
1. Lecture 1

A Warning: A These notes haven’t been checked nearly as thoroughly as they should have been, and as
such are likely to be full of errors. I don’t remember if I fixed every mistake that was found during the
lecture. These imperfect notes are only being provided so that you can recall and keep track of what was
discussed in the lecture. Watch out for mistakes, and if something doesn’t convince you and you find it hard
to figure out, look up or ask me.

Let V = Rn and W = Rm. Let U ⊂ V be an open set, and consider a function

f : U →W.

We say that f is differentiable at x ∈ U if, informally, f(x + h) can be approximated as f(x) + L(h), for a
linear map L. More precisely:

Definition 1.1. We say that f is differentiable at x ∈ U if there exists a linear map L : V →W such that:

(1) lim
h→0

f(x+ h)− f(x)− Lh
‖h‖2

= 0,

where ‖h‖2 = (h21 + · · · + h2n)1/2 is the length of h = (h1, . . . , hn) ∈ Rn. When such an L exists, we will
denote L by Df |x, and call it the derivative of f at x. However, note that this definition of Df |x needs
some checking to ensure that L is well-defined, i.e., there are not two different possibilities for L. This will
be done in Lemma 1.6 below.

Notation 1.2. More generally, if h = (h1, . . . , hn) ∈ Rn, then we set ‖h‖p = (|h1|p + · · ·+ |hn|p)1/p for each
p ≥ 1, and also ‖h‖∞ = max(|h1|, . . . , |hn|).

Exercise 1.3. Show that for p ≥ 1 and h ∈ Rn:

‖h‖∞ ≤ ‖h‖p ≤ n1/p‖h‖∞.

Definition 1.4. A normed vector space over R is a pair (V, ‖ · ‖) consisting of a vector space V over R
together with a norm ‖ · ‖ : V → R, by which we mean a function ‖ · ‖ : V → R (where we will write ‖x‖
instead of ‖ · ‖(x)) such that:

(i) ‖x‖ ≥ 0 for all x ∈ V , and ‖x‖ = 0 if and only if x = 0;
(ii) For all c ∈ R and x ∈ V , ‖cx‖ = |c|‖x‖; and
(iii) For all x, y ∈ R, ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (i.e., subadditivity).

It is easy to see from (i) and (iii) above that the norm ‖ · ‖ defines a metric on V , by d(x, y) = ‖x− y‖, and
hence also a topology on V .

Note that Definition 1.1 can be generalized as follows to normed vector spaces:

Definition 1.5. Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be two finite dimensional normed vector spaces over R, let
U ⊂ V be an open set, and f : U →W a function. We say that f is differentiable at x ∈ U (with respect to
the norms ‖ · ‖V on V and ‖ · ‖W on W ) if there exists a linear transformation L ∈ HomR(V,W ) such that:

(2) lim
h→0

f(x+ h)− f(x)− Lh
‖h‖V

= 0

in W , where the limit is made sense of using the metric on W defined by ‖ · ‖W . When f is differentiable at
x, we will denote L by Df |x, and call it the derivative of f at x. By Lemma 1.6 below, Df |x is well-defined.

Lemma 1.6. The derivative Df |x in Definition 1.1 is well-defined, i.e., if L1, L2 ∈ HomR(V,W ) satisfy:

lim
h→0

f(x+ h)− f(x)− L1h

‖h‖V
= 0 = lim

h→0

f(x+ h)− f(x)− L2h

‖h‖V
,

then L1 = L2.
1
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Proof. Subtracting, we get:

lim
h→0

(L1 − L2)(h)

‖h‖V
= 0.

Let us fix 0 6= v ∈ V , and show that (L1−L2)(v) = 0. Indeed, letting h = tv and taking the limit as t→ 0+,
we get:

0 = lim
t→0+

(L1 − L2)(tv)

‖tv‖V
= lim

t→0+

t · (L1 − L2)(v)

t‖v‖V
=

(L1 − L2)(v)

‖v‖V
lim

t→0+

t

t
=

(L1 − L2)(v)

‖v‖V
,

forcing (L1 − L2)(v) = 0. �

One problem with the above definition is that it depends, a priori, on the choice of the norms ‖ · ‖V and
‖ ·‖W . However, we will only focus on finite dimensional vector spaces, and show that the choice of the norm
is immaterial.

Definition 1.7. Let V be a vector space over R, and let ‖ · ‖, ‖ · ‖′ be two norms on V . We say that ‖ · ‖
and ‖ · ‖′ are equivalent if they are bounded above by positive multiples of each other, i.e., if there exist
constants c1, c2 > 0 such that for all v ∈ V :

c1‖v‖ ≤ ‖v‖′ ≤ c2‖v‖.

Example 1.8. By Exercise 1.3, for any n, the norms ‖ · ‖p on Rn, p ≥ 1, are all equivalent.

To show that the notion of differentiability or derivative defined in Definition 1.5 is independent of the choice
of norms involved in the context of finite dimensional vector spaces, we will show:

(i) The notion of differentiability or derivative in Definition 1.5 does not change if we replace the norms
on V and W by equivalent norms; and

(ii) If V is a finite dimensional vector space over R, then all norms on V are equivalent.

Exercise 1.9. (i) Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be normed linear spaces, and give V and W the
topologies defined by ‖ · ‖V and ‖ · ‖W , respectively. Let T : V →W be an R-linear map. Then the
following are equivalent:
(a) T is continuous on V .
(b) T is continuous at 0 ∈ V .
(c) There exists M ∈ R such that for all v ∈ V , ‖Tv‖W ≤M‖v‖V .

Hint: (a) ⇒ (b) is easy. To get (b) ⇒ (c), take “M = ε/δ”. (c) ⇒ (a) is easy: take “δ = ε/M”.
Aside: When these equivalent conditions are satisfied, one can consider the ‖Tv‖W ≤ M‖v‖V for
all v ∈ V ; this infimum is sometimes denoted by ‖T‖ (note that ‖T‖ depends on the choice of ‖ · ‖V
and ‖ · ‖W , but we are suppressing these dependences from notation). It is easy to see that sending
T ∈ HomR(V,W ) to ‖T‖ is a norm on HomR(V,W ). In other words, we have obtained a norm on
HomR(V,W ) starting from our norms ‖ · ‖V on V and ‖ · ‖W on W ; this norm is called the operator
norm on HomR(V,W ) determined by the norms ‖ · ‖V on V and ‖ · ‖W on W .

(ii) Two norms ‖ · ‖ and ‖ · ‖′ on a vector space V are equivalent if and only if they define the same
topology on V , i.e., if and only if the identity map V → V is a homeomorphism, where the source
V (i.e., the first copy of V ) is given the topology defined by ‖ · ‖ and the target V (i.e., the second
copy of V ) is given the topology defined by ‖ · ‖′.
Hint: This is more or less immediate from (i).

(iii) Suppose ‖ · ‖V , ‖ · ‖′V are two equivalent norms on a vector space V over R, and ‖ · ‖W and ‖ · ‖′W are
two equivalent norms on a vector space W over R. Let U ⊂ V be a set that is open with respect to
‖ · ‖V , and hence by ((ii)) above also open with respect to ‖ · ‖′V . Let f : U → V be a function, and
x ∈ V . Then f is differentiable at x with respect to ‖ · ‖V and ‖ · ‖W if and only it is differentiable
at x with respect to ‖ · ‖′V and ‖ · ‖′W . Moreover, when this condition is satisfied, the derivative
Df |x ∈ HomR(V,W ), as defined using ‖ · ‖V and ‖ · ‖W , equals Df |x ∈ HomR(V,W ), as defined
using ‖ · ‖′V and ‖ · ‖′W .
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Proposition 1.10. Let V be a finite dimensional vector space over R. Then any two norms ‖ ·‖V and ‖ ·‖′V
on V are equivalent.

Proof. Choosing a basis for V (by which we mean an ordered basis), we get an R-linear isomorphism T :
Rn → V , for some n. Using this isomorphism, we can transfer ‖ · ‖V and ‖ · ‖′V to Rn, by x 7→ ‖Tx‖V and
x 7→ ‖Tx‖V ′ , respectively. It is enough to show that the two norms on Rn we get this way are equivalent.

In other words, it is enough to show that any two norms on Rn are equivalent. In other words, we may
assume V = Rn. It is enough then to show that any norm ‖ · ‖ on V = Rn is equivalent to the norm ‖ · ‖∞,
where ‖ · ‖∞ is as in Notation 1.2, i.e., ‖ · ‖∞(a1, . . . , an) = max(|a1|, . . . , |an|).

One inequality is easy: if e1, . . . , en is the standard basis for Rn and c2 is the maximum of the ‖ei‖, then

(3) ‖(a1, . . . , an)‖ = ‖a1e1 + · · ·+ anen‖ ≤ |a1|‖e1‖+ · · ·+ |an|‖en‖ ≤ nc2 max
1≤i≤n

|ai| = nc2‖(a1, . . . , an)‖∞

(thanks to one of the audience members for correcting me at this point).

We give Rn the usual topology, defined by the norm ‖ · ‖2 or equivalently by ‖ · ‖∞. Now it is easy to see
from (3) that ‖ · ‖ is continuous on Rn (e.g., (Rn, ‖ · ‖∞) → (Rn, ‖ · ‖) is continuous by (3) and Exercise
1.9(i), now compose with ‖ · ‖, which is continuous as a map on (Rn, ‖ · ‖)).

Note that S := {v ∈ Rn | ‖v‖∞ = 1} is a compact subset not containing 0. Therefore, ‖ · ‖ is a nonzero
continuous function on this compact set S, and hence takes a minimum value on S, say c−11 for some c1 ∈ R.
Thus, whenever ‖v‖∞ = 1, we have ‖v‖ ≥ c−11 , so that c1‖v‖∞ ≤ ‖v‖ for all v ∈ Rn. Combining with (3),
the equivalence of ‖ · ‖∞ and ‖ · ‖ follows, and hence so does the proposition. �

Note that both the inequalities in the proof of the above proposition used the finite dimensionality of V ;
the latter inequality used the compactness of a unit sphere, which is a characteristic of finite dimensional
normed linear spaces. Thanks to the above proposition, we can now canonically define a topology on any
finite dimensional vector space over R:

Notation 1.11. Let V be a finite dimensional vector space over R. Then we will henceforth use on V the
topology defined by any choice of a norm on V — the choice of the norm does not matter, i.e., different
norms will give the same topology — by Proposition 1.10 and the fact that equivalent norms induce the
same topology (Exercise 1.9(ii)).

Remark 1.12. Here is one way to discuss the above topology on a finite dimensional vector space V/R:
choose any linear isomorphism V → Rn using a basis of V , and transfer the usual topology on Rn to V via
this isomorphism. Since the usual topology on Rn is defined by the norm ‖ · ‖2, this topology on V is is

defined by the pull-back of ‖ · ‖2 to V via V → Rn, i.e.: V → Rn ‖·‖2→ R. Therefore, this topology coincides
with that discussed in Notation 1.11, independently of the choice of the isomorphism V → Rn.

Exercise 1.13. If V and W are finite dimensional vector spaces topologized as above, it is easy to see that
any linear map V →W is automatically continuous.
Hint: One can write the map as a surjection followed by an injection; the surjection can be thought of as a
projection on choosing suitable bases, while the injection can be thought of as an embedding Rn ↪→ Rm of
the form (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0).

Now, restricting to the finite dimensional case, which is what we will focus on, we can rephrase Definition
1.5 as:

Definition 1.14. Let V,W be two finite dimensional vector spaces over R, let U ⊂ V be an open set
(Notation 1.11), and f : U → W a function. We say that f is differentiable at x ∈ U if there exists a linear
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transformation L ∈ HomR(V,W ) such that:

(4) lim
h→0

f(x+ h)− f(x)− Lh
‖h‖V

= 0

in W , where ‖ · ‖V is any choice of a norm on V , and where the limit is made sense of using the metric on
W defined by any choice of a norm on ‖ · ‖W . When f is differentiable at x, we will denote L by Df |x, and
call it the derivative of f at x. By Lemma 1.6, Df |x is well-defined.

The choices of the norms in the above definition do not matter, since we are using the fact that replacing
norms on V and W by equivalent norms does not change the notion of differentiability or the derivative,
and combining it with Proposition 1.10.

Notation 1.15. Henceforth, we will often consider situations as in Definition 1.14: V,W will be finite
dimensional vector spaces over R, U ⊂ V will be an open set, and f : U → W a function. We might just

write V ⊃ U f→W to denote such a situation. In such a situation, we will say that f is differentiable on U , or
just differentiable if U is clear from the context, if it is differentiable at x for all x ∈ U . If f is differentiable
on U , i.e., if Df |x exists for all x ∈ U , we will denote by Df the map

U → HomR(V,W )

given by x 7→ Df |x. Note that we write the value of Df at the point x as Df |x, and not as Df(x). Thus,
while f takes values in W , Df takes values in HomR(V,W ).

Notation 1.16. Let V ⊃ U f→W be as above. If f is differentiable, we have Df : U → HomR(V,W ). Since
HomR(V,W ) is a vector space, we can now ask if Df : U → HomR(V,W ) is differentiable. If it is, we can
repeat this procedure and define the second derivative D2f = D(Df) : U → HomR(V,HomR(V,W )). Thus,
we can define what it means for f to be n times differentiable; if it is, we will have:

Dnf : U → HomR(V,HomR(V, . . .HomR(V,W ) . . . ),

where HomR(V,−) is applied n times.

Notation 1.17. (i) Let V1, V2,W be vector spaces. A map V1 × V2 → W is said to be bilinear if
it is linear in each variable: B(cv1 + c′v′1, v2) = cB(v1, v2) + c′B(v′1, v2), and B(v1, cv2 + c′v′2) =
cB(v1, v2) + c′B(v1, v

′
2).

(ii) Let V1, . . . , Vn,W be vector spaces. A map V1× · · · × Vn →W is said to be multilinear if it is linear
in each variable.

(iii) Note that the set V1×· · ·×Vn is also the set underlying the vector space V1⊕· · ·⊕Vn. Note that we
write a multilinear map as V1 × · · · × Vn → W , and not as V1 ⊕ · · · ⊕ Vn → W , because multilinear
maps are not vector space maps (i.e., linear maps). However, when we talk of the derivative Df |x
of a function f : V1× · · ·×Vn →W , we will write such a map as Df |x : V1⊕ · · ·⊕Vn →W , because
this time this map is linear.

Remark 1.18. Let V ⊃ U f→W as above, and assume that f is n times differentiable on U , so we have

Dnf : U → HomR(V,HomR(V, . . .HomR(V,W ) . . . )),

where HomR(V,−) is applied n times. How to think of this? We will now give a slightly different way of
describing the kind of object that Dnf is, whose significance will hopefully become more clear in the next
lecture.

It is easy to check that we have a (with the right structures, linear) bijection

HomR(V,HomR(V,W ))→ Mapsbilinear(V × V →W ),

mapping

T ∈ HomR(V,HomR(V,W )) to (v1, v2) 7→ (T (v1))(v2).
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It is not hard to check that a similar consideration applies to HomR(V,HomR(V, . . .HomR(V,W ) . . . )), and
thus, we can think of Dnf as a map

U → Mapsmultilinear(V × V × · · · × V︸ ︷︷ ︸
n times

→W ).

Example 1.19. (i) Consider the case where V = W = R, let R ⊃ U
f→ R, and let x ∈ U . Suppose f

is differentiable at x in the usual one-variable sense, with derivative f ′(x). Then in the equality:

lim
h→0

f(x+ h)− f(x)− f ′(x)h

h
= 0

the same limit with the h in the denominator replaced by |h| is also 0, so that Df |x ∈ HomR(R,R)
exists and equals multiplication by f ′(x). Conversely, if Df |x ∈ HomR(R,R) exists, so that Df |x
equals multiplication by a for some a, it is easy to see from the definitions that f is differentiable in
the usual one-variable sense, and that f ′(x) = a.

(ii) Consider the case where V = W = C, let C ⊃ U
f→ C, and let z0 ∈ U . Suppose f is holomorphic

(i.e., analytic) at z0 in the usual sense, with derivative f ′(z0). Recall that this means:

lim
h→0

f(z0 + h)− f(z0)

h

exists, where the limit “h→ 0” is made sense of in C and we note that the denominator has h rather
than |h|, and that this limit equals f ′(z0). From this it is easy to see that:

lim
h→0

f(z0 + h)− f(z0)− f ′(z0)h

|h|
= 0.

Note that the absolute value | · | is a norm on C. Thus, it is clear that f is differentiable in the sense
of Definition 1.14, and that Df |z0 ∈ HomR(C,C) equals multiplication by f ′(z0) (and hence belongs
to the subspace HomC(C,C) of HomR(C,C)).
But this time, the converse is not true: if f is differentiable at z0, i.e., Df |z0 ∈ HomR(C,C) exists,
it is not the case that f is holomorphic at z0: for f to be holomorphic at z0, we need not only that
f is differentiable at z0, but additionally that Df |z0 ∈ HomR(C,C) is given by multiplication by
a complex number. Note that these are special elements of HomR(C,C), those whose bases with
respect to {1, i} is of the form: (

a b
−b a

)
The form of the above matrix suggests the Cauchy-Riemann equations, but we cannot discuss that
unless we relate the derivative, as discussed above, to partial derivatives.

Lemma 1.20. (i) Let V ⊃ U f→W , such that f is constant. Then f is differentiable on U , and Df = 0
as a function U → HomR(V,W ).

(ii) Suppose f : V →W is of the form f(v) = c+ Tv, where c ∈W is a constant and T ∈ HomR(V,W )
is a linear transformation. Then for all x ∈ V , f is differentiable at x, and Df |x = T .

(iii) Suppose f = B : V1 × V2 → W is a bilinear map. Then, for all x = (x1, x2) ∈ V1 × V2 (which is the
set underlying V1 ⊕ V2), f is differentiable at x, and Df |x : V1 ⊕ V2 →W is given by:

Df |x(v1, v2) = B(x1, v2) +B(v1, x2).

(iv) Suppose f = M : V1×· · ·×Vn →W is a multilinear map. Then for all x = (x1, . . . , xn) ∈ V1×· · ·×Vn,
f is differentiable at x, and Df |x : V1 ⊕ · · · ⊕ Vn →W is given by:

Df |x(v1, . . . , vn) =

n∑
i=1

B(x1, . . . , xi−1, vi, xi+1, . . . , xn).
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Proof. (i) is easy. (ii) follows from:

lim
h→0

f(x+ h)− f(x)− Th
‖h‖

= lim
h→0

c+ T (x+ h)− (c+ Tx)− Th
‖h‖

= lim
h→0

0 = 0,

where ‖ · ‖ is any norm on V .

Now let us prove (iii). We ‖ · ‖ stand for some chosen norms on V1, V2 and W , also for the norm on V1 ⊕ V2
given by ‖(v1, v2)‖ = ‖v1‖ + ‖v2‖, and again also stand for any norm on W . The following property of the
bilinear map will help us: there exists M > 0 such that for all v1 ∈ V1, v2 ∈ V2:

(5) ‖B(v1, v2)‖ ≤M‖v1‖‖v2‖.

We will only sketch the proof of this relation — we leave it as an easy exercise to fill in the details. First, one
proves that the map B : V1 × V2 →W is continuous: the idea is that if we identify V1 ∼= Rn1 , V2 ∼= Rn2 and
W ∼= Rm using choices of bases, then a bilinear map V1 × V2 → W identifies with a map Rn1 × Rn2 → Rm

which is coordinate-wise given by m homogeneous polynomials of degree 2 in n1 +n2 variables. Second, one
proves that the ‘unit balls’ with respect to ‖·‖ on V1 and V2 are compact (since all norms are equivalent, this
unit ball is easily seen to be closed and bounded), and one takes M to be the supremum of the ‖B(v1, v2)‖
as v1, v2 range over the unit balls of V1 and V2, respectively. Thus, given general v1 ∈ V1 and v2 ∈ V2, we
can write v1 = ‖v1‖v′1, v2 = ‖v2‖v′2 with ‖v′1‖ = ‖v′2‖ = 1, and we have:

‖B(v1, v2)‖ = ‖B(‖v1‖v′1, ‖v2‖v′2)‖ = ‖v1‖‖v2‖B(v′1, v
′
2) ≤M‖v1‖‖v2},

since v′1, v
′
2 belong to the unit balls of V1 and V2, respectively, with respect to the chosen norms ‖ · ‖. This

proves (5).

Recall that the derivative Df |x of f : V1×V2 →W at x is be written as Df |x : V1⊕V2 →W . In this proof,
given h ∈ V1 ⊕ V2, we will write it as (h1, h2) with h1 ∈ V1, h2 ∈ V2. We have:

lim
h→0

f(x+ h)− f(x)− (B(x1, h2) +B(h1, x2))

‖h‖
= lim

h→0

B(x1 + h1, x2 + h2)−B(x1, x2)−B(x1, h2)−B(h1, x2)

‖h‖
,

which equals limh→0
B(h1,h2)
‖h‖ .

This limit equals 0 since, by (5), we have:

‖B(h1, h2)‖
‖h‖

≤ M‖h1‖‖h2‖
‖h‖

≤ M‖h‖2

‖h‖
= M‖h‖,

which goes to 0 as h→ 0 in V1 ⊕ V2.

The proof of (iv) is somewhat similar, we will leave it as an exercise. �

Lemma 1.21. Let V ⊃ U
f→ W and x ∈ U be as above. Suppose λ : W → W ′ is a linear map. If f is

differentiable at x, then so is λ ◦ f : U → W ′, and we have D(λ ◦ f)|x = (λ ◦Df |x), where the right-hand
side is the composite of Df |x : V →W with λ : W →W ′ to get a map V →W ′.

Proof. Easy. Use Exercise (1.13) to handle the limits. �

Lemma 1.22. Let V ⊃ U f→W be as above, with V,W finite dimensional vector spaces over R (and U ⊂ V
open). Assume that W = W1 ⊕ · · · ⊕Wn, and write f(v) = (f1(v), . . . , fn(v)), with fi(v) ∈ Wi for each i.
Then f is differentiable at x if and only if each fi is differentiable at x, and when this is so,

Df |x ∈ HomR(V,W ) = HomR(V,W1 ⊕ · · · ⊕Wn) = HomR(V,W1)⊕ · · · ⊕HomR(V,Wn)

is given by the element

(Df1|x, . . . , Dfn|x) ∈ HomR(V,W1)⊕ · · · ⊕HomR(V,Wn).
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Proof. We will prove one way implication, and the leave the other as an exercise. Suppose f is differentiable
at x and Df |x = L ∈ HomR(V,W ) = HomR(V,W1)⊕ · · · ⊕HomR(V,Wn). Note that L can then be thought
of as (pr1 ◦L, . . . ,prn ◦L) ∈ HomR(V,W1)⊕ · · · ⊕HomR(V,Wn), where pri : W →Wi is the projection with
respect to the decomposition W = W1 ⊕ · · · ⊕Wn.

Therefore, if f is differentiable at x, then the assertion that f1, . . . , fr are differentiable at x and that
Df |x = (Df1|x, . . . , Dfn|x) follows from applying Lemma 1.21 with λ replaced by pr1, . . . ,prn. Conversely,
if each fi is differentiable at x with derivative Li ∈ Hom(V,Wi), so that:

lim
h→0

fi(x+ h)− fi(x)− Lih

‖h‖
= 0,

then forming L =
⊕

i Li ∈ HomR(V,
⊕

iWi) = HomR(V,W ), we get:

lim
h→0

f(x+ h)− f(x)− Lh
‖h‖

= lim
h→0

n∑
i=1

fi(x+ h)− fi(x)− Lih

‖h‖
= 0,

as desired: what the first equality above uses is that the limit in W can be tested/computed by projecting
onto each Wi. �

The above lemma shows that to study the derivatives of multivariable functions, we can often assume that

the codomain W is one-dimensional: to check that Rn ⊃ U
f=(f1,...,fm)→ Rm is differentiable at some point,

it comes down to checking that each fi : U → R is. But we usually cannot reduce to the case where V is
one-dimensional.

Corollary 1.23. Let V ⊃ U
f1,f2→ W as above, and x ∈ W . Let c1, c2 ∈ R. If f1, f2 are differentiable at x,

then so is c1f1 + c2f2, and D(c1f1 + c2f2)|x = c1Df1|x + c2Df2|x.

Proof. Either check directly, or write c1f1 + c2f2 as the composite map:

U
(f1,f2)→ W ⊕W (w1,w2) 7→c1w1+c2w2→ W,

where the map on the left is differentiable at x by Lemma 1.22, with derivative at x given by (Df1|x, Df2|x)
using the notation of that lemma, so that the composite is also differentiable at x by Lemma 1.21, with
derivative at x given by c1Df1|x + c2Df2|x. �


