Tata Institute of Fundamental Research is pleased to present

Some connections between representation theory and number theory

Mathematical Panorama Lectures (A National Mathematics Year Event)

Professor Benedict Gross, George Vasmer Leverett Professor of Mathematics, Harvard University will give a course of lectures (Panorama lectures) at the

Tata Institute of Fundamental Research, Mumbai, January 7-10, 2013.

About the Speaker: Professor Gross is a distinguished number theorist who has made fundamental contributions to many aspects of the subject. His most famous result is the Gross-Zagier formula, whose generalisations and higher dimensional analogues continue to fascinate mathematicians.

Professor Gross received his PhD from Harvard University in 1978. He joined Harvard University as a full professor in 1985 and since then has served as the Chair of Mathematics Department and as the Dean of Harvard College. In 1986 he was awarded a MacArthur Fellowship. He was awarded the Cole Prize of the American Mathematical Society in 1987 and was elected a member of the National Academy of Science in 2004.

The timing of the lectures will be 11:30 AM – 1:00 PM on 7 – 10 January, 2013.

1. Zeta functions for \mathbb{Q} and quadratic fields. Dirchlet L-functions.

In this talk, I will recall the high points of Euler's work on the zeta function, including his proof that the values at negative integers were rational numbers. I will introduce Dirichlet *L*-functions, and discuss Dirichlet's analytic interpretation of quadratic reciprocity.

2. Artin L-functions.

In this talk, I will give an introduction to Artin's L-functions, associated to a complex representation of the Galois group of a number field. After some basic number theory needed to define these functions, I will discuss the rationality and integrality results known for their values at negative integers.

3. Reductive groups G and their cohomology.

In this talk, I will give an introduction to the structure of reductive groups over a field k, and attach to each group a Galois representation which describes its cohomology. I will also consider the value of the Artin L-function of this representation at s = 0, and relate it to the ratio of two Haar measures on the group, when k is a finite, or local, or global field.

4. The dimension of spaces of automorphic forms.

The trace formula gives a method to calculate the dimension of certain vector spaces of automorphic forms, in terms of orbital integrals over conjugacy classes in a reductive group. I will show how the results in the previous talk allow us to evaluate the terms corresponding to central classes, using Artin *L*-functions at negative integers.

All are welcome