Is it easy to be fair?

Kavitha Telikepalli

School of Technology and Computer Science TIFR, Mumbai

Vigyan Vidushi 2023 (Mathematics)

Fair division

"Being good is easy, what is difficult is being just." (Victor Hugo, 1862)

Fair division

"Being good is easy, what is difficult is being just." (Victor Hugo, 1862)

Fair division

"Being good is easy, what is difficult is being just." (Victor Hugo, 1862)

A fair division problem:

- there are n agents
- and there are m goods.

Fair division

"Being good is easy, what is difficult is being just." (Victor Hugo, 1862)

A fair division problem:

- there are n agents
- and there are m goods.

We want to distribute the m goods fairly among the n agents.

Fair division

Many applications:

- Partnership dissolutions;
- Dividing inheritance and so on.

Check www.spliddit.org for more details.

Fair division

How do we measure fairness?

Fair division

How do we measure fairness?

- Let M be the "grand bundle", i.e., the entire set of m goods.

Fair division

How do we measure fairness?

- Let M be the "grand bundle", i.e., the entire set of m goods.
- Every agent has a value associated with each subset of M.

Fair division

How do we measure fairness?

- Let M be the "grand bundle", i.e., the entire set of m goods.
- Every agent has a value associated with each subset of M.
- So for every agent i, there is a valuation function $v_{i}: 2^{M} \rightarrow \mathbb{R}_{\geq 0}$.

An example of a valuation function

An additive valuation v_{i} : for any subset $S=\left\{g_{1}, \ldots, g_{k}\right\}$ of M, we have

$$
v_{i}(S)=v_{i}\left(g_{1}\right)+\cdots+v_{i}\left(g_{k}\right)
$$

An example of a valuation function

An additive valuation v_{i} : for any subset $S=\left\{g_{1}, \ldots, g_{k}\right\}$ of M, we have

$$
v_{i}(S)=v_{i}\left(g_{1}\right)+\cdots+v_{i}\left(g_{k}\right)
$$

Valuations can be more general - the only rule v_{i} has to obey is:

- for any $S \subseteq T \subseteq M$, we have $v_{i}(S) \leq v_{i}(T)$.

An allocation

What we seek:

- a partition $\left\langle X_{1}, \ldots, X_{n}\right\rangle$ of M where $X_{i}=\{$ goods given to agent $i\}$.

An allocation

What we seek:

- a partition $\left\langle X_{1}, \ldots, X_{n}\right\rangle$ of M where $X_{i}=\{$ goods given to agent $i\}$.

We say agent i envies agent j if $v_{i}\left(X_{i}\right)<v_{i}\left(X_{j}\right)$, i.e., i values X_{j} more than X_{i}.

An allocation

What we seek:

- a partition $\left\langle X_{1}, \ldots, X_{n}\right\rangle$ of M where $X_{i}=\{$ goods given to agent $i\}$.

We say agent i envies agent j if $v_{i}\left(X_{i}\right)<v_{i}\left(X_{j}\right)$, i.e., i values X_{j} more than X_{i}.

- For v_{i} in the previous slide: $v_{i}\left(X_{i}\right)=40$ and $v_{i}\left(X_{j}\right)=56$; so i envies j.

An allocation

What we seek:

- a partition $\left\langle X_{1}, \ldots, X_{n}\right\rangle$ of M where $X_{i}=\{$ goods given to agent $i\}$.

We say agent i envies agent j if $v_{i}\left(X_{i}\right)<v_{i}\left(X_{j}\right)$, i.e., i values X_{j} more than X_{i}.

- For v_{i} in the previous slide: $v_{i}\left(X_{i}\right)=40$ and $v_{i}\left(X_{j}\right)=56$; so i envies j.
- $\underbrace{v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j}\right)}_{i \text { likes } X_{i} \text { as much as } X_{j}}$ for all $i, j \Rightarrow\left\langle X_{1}, \ldots, X_{n}\right\rangle$ is an envy-free allocation.

An envy-free allocation

We want a partition $\left\langle X_{1}, \ldots, X_{n}\right\rangle$ of M that is envy-free.

An envy-free allocation

We want a partition $\left\langle X_{1}, \ldots, X_{n}\right\rangle$ of M that is envy-free.

Does an envy-free allocation always exist?

An envy-free allocation

We want a partition $\left\langle X_{1}, \ldots, X_{n}\right\rangle$ of M that is envy-free.

Does an envy-free allocation always exist? Unfortunately, no!

An envy-free allocation

We want a partition $\left\langle X_{1}, \ldots, X_{n}\right\rangle$ of M that is envy-free.

Does an envy-free allocation always exist? Unfortunately, no!

- Suppose $n=2$ and $m=1$.
- So there are two agents and only one good - both the agents want this good.

An envy-free allocation

We want a partition $\left\langle X_{1}, \ldots, X_{n}\right\rangle$ of M that is envy-free.

Does an envy-free allocation always exist? Unfortunately, no!

- Suppose $n=2$ and $m=1$.
- So there are two agents and only one good - both the agents want this good.
- only one of them gets the good and the other agent envies her.

History

Envy-free allocations always exist for two agents and divisible goods such as cake.

The cut-and-choose protocol: (this dates back to the Bible)

History

Envy-free allocations always exist for two agents and divisible goods such as cake.

The cut-and-choose protocol: (this dates back to the Bible)

- Abraham partitions the land into two parts;
- Lot chooses which part he would like to keep.

Relaxing envy-freeness for indivisible goods
Agent i may envy agent j, i.e., $v_{i}\left(X_{i}\right)<v_{i}\left(X_{j}\right)$

Relaxing envy-freeness for indivisible goods

Agent i may envy agent j, i.e., $v_{i}\left(X_{i}\right)<v_{i}\left(X_{j}\right)$

but there exists $g \in X_{j}$ such that i does not envy j after removing g from X_{j}

Relaxing envy-freeness for indivisible goods

Agent i may envy agent j, i.e., $v_{i}\left(X_{i}\right)<v_{i}\left(X_{j}\right)$

but there exists $g \in X_{j}$ such that i does not envy j after removing g from X_{j}

$$
v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j}-g\right)
$$

Relaxing envy-freeness for indivisible goods

Agent i may envy agent j, i.e., $v_{i}\left(X_{i}\right)<v_{i}\left(X_{j}\right)$

but there exists $g \in X_{j}$ such that i does not envy j after removing g from X_{j}

$$
v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j}-g\right)
$$

- So i's envy for j vanishes upon removing some good from j 's bundle.

Relaxing envy-freeness for indivisible goods

Agent i may envy agent j, i.e., $v_{i}\left(X_{i}\right)<v_{i}\left(X_{j}\right)$

but there exists $g \in X_{j}$ such that i does not envy j after removing g from X_{j}

$$
v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j}-g\right)
$$

- So i's envy for j vanishes upon removing some good from j 's bundle.

Let us ask for this condition to hold for every pair of agents i and j.

Relaxing envy-freeness for indivisible goods

Agent i may envy agent j, i.e., $v_{i}\left(X_{i}\right)<v_{i}\left(X_{j}\right)$

but there exists $g \in X_{j}$ such that i does not envy j after removing g from X_{j}

$$
v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j}-g\right)
$$

- So i's envy for j vanishes upon removing some good from j 's bundle.

Let us ask for this condition to hold for every pair of agents i and j.

- Such an allocation is called EF1: envy-free up to one good.

EF1 - An example

Consider the following instance with additive valuations:

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

EF1 - An example

Consider the following instance with additive valuations:

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

Let $X_{1}=\{a, c\}$ and $X_{2}=\{b, d\}$.

EF1 - An example

Consider the following instance with additive valuations:

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

Let $X_{1}=\{a, c\}$ and $X_{2}=\{b, d\}$.

- Agent 2 envies agent 1 since $v_{2}\left(X_{1}\right)=100+20=120>75=v_{2}\left(X_{2}\right)$;

EF1 - An example

Consider the following instance with additive valuations:

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

Let $X_{1}=\{a, c\}$ and $X_{2}=\{b, d\}$.

- Agent 2 envies agent 1 since $v_{2}\left(X_{1}\right)=100+20=120>75=v_{2}\left(X_{2}\right)$;
- however $v_{2}\left(X_{1}-a\right)=20<75=v_{2}\left(X_{2}\right)$;

EF1 - An example

Consider the following instance with additive valuations:

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

Let $X_{1}=\{a, c\}$ and $X_{2}=\{b, d\}$.

- Agent 2 envies agent 1 since $v_{2}\left(X_{1}\right)=100+20=120>75=v_{2}\left(X_{2}\right)$;
- however $v_{2}\left(X_{1}-a\right)=20<75=v_{2}\left(X_{2}\right)$;
- so this is an EF1 allocation.

EF1

From agent i's perspective: X_{j} may be better than X_{i}

- but there is at least one set in the lower level that i does not envy.

From agent i's perspective: X_{j} may be better than X_{i}

- but there is at least one set in the lower level that i does not envy.

For any pair of agents i, j :

- i envies $j \Rightarrow$ there exists $g \in X_{j}$ such that $\underbrace{v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j}-g\right)}_{i \text { likes } X_{i} \text { as much as } X_{j}-g}$.

From agent i's perspective: X_{j} may be better than X_{i}

- but there is at least one set in the lower level that i does not envy.

For any pair of agents i, j :

- i envies $j \Rightarrow$ there exists $g \in X_{j}$ such that $\underbrace{v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j}-g\right)}_{i \text { likes } X_{i} \text { as much as } X_{j}-g}$.

Good news: An EF1 allocation $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ always exists.

Constructing an EF1 allocation

Suppose all the valuation functions are additive.

Constructing an EF1 allocation

Suppose all the valuation functions are additive.
Round-robin: in each round, agents go one-by-one in the order $1, \ldots, n$

Constructing an EF1 allocation

Suppose all the valuation functions are additive.
Round-robin: in each round, agents go one-by-one in the order $1, \ldots, n$

- every agent picks her most valuable good among those available
- and adds it to her bundle.

Constructing an EF1 allocation

Suppose all the valuation functions are additive.
Round-robin: in each round, agents go one-by-one in the order $1, \ldots, n$

- every agent picks her most valuable good among those available
- and adds it to her bundle.

Claim: This is an EF1 allocation.

Round-robin

Let us run round-robin on this instance:

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

Round-robin

Let us run round-robin on this instance:

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

Agent 1 goes first and picks a.

Round-robin

Let us run round-robin on this instance:

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

Agent 1 goes first and picks a.

- Agent 2 goes next and picks b.

Round-robin

Let us run round-robin on this instance:

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

Agent 1 goes first and picks a.

- Agent 2 goes next and picks b.
- Agent 1 goes again and picks c.

Round-robin

Let us run round-robin on this instance:

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

Agent 1 goes first and picks a.

- Agent 2 goes next and picks b.
- Agent 1 goes again and picks c.
- Agent 2 goes again and picks d.

Round-robin

Let us run round-robin on this instance:

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

Agent 1 goes first and picks a.

- Agent 2 goes next and picks b.
- Agent 1 goes again and picks c.
- Agent 2 goes again and picks d.

So we get $X_{1}=\{a, c\}$ and $X_{2}=\{b, d\}$.

Round-robin

Let us run round-robin on this instance:

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

Agent 1 goes first and picks a.

- Agent 2 goes next and picks b.
- Agent 1 goes again and picks c.
- Agent 2 goes again and picks d.

So we get $X_{1}=\{a, c\}$ and $X_{2}=\{b, d\}$.

- This is indeed an EF1 allocation.

The correctness of round-robin

Consider any pair of agents i and j :

Let $X_{i}=\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ and let $X_{j}=\left\{h_{1}, h_{2}, h_{3}, \ldots\right\}$.

The correctness of round-robin

Consider any pair of agents i and j :

Let $X_{i}=\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ and let $X_{j}=\left\{h_{1}, h_{2}, h_{3}, \ldots\right\}$.

1. i goes before $j \Rightarrow$ for every t, agent i likes g_{t} at least as much as h_{t};

The correctness of round-robin

Consider any pair of agents i and j :

Let $X_{i}=\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ and let $X_{j}=\left\{h_{1}, h_{2}, h_{3}, \ldots\right\}$.

1. i goes before $j \Rightarrow$ for every t, agent i likes g_{t} at least as much as h_{t};
2. i goes after $j \Rightarrow$ for every t, agent i likes g_{t} at least as much as h_{t+1}.

The correctness of round-robin

Consider any pair of agents i and j :

Let $X_{i}=\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ and let $X_{j}=\left\{h_{1}, h_{2}, h_{3}, \ldots\right\}$.

1. i goes before $j \Rightarrow$ for every t, agent i likes g_{t} at least as much as h_{t};
2. i goes after $j \Rightarrow$ for every t, agent i likes g_{t} at least as much as h_{t+1}.

In case $1, i$ does not envy j.

The correctness of round-robin

Consider any pair of agents i and j :

Let $X_{i}=\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ and let $X_{j}=\left\{h_{1}, h_{2}, h_{3}, \ldots\right\}$.

1. i goes before $j \Rightarrow$ for every t, agent i likes g_{t} at least as much as h_{t};
2. i goes after $j \Rightarrow$ for every t, agent i likes g_{t} at least as much as h_{t+1}.

In case $1, i$ does not envy j.
In case $2, i$ does not envy j after removing h_{1} from X_{j}, i.e., $v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j}-h_{1}\right)$.

EF1 for general valuations

The envy graph G: (Lipton, Markakis, Mossel, and Saberi, 2004)

- agents are vertices in G.

x_{7}	a_{7}
x_{6}	a_{6}

$a_{4} \quad x_{4} \quad x_{5} a_{5}$
$x_{2} a_{2}$
(x) a_{1}

EF1 for general valuations

The envy graph G: (Lipton, Markakis, Mossel, and Saberi, 2004)

- agents are vertices in G.

G has an edge from a_{i} to $a_{j} \Longleftrightarrow$ agent i envies agent j.

The envy graph G
If G has directed cycles then we can eliminate them.

The envy graph G
If G has directed cycles then we can eliminate them.

The envy graph G
If G has directed cycles then we can eliminate them.

The number of edges decreases.

The EF1 algorithm

The algorithm proceeds in rounds.

The EF1 algorithm

The algorithm proceeds in rounds.

In each round:

- eliminate cycles in the envy graph G;

The EF1 algorithm

The algorithm proceeds in rounds.
In each round:

- eliminate cycles in the envy graph G;
- let a_{k} be a vertex with in-degree 0 in G; (nobody envies agent k)

The EF1 algorithm

The algorithm proceeds in rounds.
In each round:

- eliminate cycles in the envy graph G;
- let a_{k} be a vertex with in-degree 0 in G; (nobody envies agent k)
- let g be any unallocated good;

The EF1 algorithm

The algorithm proceeds in rounds.
In each round:

- eliminate cycles in the envy graph G;
- let a_{k} be a vertex with in-degree 0 in G; (nobody envies agent k)
- let g be any unallocated good;
- add g to k 's bundle, i.e., $X_{k}=X_{k}+g$.

The EF1 algorithm

The algorithm proceeds in rounds.
In each round:

- eliminate cycles in the envy graph G;
- let a_{k} be a vertex with in-degree 0 in G; (nobody envies agent k)
- let g be any unallocated good;
- add g to k 's bundle, i.e., $X_{k}=X_{k}+g$.

Claim: The allocation after every round is EF1.

The EF1 algorithm

The algorithm proceeds in rounds.
In each round:

- eliminate cycles in the envy graph G;
- let a_{k} be a vertex with in-degree 0 in G; (nobody envies agent k)
- let g be any unallocated good;
- add g to k 's bundle, i.e., $X_{k}=X_{k}+g$.

Claim: The allocation after every round is EF1.

- This is because nobody envies $X_{k}-g$.

The EF1 algorithm

The algorithm proceeds in rounds.
In each round:

- eliminate cycles in the envy graph G;
- let a_{k} be a vertex with in-degree 0 in G; (nobody envies agent k)
- let g be any unallocated good;
- add g to k 's bundle, i.e., $X_{k}=X_{k}+g$.

Claim: The allocation after every round is EF1.

- This is because nobody envies $X_{k}-g$.

Thus an EF1 allocation can be easily computed.

EF1

However EF1 is a weak relaxation of envy-freeness.

EF1

However EF1 is a weak relaxation of envy-freeness.

	a	b	c
Agent 1	1	1	3
Agent 2	1	1	3

EF1

However EF1 is a weak relaxation of envy-freeness.

	a	b	c
Agent 1	1	1	3
Agent 2	1	1	3

Here there are 3 goods and 2 agents with additive valuations.

EF1

However EF1 is a weak relaxation of envy-freeness.

	a	b	c
Agent 1	1	1	3
Agent 2	1	1	3

Here there are 3 goods and 2 agents with additive valuations.

- the allocation $X=\langle\{a\},\{b, c\}\rangle$ is EF1;

However EF1 is a weak relaxation of envy-freeness.

	a	b	c
Agent 1	1	1	3
Agent 2	1	1	3

Here there are 3 goods and 2 agents with additive valuations.

- the allocation $X=\langle\{a\},\{b, c\}\rangle$ is EF1;
- however X is quite unfair towards agent 1 ;

However EF1 is a weak relaxation of envy-freeness.

	a	b	c
Agent 1	1	1	3
Agent 2	1	1	3

Here there are 3 goods and 2 agents with additive valuations.

- the allocation $X=\langle\{a\},\{b, c\}\rangle$ is EF1;
- however X is quite unfair towards agent 1 ;
- the allocation $Y=\langle\{a, b\},\{c\}\rangle$ seems fairer.

Our old example

Recall the following instance:

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

Our old example

Recall the following instance:

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

The allocation $X_{1}=\{a, c\}$ and $X_{2}=\{b, d\}$ is EF1.

Our old example

Recall the following instance:

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

The allocation $X_{1}=\{a, c\}$ and $X_{2}=\{b, d\}$ is EF1.
However it is not very fair towards agent 2.

Our old example

Recall the following instance:

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

The allocation $X_{1}=\{a, c\}$ and $X_{2}=\{b, d\}$ is EF1.
However it is not very fair towards agent 2.

- The allocation $Y_{1}=\{a\}$ and $Y_{2}=\{b, c, d\}$ is much more fair.

Our old example

Recall the following instance:

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

The allocation $X_{1}=\{a, c\}$ and $X_{2}=\{b, d\}$ is EF1.
However it is not very fair towards agent 2.

- The allocation $Y_{1}=\{a\}$ and $Y_{2}=\{b, c, d\}$ is much more fair.

Can we come up with a stronger relaxation of "envy-freeness" that always exists?

EFX

EFX: Envy-free up to any good - this is a stronger relaxation of envy-freeness (Caragiannis, Kurokawa, Moulin, Procaccia, Shah, and Wang, 2016).

EFX

EFX: Envy-free up to any good - this is a stronger relaxation of envy-freeness (Caragiannis, Kurokawa, Moulin, Procaccia, Shah, and Wang, 2016).

For any j : all proper subsets of X_{j} should be "un-envied". So for any i, j :

$$
v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j}-g\right) \text { for all } g \in X_{j}
$$

EFX

EFX: Envy-free up to any good - this is a stronger relaxation of envy-freeness (Caragiannis, Kurokawa, Moulin, Procaccia, Shah, and Wang, 2016).

For any j : all proper subsets of X_{j} should be "un-envied". So for any i, j :

$$
v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j}-g\right) \text { for all } g \in X_{j} .
$$

- EFX is a stronger notion than EF1.

EFX

Recall the following instance:

	a	b	c
Agent 1	1	1	3
Agent 2	1	1	3

- the allocation $X=\langle\{a\},\{b, c\}\rangle$ is not EFX ;

EFX

Recall the following instance:

	a	b	c
Agent 1	1	1	3
Agent 2	1	1	3

- the allocation $X=\langle\{a\},\{b, c\}\rangle$ is not EFX ;
- this is because $v_{1}\left(X_{1}\right)=v_{1}(\{a\})<v_{1}(\{c\})=v_{1}\left(X_{2}-b\right)$;

EFX

Recall the following instance:

	a	b	c
Agent 1	1	1	3
Agent 2	1	1	3

- the allocation $X=\langle\{a\},\{b, c\}\rangle$ is not EFX ;
- this is because $v_{1}\left(X_{1}\right)=v_{1}(\{a\})<v_{1}(\{c\})=v_{1}\left(X_{2}-b\right)$;
- the allocation $Y=\langle\{a, b\},\{c\}\rangle$ is EFX.

EFX in our old example

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

EFX in our old example

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

The EF1 allocation $X_{1}=\{a, c\}$ and $X_{2}=\{b, d\}$ is not EFX.

EFX in our old example

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

The EF1 allocation $X_{1}=\{a, c\}$ and $X_{2}=\{b, d\}$ is not EFX.

- This is because $v_{2}\left(X_{1}-c\right)=100>75=v_{2}\left(X_{2}\right)$.

EFX in our old example

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

The EF1 allocation $X_{1}=\{a, c\}$ and $X_{2}=\{b, d\}$ is not EFX.

- This is because $v_{2}\left(X_{1}-c\right)=100>75=v_{2}\left(X_{2}\right)$.

The allocation $Y_{1}=\{a\}$ and $Y_{2}=\{b, c, d\}$ is EFX.

EFX in our old example

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

The EF1 allocation $X_{1}=\{a, c\}$ and $X_{2}=\{b, d\}$ is not EFX.

- This is because $v_{2}\left(X_{1}-c\right)=100>75=v_{2}\left(X_{2}\right)$.

The allocation $Y_{1}=\{a\}$ and $Y_{2}=\{b, c, d\}$ is EFX.

- Question: Do EFX allocations always exist?

EFX in our old example

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

The EF1 allocation $X_{1}=\{a, c\}$ and $X_{2}=\{b, d\}$ is not EFX.

- This is because $v_{2}\left(X_{1}-c\right)=100>75=v_{2}\left(X_{2}\right)$.

The allocation $Y_{1}=\{a\}$ and $Y_{2}=\{b, c, d\}$ is EFX.

- Question: Do EFX allocations always exist?
- Answer: We do not know!

EFX in our old example

	a	b	c	d
Agent 1	100	70	20	5
Agent 2	100	70	20	5

The EF1 allocation $X_{1}=\{a, c\}$ and $X_{2}=\{b, d\}$ is not EFX.

- This is because $v_{2}\left(X_{1}-c\right)=100>75=v_{2}\left(X_{2}\right)$.

The allocation $Y_{1}=\{a\}$ and $Y_{2}=\{b, c, d\}$ is EFX.

- Question: Do EFX allocations always exist?
- Answer: We do not know!
"Fair division's biggest problem." (Ariel Procaccia, 2020)

Existence of EFX allocations

It is known that EFX allocations exist in the following special cases:

Existence of EFX allocations

It is known that EFX allocations exist in the following special cases:

- when $n=2$ (Plaut and Roughgarden, 2018);

Existence of EFX allocations

It is known that EFX allocations exist in the following special cases:

- when $n=2$ (Plaut and Roughgarden, 2018);
- when all n agents have the same valuation function, i.e., $v_{1}=\cdots=v_{n}\left(\mathrm{PR}^{\prime} 18\right)$;

Existence of EFX allocations

It is known that EFX allocations exist in the following special cases:

- when $n=2$ (Plaut and Roughgarden, 2018);
- when all n agents have the same valuation function, i.e., $v_{1}=\cdots=v_{n}$ (PR'18);
- when $n=3$ and valuations are additive (Chaudhury, Garg, and Mehlhorn, 2020).

Existence of EFX allocations

It is known that EFX allocations exist in the following special cases:

- when $n=2$ (Plaut and Roughgarden, 2018);
- when all n agents have the same valuation function, i.e., $v_{1}=\cdots=v_{n}$ (PR'18);
- when $n=3$ and valuations are additive (Chaudhury, Garg, and Mehlhorn, 2020).
"We suspect there exist instances with no EFX allocations."
(Plaut and Roughgarden, 2018)

Existence of EFX allocations

It is known that EFX allocations exist in the following special cases:

- when $n=2$ (Plaut and Roughgarden, 2018);
- when all n agents have the same valuation function, i.e., $v_{1}=\cdots=v_{n}$ (PR'18);
- when $n=3$ and valuations are additive (Chaudhury, Garg, and Mehlhorn, 2020).
"We suspect there exist instances with no EFX allocations."
(Plaut and Roughgarden, 2018)
- However no such instance is currently known.

When all agents have the same valuation function v

Among all partitions of M into n sets X_{1}, \ldots, X_{n} where

$$
v\left(X_{1}\right) \leq v\left(X_{2}\right) \leq \cdots \leq v\left(X_{n}\right)
$$

When all agents have the same valuation function v

Among all partitions of M into n sets X_{1}, \ldots, X_{n} where

$$
v\left(X_{1}\right) \leq v\left(X_{2}\right) \leq \cdots \leq v\left(X_{n}\right)
$$

let $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ be the allocation that

When all agents have the same valuation function v

Among all partitions of M into n sets X_{1}, \ldots, X_{n} where

$$
v\left(X_{1}\right) \leq v\left(X_{2}\right) \leq \cdots \leq v\left(X_{n}\right)
$$

let $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ be the allocation that
\rightarrow maximizes $v\left(X_{1}\right)$,

When all agents have the same valuation function v

Among all partitions of M into n sets X_{1}, \ldots, X_{n} where

$$
v\left(X_{1}\right) \leq v\left(X_{2}\right) \leq \cdots \leq v\left(X_{n}\right)
$$

let $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ be the allocation that

- maximizes $v\left(X_{1}\right)$,
- subject to the above constraint, maximizes $\left|X_{1}\right|$,

When all agents have the same valuation function v

Among all partitions of M into n sets X_{1}, \ldots, X_{n} where

$$
v\left(X_{1}\right) \leq v\left(X_{2}\right) \leq \cdots \leq v\left(X_{n}\right)
$$

let $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ be the allocation that

- maximizes $v\left(X_{1}\right)$,
- subject to the above constraint, maximizes $\left|X_{1}\right|$,
- subject to the above two constraints, maximizes $v\left(X_{2}\right)$,

When all agents have the same valuation function v

Among all partitions of M into n sets X_{1}, \ldots, X_{n} where

$$
v\left(X_{1}\right) \leq v\left(X_{2}\right) \leq \cdots \leq v\left(X_{n}\right)
$$

let $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ be the allocation that

- maximizes $v\left(X_{1}\right)$,
- subject to the above constraint, maximizes $\left|X_{1}\right|$,
- subject to the above two constraints, maximizes $v\left(X_{2}\right)$,
- subject to the above three constraints, maximizes $\left|X_{2}\right|$,

When all agents have the same valuation function v

Among all partitions of M into n sets X_{1}, \ldots, X_{n} where

$$
v\left(X_{1}\right) \leq v\left(X_{2}\right) \leq \cdots \leq v\left(X_{n}\right)
$$

let $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ be the allocation that

- maximizes $v\left(X_{1}\right)$,
- subject to the above constraint, maximizes $\left|X_{1}\right|$,
- subject to the above two constraints, maximizes $v\left(X_{2}\right)$,
- subject to the above three constraints, maximizes $\left|X_{2}\right|$,
- and so on.

When all agents have the same valuation function v

Among all partitions of M into n sets X_{1}, \ldots, X_{n} where

$$
v\left(X_{1}\right) \leq v\left(X_{2}\right) \leq \cdots \leq v\left(X_{n}\right)
$$

let $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ be the allocation that

- maximizes $v\left(X_{1}\right)$,
- subject to the above constraint, maximizes $\left|X_{1}\right|$,
- subject to the above two constraints, maximizes $v\left(X_{2}\right)$,
- subject to the above three constraints, maximizes $\left|X_{2}\right|$,
- and so on.

Claim: $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ is EFX.

When all agents have the same valuation function v

For the various partitions of $\{a, b, c\}$ into two subsets $\left(X_{1}, X_{2}\right)$ where $v\left(X_{1}\right) \leq v\left(X_{2}\right)$:

	a	b	c
Agent 1	1	1	3
Agent 2	1	1	3

When all agents have the same valuation function v

For the various partitions of $\{a, b, c\}$ into two subsets $\left(X_{1}, X_{2}\right)$ where $v\left(X_{1}\right) \leq v\left(X_{2}\right)$:

	a	b	c
Agent 1	1	1	3
Agent 2	1	1	3

- the possible values of $v\left(X_{1}\right)$ are $0,1,2$.

When all agents have the same valuation function v

For the various partitions of $\{a, b, c\}$ into two subsets $\left(X_{1}, X_{2}\right)$ where $v\left(X_{1}\right) \leq v\left(X_{2}\right)$:

	a	b	c
Agent 1	1	1	3
Agent 2	1	1	3

- the possible values of $v\left(X_{1}\right)$ are $0,1,2$.

The one with the maximum value of $v\left(X_{1}\right)$ is the last one where agent 1 gets $\{a, b\}$.

When all agents have the same valuation function v

For the various partitions of $\{a, b, c\}$ into two subsets $\left(X_{1}, X_{2}\right)$ where $v\left(X_{1}\right) \leq v\left(X_{2}\right)$:

	a	b	c
Agent 1	1	1	3
Agent 2	1	1	3

- the possible values of $v\left(X_{1}\right)$ are $0,1,2$.

The one with the maximum value of $v\left(X_{1}\right)$ is the last one where agent 1 gets $\{a, b\}$.

- So agent 1 gets $X_{1}=\{a, b\}$ and agent 2 gets $X_{2}=\{c\}$.

When all agents have the same valuation function v

For the various partitions of $\{a, b, c\}$ into two subsets $\left(X_{1}, X_{2}\right)$ where $v\left(X_{1}\right) \leq v\left(X_{2}\right)$:

	a	b	c
Agent 1	1	1	3
Agent 2	1	1	3

- the possible values of $v\left(X_{1}\right)$ are $0,1,2$.

The one with the maximum value of $v\left(X_{1}\right)$ is the last one where agent 1 gets $\{a, b\}$.

- So agent 1 gets $X_{1}=\{a, b\}$ and agent 2 gets $X_{2}=\{c\}$.
- This allocation is EFX.

Proof of the claim

Let signature $(X)=\left(v\left(X_{1}\right),\left|X_{1}\right|, v\left(X_{2}\right),\left|X_{2}\right|, \ldots\right)$.

Proof of the claim

Let signature $(X)=\left(v\left(X_{1}\right),\left|X_{1}\right|, v\left(X_{2}\right),\left|X_{2}\right|, \ldots\right)$.
By definition, X has the maximum signature (as per our order).

Proof of the claim

Let signature $(X)=\left(v\left(X_{1}\right),\left|X_{1}\right|, v\left(X_{2}\right),\left|X_{2}\right|, \ldots\right)$.
By definition, X has the maximum signature (as per our order).
Suppose X is not EFX.

Proof of the claim

Let signature $(X)=\left(v\left(X_{1}\right),\left|X_{1}\right|, v\left(X_{2}\right),\left|X_{2}\right|, \ldots\right)$.
By definition, X has the maximum signature (as per our order).
Suppose X is not EFX.

- Then there exists an agent j and some $g \in X_{j}$ such that $v\left(X_{1}\right)<v\left(X_{j}-g\right)$.

Proof of the claim

Let signature $(X)=\left(v\left(X_{1}\right),\left|X_{1}\right|, v\left(X_{2}\right),\left|X_{2}\right|, \ldots\right)$.
By definition, X has the maximum signature (as per our order).
Suppose X is not EFX.

- Then there exists an agent j and some $g \in X_{j}$ such that $v\left(X_{1}\right)<v\left(X_{j}-g\right)$.
- Move g from X_{j} to X_{1}.

Proof of the claim

Let signature $(X)=\left(v\left(X_{1}\right),\left|X_{1}\right|, v\left(X_{2}\right),\left|X_{2}\right|, \ldots\right)$.
By definition, X has the maximum signature (as per our order).
Suppose X is not EFX.

- Then there exists an agent j and some $g \in X_{j}$ such that $v\left(X_{1}\right)<v\left(X_{j}-g\right)$.
- Move g from X_{j} to X_{1}.

The new allocation (with possibly some swapping of bundles) has a larger signature, a contradiction.

EFX for two agents with possibly distinct valuation functions

Let agent 1's valuation function be v_{1}. Let agent 2 's valuation function be v_{2}.

EFX for two agents with possibly distinct valuation functions

Let agent 1's valuation function be v_{1}. Let agent 2 's valuation function be v_{2}.

- Assume both agents have valuation v_{1} and compute an EFX allocation $\left(S_{1}, S_{2}\right)$.

EFX for two agents with possibly distinct valuation functions

Let agent 1's valuation function be v_{1}. Let agent 2 's valuation function be v_{2}.

- Assume both agents have valuation v_{1} and compute an EFX allocation $\left(S_{1}, S_{2}\right)$.
- Give the better set (as per v_{2}) from $\left\{S_{1}, S_{2}\right\}$ to agent 2 .

EFX for two agents with possibly distinct valuation functions

Let agent 1 's valuation function be v_{1}. Let agent 2 's valuation function be v_{2}.

- Assume both agents have valuation v_{1} and compute an EFX allocation $\left(S_{1}, S_{2}\right)$.
- Give the better set (as per v_{2}) from $\left\{S_{1}, S_{2}\right\}$ to agent 2 .

So agent 2 has no envy towards agent 1 .

EFX for two agents with possibly distinct valuation functions

Let agent 1 's valuation function be v_{1}. Let agent 2 's valuation function be v_{2}.

- Assume both agents have valuation v_{1} and compute an EFX allocation $\left(S_{1}, S_{2}\right)$.
- Give the better set (as per v_{2}) from $\left\{S_{1}, S_{2}\right\}$ to agent 2 .

So agent 2 has no envy towards agent 1 .
Moreover, agent 1 does not envy any proper subset of agent 2's bundle.

EFX for two agents with possibly distinct valuation functions

Let agent 1 's valuation function be v_{1}. Let agent 2 's valuation function be v_{2}.

- Assume both agents have valuation v_{1} and compute an EFX allocation $\left(S_{1}, S_{2}\right)$.
- Give the better set (as per v_{2}) from $\left\{S_{1}, S_{2}\right\}$ to agent 2 .

So agent 2 has no envy towards agent 1 .
Moreover, agent 1 does not envy any proper subset of agent 2's bundle.

- Hence this is an EFX allocation.

EFX for two agents with possibly distinct valuation functions

Let agent 1 's valuation function be v_{1}. Let agent 2 's valuation function be v_{2}.

- Assume both agents have valuation v_{1} and compute an EFX allocation $\left(S_{1}, S_{2}\right)$.
- Give the better set (as per v_{2}) from $\left\{S_{1}, S_{2}\right\}$ to agent 2 .

So agent 2 has no envy towards agent 1 .
Moreover, agent 1 does not envy any proper subset of agent 2's bundle.

- Hence this is an EFX allocation.
- However finding such an allocation can be hard.

A relaxation of EFX

EFX-with-charity (Caragiannis, Gravin, Huang, 2019)

A relaxation of EFX

EFX-with-charity (Caragiannis, Gravin, Huang, 2019)

- partition M into X_{1}, \ldots, X_{n} and left-over goods P (the pool) such that:

$$
X=\left\langle X_{1}, \ldots, X_{n}\right\rangle \text { is } \mathrm{EFX}
$$

A relaxation of EFX

EFX-with-charity (Caragiannis, Gravin, Huang, 2019)

- partition M into X_{1}, \ldots, X_{n} and left-over goods P (the pool) such that:

$$
X=\left\langle X_{1}, \ldots, X_{n}\right\rangle \text { is } \mathrm{EFX}
$$

Can we show such an allocation where nobody envies P and the size of P is small?

EFX with charity

Yes - such an allocation (where $|P|<n$) always exists.
(Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, 2020)

EFX with charity

Yes - such an allocation (where $|P|<n$) always exists.
(Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, 2020)

So if there exists one agent (say, i) who is beyond envy, i.e., $v_{i}(S)=0$ for all $S \subseteq M$:

- then EFX allocations exist!

EFX with charity

We will always maintain a partial allocation $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ that is EFX.

EFX with charity

We will always maintain a partial allocation $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ that is EFX.

- Initially, $X_{1}=\cdots=X_{n}=\emptyset$ and $P=M$.

EFX with charity

We will always maintain a partial allocation $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ that is EFX.

- Initially, $X_{1}=\cdots=X_{n}=\emptyset$ and $P=M$.

At any stage: if no agent envies P then we are done.

Else there is some agent that envies P.

EFX with charity

We will always maintain a partial allocation $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ that is EFX.

- Initially, $X_{1}=\cdots=X_{n}=\emptyset$ and $P=M$.

At any stage: if no agent envies P then we are done.

Else there is some agent that envies P.

- Find a minimal subset Z of P that is envied by some agent (minimal wrt \subseteq).

EFX with charity

We will always maintain a partial allocation $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ that is EFX.

- Initially, $X_{1}=\cdots=X_{n}=\emptyset$ and $P=M$.

At any stage: if no agent envies P then we are done.

Else there is some agent that envies P.

- Find a minimal subset Z of P that is envied by some agent (minimal wrt \subseteq).

EFX with charity

Most envious agent: Let k be an agent that envies Z.

EFX with charity

Most envious agent: Let k be an agent that envies Z.

Set $P=(P-Z)+X_{k}$ and $X_{k}=Z$.

EFX with charity

Most envious agent: Let k be an agent that envies Z.

Set $P=(P-Z)+X_{k}$ and $X_{k}=Z$.

- So agent k is better-off and nobody is worse-off.

EFX with charity

Most envious agent: Let k be an agent that envies Z.

Set $P=(P-Z)+X_{k}$ and $X_{k}=Z$.

- So agent k is better-off and nobody is worse-off.
- Some agents may envy agent k - however nobody envies a proper subset of Z.

EFX with charity

Most envious agent: Let k be an agent that envies Z.
Set $P=(P-Z)+X_{k}$ and $X_{k}=Z$.

- So agent k is better-off and nobody is worse-off.
- Some agents may envy agent k - however nobody envies a proper subset of Z.
- This is due to the minimality of Z as an envied subset.

EFX with charity

Most envious agent: Let k be an agent that envies Z.
Set $P=(P-Z)+X_{k}$ and $X_{k}=Z$.

- So agent k is better-off and nobody is worse-off.
- Some agents may envy agent k - however nobody envies a proper subset of Z.
- This is due to the minimality of Z as an envied subset.

EFX with charity

Most envious agent: Let k be an agent that envies Z.
Set $P=(P-Z)+X_{k}$ and $X_{k}=Z$.

- So agent k is better-off and nobody is worse-off.
- Some agents may envy agent k - however nobody envies a proper subset of Z.
- This is due to the minimality of Z as an envied subset.

While there is envy towards P, we run this step.

EFX with charity

This process has to terminate since $v_{1}\left(X_{1}\right)+\cdots+v_{n}\left(X_{n}\right)$ increases in every step.

EFX with charity

This process has to terminate since $v_{1}\left(X_{1}\right)+\cdots+v_{n}\left(X_{n}\right)$ increases in every step.
At the end, we have an EFX allocation $\left\langle X_{1}, \ldots, X_{n}\right\rangle$ and a pool P of left-over goods.

EFX with charity

This process has to terminate since $v_{1}\left(X_{1}\right)+\cdots+v_{n}\left(X_{n}\right)$ increases in every step.
At the end, we have an EFX allocation $\left\langle X_{1}, \ldots, X_{n}\right\rangle$ and a pool P of left-over goods.

- No agent envies P.

EFX with charity

This process has to terminate since $v_{1}\left(X_{1}\right)+\cdots+v_{n}\left(X_{n}\right)$ increases in every step.

At the end, we have an EFX allocation $\left\langle X_{1}, \ldots, X_{n}\right\rangle$ and a pool P of left-over goods.

- No agent envies P.
- The ultimate goal is to make $P=\emptyset$.

EFX with charity

This process has to terminate since $v_{1}\left(X_{1}\right)+\cdots+v_{n}\left(X_{n}\right)$ increases in every step.
At the end, we have an EFX allocation $\left\langle X_{1}, \ldots, X_{n}\right\rangle$ and a pool P of left-over goods.

- No agent envies P.
- The ultimate goal is to make $P=\emptyset$.
- It is known that $|P| \leq n-2$ (Mahara, 2021).

Another relaxation of EFX

Epistemic EFX (Caragiannis, Garg, Rathi, Sharma, Varrichhio 2022)

Another relaxation of EFX

Epistemic EFX (Caragiannis, Garg, Rathi, Sharma, Varrichhio 2022)
An allocation $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ is epistemic EFX iff for every $i \in\{1, \ldots, n\}$:

Another relaxation of EFX

Epistemic EFX (Caragiannis, Garg, Rathi, Sharma, Varrichhio 2022)
An allocation $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ is epistemic EFX iff for every $i \in\{1, \ldots, n\}$:

- it is possible to shuffle the goods of the other agents such that i is "EFX-satisfied";

Another relaxation of EFX

Epistemic EFX (Caragiannis, Garg, Rathi, Sharma, Varrichhio 2022)

An allocation $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ is epistemic EFX iff for every $i \in\{1, \ldots, n\}$:

- it is possible to shuffle the goods of the other agents such that i is "EFX-satisfied";
- so $\left\langle X_{1}^{i}, \ldots, X_{i-1}^{i}, X_{i}, X_{i+1}^{i}, \ldots, X_{n}^{i}\right\rangle$ is EFX where $\cup_{j \neq i} X_{j}^{i}=\cup_{j \neq i} X_{j}$.

Another relaxation of EFX

Epistemic EFX (Caragiannis, Garg, Rathi, Sharma, Varrichhio 2022)

An allocation $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ is epistemic EFX iff for every $i \in\{1, \ldots, n\}$:

- it is possible to shuffle the goods of the other agents such that i is "EFX-satisfied";
- so $\left\langle X_{1}^{i}, \ldots, X_{i-1}^{i}, X_{i}, X_{i+1}^{i}, \ldots, X_{n}^{i}\right\rangle$ is EFX where $\cup_{j \neq i} X_{j}^{i}=\cup_{j \neq i} X_{j}$.

When valuations are additive:

- an epistemic EFX allocation always exists;

Another relaxation of EFX

Epistemic EFX (Caragiannis, Garg, Rathi, Sharma, Varrichhio 2022)

An allocation $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ is epistemic EFX iff for every $i \in\{1, \ldots, n\}$:

- it is possible to shuffle the goods of the other agents such that i is "EFX-satisfied";
- so $\left\langle X_{1}^{i}, \ldots, X_{i-1}^{i}, X_{i}, X_{i+1}^{i}, \ldots, X_{n}^{i}\right\rangle$ is EFX where $\cup_{j \neq i} X_{j}^{i}=\cup_{j \neq i} X_{j}$.

When valuations are additive:

- an epistemic EFX allocation always exists;
- we can efficiently find one.

A probability distribution over EF1 allocations

Consider the following instance with additive valuations:

	a	b	c
Agent 1	10	2	5
Agent 2	11	4	1
Agent 3	3	10	8

A probability distribution over EF1 allocations

Consider the following instance with additive valuations:

	a	b	c
Agent 1	10	2	5
Agent 2	11	4	1
Agent 3	3	10	8

There are several EF1 allocations here. For example:

A probability distribution over EF1 allocations

Consider the following instance with additive valuations:

	a	b	c
Agent 1	10	2	5
Agent 2	11	4	1
Agent 3	3	10	8

There are several EF1 allocations here. For example:

- $X_{1}=\{a\}, X_{2}=\{b\}$, and $X_{3}=\{c\}$.
- $Y_{1}=\{a\}, Y_{2}=\{c\}$, and $Y_{3}=\{b\}$.
- $Z_{1}=\{c\}, Z_{2}=\{a\}$, and $Z_{3}=\{b\}$.

A probability distribution over EF1 allocations

Consider the following instance with additive valuations:

	a	b	c
Agent 1	10	2	5
Agent 2	11	4	1
Agent 3	3	10	8

There are several EF1 allocations here. For example:

- $X_{1}=\{a\}, X_{2}=\{b\}$, and $X_{3}=\{c\}$.
- $Y_{1}=\{a\}, Y_{2}=\{c\}$, and $Y_{3}=\{b\}$.
- $Z_{1}=\{c\}, Z_{2}=\{a\}$, and $Z_{3}=\{b\}$.
- In allocation X, agent 3 envies agent 2 who envies agent 1 .

A probability distribution over EF1 allocations

Consider the following instance with additive valuations:

	a	b	c
Agent 1	10	2	5
Agent 2	11	4	1
Agent 3	3	10	8

There are several EF1 allocations here. For example:

- $X_{1}=\{a\}, X_{2}=\{b\}$, and $X_{3}=\{c\}$.
- $Y_{1}=\{a\}, Y_{2}=\{c\}$, and $Y_{3}=\{b\}$.
- $Z_{1}=\{c\}, Z_{2}=\{a\}$, and $Z_{3}=\{b\}$.
- In allocation X, agent 3 envies agent 2 who envies agent 1 .
- In allocation Y, agent 2 envies both agent 1 and agent 3 .

A probability distribution over EF1 allocations

Consider the following instance with additive valuations:

	a	b	c
Agent 1	10	2	5
Agent 2	11	4	1
Agent 3	3	10	8

There are several EF1 allocations here. For example:

- $X_{1}=\{a\}, X_{2}=\{b\}$, and $X_{3}=\{c\}$.
- $Y_{1}=\{a\}, Y_{2}=\{c\}$, and $Y_{3}=\{b\}$.
- $Z_{1}=\{c\}, Z_{2}=\{a\}$, and $Z_{3}=\{b\}$.
- In allocation X, agent 3 envies agent 2 who envies agent 1 .
- In allocation Y, agent 2 envies both agent 1 and agent 3 .
- In allocation Z, agent 1 envies agent 2.

A probability distribution over EF1 allocations

There always exist fractional allocations where no agent envies another.

A probability distribution over EF1 allocations

There always exist fractional allocations where no agent envies another.

	a	b	c
Agent 1	10	2	5
Agent 2	11	4	1
Agent 3	3	10	8

A probability distribution over EF1 allocations

There always exist fractional allocations where no agent envies another.

	a	b	c
Agent 1	10	2	5
Agent 2	11	4	1
Agent 3	3	10	8

The following fractional allocation is envy-free:

- Agent 1 gets $1 / 2$ of a and $1 / 2$ of c.
- Agent 2 gets $1 / 2$ of $a, 1 / 4$ of b, and $1 / 4$ of c.
- Agent 3 gets $3 / 4$ of b and $1 / 4$ of c.

A probability distribution over EF1 allocations

There always exist fractional allocations where no agent envies another.

	a	b	c
Agent 1	10	2	5
Agent 2	11	4	1
Agent 3	3	10	8

The following fractional allocation is envy-free:

- Agent 1 gets $1 / 2$ of a and $1 / 2$ of c.
- Agent 2 gets $1 / 2$ of $a, 1 / 4$ of b, and $1 / 4$ of c.
- Agent 3 gets $3 / 4$ of b and $1 / 4$ of c.

Interestingly, this can be viewed as a probability distribution over EF1 allocations:

A probability distribution over EF1 allocations

There always exist fractional allocations where no agent envies another.

	a	b	c
Agent 1	10	2	5
Agent 2	11	4	1
Agent 3	3	10	8

The following fractional allocation is envy-free:

- Agent 1 gets $1 / 2$ of a and $1 / 2$ of c.
- Agent 2 gets $1 / 2$ of $a, 1 / 4$ of b, and $1 / 4$ of c.
- Agent 3 gets $3 / 4$ of b and $1 / 4$ of c.

Interestingly, this can be viewed as a probability distribution over EF1 allocations:

- Take X with probability $1 / 4, Y$ with probability $1 / 4$, and Z with probability $1 / 2$.

For additive valuations

The serial eating protocol produces an envy-free fractional allocation. (Bogomolnaia and Moulin, 2001)

For additive valuations

The serial eating protocol produces an envy-free fractional allocation. (Bogomolnaia and Moulin, 2001)

- All agents simultaneously eat their respective favourite good at the same speed.

For additive valuations

The serial eating protocol produces an envy-free fractional allocation.
(Bogomolnaia and Moulin, 2001)

- All agents simultaneously eat their respective favourite good at the same speed. Let us run this on our example. (The best good for 1 and 2 is a and for 3 , it is b.)

For additive valuations

The serial eating protocol produces an envy-free fractional allocation.
(Bogomolnaia and Moulin, 2001)

- All agents simultaneously eat their respective favourite good at the same speed. Let us run this on our example. (The best good for 1 and 2 is a and for 3 , it is b.)

Once a good is completely consumed by a subset of agents:

For additive valuations

The serial eating protocol produces an envy-free fractional allocation.
(Bogomolnaia and Moulin, 2001)

- All agents simultaneously eat their respective favourite good at the same speed. Let us run this on our example. (The best good for 1 and 2 is a and for 3 , it is b.)

Once a good is completely consumed by a subset of agents:

- each of those agents then eats her favourite available good at the same speed.

Best of both worlds

- And finally:

This protocol always produces a fractional allocation that is envy-free.

Best of both worlds

- And finally:

This protocol always produces a fractional allocation that is envy-free.

- This fractional allocation can also be expressed as a probability distribution over EF1 allocations (Freeman, Shah, and Vaish, 2020).

Best of both worlds

- And finally:

This protocol always produces a fractional allocation that is envy-free.

- This fractional allocation can also be expressed as a probability distribution over EF1 allocations (Freeman, Shah, and Vaish, 2020).
- Furthermore, such a probability distribution can be efficiently computed.

Best of both worlds

- And finally:

This protocol always produces a fractional allocation that is envy-free.

- This fractional allocation can also be expressed as a probability distribution over EF1 allocations (Freeman, Shah, and Vaish, 2020).
- Furthermore, such a probability distribution can be efficiently computed.

> Thank you!

