsum and G. Skandalis.
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Set Tγ = Pγ(I + P ∗γPγ)−1/2.

Let ψ : C(X)→ L(L2(X)⊗C Cr) be

ψ(α)(u1, u2, . . . , ur) = (αu1, αu2, . . . , αur)

where for x ∈ X and u ∈ L2(X), (αu)(x) = α(x)u(x)

α ∈ C(X) u ∈ L2(X)

Then

(L2(X)⊗C Cr, ψ, L2(X)⊗C Cr, ψ, Tγ) ∈ KK0(C(X),C)

Denote this element of KK0(C(X),C) by [Pγ ].

[Pγ ] ∈ KK0(C(X),C)
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[Pγ ] ∈ KK0(C(X),C)

QUESTION.What is the K-cycle that solves the index problem for [Pγ ]?

ANSWER. To construct this K-cycle, first recall that the given 1-form
θ which makes X a contact manifold also makes X a stably almost
complex manifold :

(contact) =⇒ (stably almost complex)
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(contact) =⇒ (stably almost complex)

Let θ, H, and W be as above. Then :

TX = H ⊕ 1R where 1R is the (trivial) R line bundle spanned by W .

A morphism of C∞ R vector bundles J : H → H can be chosen with
J2 = −I and ∀x ∈ X and u, v ∈ Hx

dθ(Ju, Jv) = dθ(u, v) dθ(Ju, u) ≥ 0

J is unique up to homotopy.
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(contact) =⇒ (stably almost complex)

J : H → H is unique up to homotopy.
Once J has been chosen :

H is a C∞ C vector bundle on X.
⇓

TX ⊕ 1R = H ⊕ 1R ⊕ 1R = H ⊕ 1C is a C∞ C vector bundle on X.
⇓

X × S1 is an almost complex manifold.
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REMARK. An almost complex manifold is a C∞ manifold Ω with a given
morphism ζ : TΩ→ TΩ of C∞ R vector bundles on Ω such that

ζ ◦ ζ = −I

The conjugate almost complex manifold is Ω with ζ replaced by −ζ.

NOTATION. As above X × S1 is an almost complex manifold, X × S1

denotes the conjugate almost complex manifold.

Since (almost complex)=⇒ (Spinc), the disjoint union X × S1 tX × S1

can be viewed as a Spinc manifold.
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Let
π : X × S1 tX × S1 −→ X

be the evident projection of X × S1 tX × S1 ontoX.
i.e.

π(x, λ) = x (x, λ) ∈ X × S1 tX × S1

The solution K-cycle for [Pγ ] is (X × S1 tX × S1, Eγ , π)
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Eγ =
(j=N⊕
j=0

L(γ, n+2j)⊗π∗Symj(H)
)⊔(j=N⊕

j=0

L(γ,−n−2j)⊗π∗Symj(H∗)
)

1 “Symj” is “ j-th symmetric power”.

2 H∗ is the dual vector bundle of H.

3 N is any positive integer such that : n+ 2N > sup{||γ(x)||, x ∈ X}.
4 L(γ, n+ 2j) is the C vector bundle on X × S1 obtained by doing a

clutching construction using (n+ 2j)Ir − γ : X → GL(r,C).

5 Similarly, L(γ,−n− 2j) is obtained by doing a clutching construction
using (−n− 2j)Ir − γ : X → GL(r,C).
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Restriction of Eγ to X × S1

Let N be any positive integer such that :

n+ 2N > sup{||γ(x)||, x ∈ X}

The restriction of Eγ to X × S1 is:

Eγ | X × S1 =

j=N⊕
j=0

L(γ, n+ 2j)⊗ π∗Symj(H)
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Restriction of Eγ to X × S1

The restriction of Eγ to X × S1 is:

Eγ | X × S1 =

j=N⊕
j=0

L(γ,−n− 2j)⊗ π∗Symj(H∗)

Here H∗ is the dual vector bundle of H:

H∗x = HomC(Hx,C) x ∈ X
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Eγ =
(j=N⊕
j=0

L(γ, n+2j)⊗π∗Symj(H)
)⊔(j=N⊕

j=0

L(γ,−n−2j)⊗π∗Symj(H∗)
)

Theorem (PB and Erik van Erp)

µ(X × S1 tX × S1, Eγ , π) = [Pγ ]
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